

FUNDAMENTALS OF DEEP LEARNING

Part 5: Pre-trained Models

AGENDA

Part I: An Introduction to Deep Learning Part 2: How a Neural Network Trains Part 3: Convolutional Neural Networks Part 4: Data Augmentation and Deployment Part 5: Pre-trained Models Part 6: Advanced Architectures

AGENDA – PART 5

- Review so far
- Pre-trained Models
- Transfer Learning

REVIEW SO FAR

- Learning Rate
- Number of Layers
- Neurons per Layer
- Activation Functions
- Dropout
- Data

PRE-TRAINED MODELS

TensorFlow Hub

PYTORCH HUB

PRE-TRAINED MODELS

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman⁺

Visual Geometry Group, Department of Engineering Science, University of Oxford {karen, az}@robots.ox.ac.uk

THE NEXT CHALLENGE

An Automated Doggy Door

THE CHALLENGE AFTER

An Automated Presidential Doggy Door

Freezing the Model?

