
1

PRACE Workshop: Deep Learning
and GPU programming workshop
7 – 10 September 2020

Tentative Agenda Day 2: Fundamentals of
Accelerated Computing with OpenACC

10:00-12:00 Intro and Profiling

12:00-13:00 Lunch Break

13:00-14:20 OpenACC Directives

14:20-14:30 Coffee Break

14:30-15:45 GPU Programming and Data Management
15:45-16:00 Q&A, Final Remarks

4

All times are in
EEST=CEST+1!

Dr. Volker Weinberg | LRZ | 08.09.2020

MODULE ONE:
INTRODUCTION

MODULE OVERVIEW
Topics to be covered

 Introduction to parallel programming

 Common difficulties in parallel programming

 Introduction to OpenACC

 Parallel programming in OpenACC

INTRODUCTION TO PARALLEL
PROGRAMMING

WHAT IS PARALLEL PROGRAMMING?
 “Performance Programming”

 Parallel programming involves exposing an
algorithm’s ability to execute in parallel

 This may involve breaking a large operation
into smaller tasks (task parallelism)

 Or doing the same operation on multiple
data elements (data parallelism)

 Parallel execution enables better
performance on modern hardware

A + B + C + D
Sequential Parallel

A B C D A B C D

3 Steps

2 Steps

AMDAHL’S LAW

AMDAHL’S LAW

 Amdahl’s law is an observation that how much
speed-up you get from parallelizing the code is
limited by the remaining serial part.

 Any remaining serial code will reduce the
possible speed-up

 This is why it’s important to focus on
parallelizing the most time consuming parts,
not just the easiest.

Serialization Limits Performance

0

5

10

15

20

1 8 64 512 4096 32768Po
te

nt
ia

l S
pe

ed
-u

p

Number of Processors

Amdahl's Law
25% 50% 75% 90% 95%

APPLYING AMDAHL’S LAW

 What’s the maximum speed-up that can be
obtained by parallelizing 50% of the code?

1 / (100% - 50%) = 1 / (1.0 - 0.50) = 2.0X

 What’s the maximum speed-up that can be
obtained by parallelizing 25% of the code?

1 / (100% - 25%) = 1 / (1.0 - 0.25) = 1.3X

 What’s the maximum speed-up that can be
obtained by parallelizing 90% of the code?

1 / (100% - 90%) = 1 / (1.0 - 0.90) = 10.0X

Estimating Potential Speed-up
Maximum Parallel Speed-up

Total Serial Runtime

Total Parallel
Runtime (50%)

Total Parallel
Runtime (25%)

Total Parallel
Runtime (90%)

INTRODUCTION TO OPENACC

OpenACC is a directives-
based programming approach
to parallel computing
designed for performance
and portability on CPUs
and GPUs for HPC.

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>

}
}

Add Simple Compiler Directive

STANDARDS-BASED PARALLELISM

MPI standard OpenMP standard

https://www.openmp.org/specifications/
https://www.mpi-forum.org/docs/

OpenACC standard

https://www.openacc.org/specification

DEVELOPMENT OF OPENMP STANDARD

COMPLEXITY OF RECENT STANDARDS

3 WAYS TO ACCELERATE
APPLICATIONS

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

OpenACC

 OpenACC is designed to be portable to many
existing and future parallel platforms

 The programmer need not think about specific
hardware details, but rather express the
parallelism in generic terms

 An OpenACC program runs on a host
(typically a CPU) that manages one or more
parallel devices (GPUs, etc.). The host and
device(s) are logically thought of as having
separate memories.

Host
Device

Host
Memory Device

Memory

OPENACC PORTABILITY
Describing a generic parallel machine

Single Source Low Learning CurveIncremental

OPENACC
Three major strengths

Incremental

OPENACC

 Maintain existing
sequential code

 Add annotations to
expose parallelism

 After verifying
correctness, annotate
more of the code

for(i = 0; i < N; i++)
{

< loop code >
}

for(i = 0; i < N; i++)
{

< loop code >
}

Enhance Sequential Code

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correct behavior,

remove/alter OpenACC
code as needed.

Single Source Low Learning CurveIncremental

OPENACC

 Maintain existing
sequential code

 Add annotations to
expose parallelism

 After verifying
correctness, annotate
more of the code

Single Source

OPENACC

 Rebuild the same code
on multiple
architectures

 Compiler determines
how to parallelize for
the desired machine

 Sequential code is
maintained

POWER

Sunway

x86 CPU

x86 Xeon Phi

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i < N; i++)
< loop code >

}

int main(){

...

#pragma acc parallel loop
for(int i = 0; i < N; i++)

< loop code >

}

The compiler can ignore your
OpenACC code additions, so the same

code can be used for parallel or
sequential execution.

Single Source Low Learning CurveIncremental

OPENACC

 Maintain existing
sequential code

 Add annotations to
expose parallelism

 After verifying
correctness, annotate
more of the code

 Rebuild the same code
on multiple
architectures

 Compiler determines
how to parallelize for
the desired machine

 Sequential code is
maintained

Low Learning Curve

OPENACC

 OpenACC is meant to
be easy to use, and
easy to learn

 Programmer remains
in familiar C, C++, or
Fortran

 No reason to learn
low-level details of the
hardware.

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

Compiler
Hint

CPU Parallel Hardware

The programmer will
give hints to the

compiler about which
parts of the code to

parallelize.
The compiler will then
generate parallelism
for the target parallel

hardware.

Single SourceIncremental

OPENACC

 Maintain existing
sequential code

 Add annotations to
expose parallelism

 After verifying
correctness, annotate
more of the code

 Rebuild the same code
on multiple
architectures

 Compiler determines
how to parallelize for
the desired machine

 Sequential code is
maintained

Low Learning Curve

 OpenACC is meant to
be easy to use, and
easy to learn

 Programmer remains
in familiar C, C++, or
Fortran

 No reason to learn
low-level details of the
hardware.

EXPRESSING PARALLELISM WITH
OPENACC

CODING WITH OPENACC
Array pairing example- serial
void pairing(int *input, int *output, int N){

for(int i = 0; i < N; i++)
output[i] = input[i*2] + input[i*2+1];

}

6 3 10 7 2 4 3 8 9 2 0 1
input

output

9 17 6 11 11 1

CODING WITH OPENACC
Array pairing example - parallel
void pairing(int *input, int *output, int N){

for(int i = 0; i < N; i++)
output[i] = input[i*2] + input[i*2+1];

}

6 3 10 7 2 4 3 8 9 2 0 1
input

output

9 17 6 11 11 1

void pairing(int *input, int *output, int N){
#pragma acc parallel loop
for(int i = 0; i < N; i++)
output[i] = input[i*2] + input[i*2+1];

}

2 3 4 5 6 7 8 9 10

DATA DEPENDENCIES
Not all loops are parallel
void pairing(int *a, int N){

for(int i = 1; i < N; i++)
a[i] = a[i] + a[i-1];

}

1 3 6 10 15 21 28 36 45 55

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

DATA DEPENDENCIES
Not all loops are parallel
void pairing(int *a, int N){

for(int i = 1; i < N; i++)
a[i] = a[i] + a[i-1];

}

1 3 6 10 15 21 28 36 45 55

void pairing(int *a, int N){
#pragma acc parallel loop
for(int i = 1; i < N; i++)
a[i] = a[i] + a[i-1];

}

2 3 4 5 6 7 8 9 101 3 5 9 9 15 13 21 17 27

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

Sequential

Parallel

If we attempted to parallelize this
loop we would get wrong answers

due to a forward dependency.

MODULE 1 REVIEW

CLOSING SUMMARY

 Parallel programming is a technique of utilizing modern hardware to do lots of work
all at once.

 Amdahl’s law is the gravity of parallel programming, break this law at your own peril.

 Not all loops are parallel, but often can be rewritten to be parallelizable

 OpenACC is a high level model for generating parallel code from serial loops

Module One: Introduction

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE
Compilers

https://www.openacc.org/community#slack

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm
https://www.openacc.org/community#slack

THANK YOU

	Foliennummer 1
	Tentative Agenda Day 2: Fundamentals of �Accelerated Computing with OpenACC
	MODULE ONE:�INTRODUCTION
	Module OVERVIEW
	Introduction to parallel programming
	What is parallel programming?
	Amdahl’s Law
	Amdahl’s Law
	Applying Amdahl’s Law
	Introduction to Openacc
	Foliennummer 22
	Standards-based parallelism
	Development of OpenMP STandard
	Complexity of Recent Standards
	3 Ways to Accelerate Applications
	Openacc portability
	openacc
	openacc
	openacc
	openacc
	openacc
	openacc
	openacc
	Expressing parallelism with openacc
	Coding with openacc
	Coding with openacc
	Data Dependencies
	Data Dependencies
	Module 1 Review
	Closing Summary
	OPENACC Resources
	THANK YOU�

