)‘%’, :&:ﬂ—ﬁk

DEEE
LEARNING
nVIDIA INSTITUTE

PRACE Workshop: Deep Learning
and GPU programming workshop

7 — 10 September 2020

: ____ VSB TECHNICAI
H|| UNIV ERSITY
OF OSTRA

ITAINNOVATIONS
NATIONAL SUPERCOMPUTING
CENTER

csc

MODULE OVERVIEW

Topics to be covered

= Compiling and profiling sequential code
= Explanation of multicore programming

= Compiling and profiling multicore code

OpenACC

COMPILING SEQUENTIAL CODE

OpenACC

PGI COMPILER BASICS

pgcc, pgc++ and pgfortran

The command to compile C code is ‘pgcc’

The command to compile C++ code is ‘pgc++’

The command to compile Fortran code is ‘pgfortran’

The -fast flag instructs the compiler to optimize the code to the best of its abilities

$ pgcc -fast main.c
$ pgc++ -fast main.cpp
$ pgfortran -fast main.F90

OpenACC

PGI COMPILER BASICS

-Minfo flag

= The Minfo flag will instruct the compiler to print feedback about the compiled code

= -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

= -Minfo=opt will give information about all code optimizations

= -Minfo=all will give all code feedback, whether positive or negative

$ pgcc -fast -Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran -fast -Minfo=all main.f90

OpenACC

PROFILING SEQUENTIAL CODE

OpenACC

OPENACC DEVELOPMENT CYCLE

[- Analyze your code to determine }

most likely places needing

parallelization or optimization. Analyze

= Parallelize your code by starting
with the most time consuming parts,
check for correctness and then
analyze it again.

= Optimize your code to improve
observed speed-up from
parallelization.

Optimize Parallelize

OpenACC

PROFILING SEQUENTIAL CODE

Step 1: Run Your Code Terminal Window

Record the time it takes for your
sequential program to run.

Note the final results to verify
correctness later.

Always run a problem that is
representative of your real jobs.

OpenACC

$ pgcc -fast jacobi.c laplace2d.c
$./a.out

0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269

total: 39.432648 s

PROFILING SEQUENTIAL CODE

Step 2: Profile Your Code

Obtain detailed information about how
the code ran.

This can include information such as:
= Total runtime

= Runtime of individual routines

= Hardware counters

|dentify the portions of code that took
the longest to run. We want to focus on

these “hotspots” when parallelizing.

OpenACC

I pgprof ./laplace

Jacobi relaxation Calculation: 4096 x 4096 mesh
0, 0.250000

100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 60.611229 s

======== CPU profiling result (bottom up):
Time(%) Time Name

54.51% 32.43s calcNext

54.51% 32.43s | main

45.40% 27.01s ___c_mcopy8_ avx
0.05% 30ms swap

0.05% 30ms | main

0.03% 20ms __c_mcopy8

======== Data collected at 100Hz frequency

PROFILING SEQUENTIAL CODE

Introduction to PGProf

= Gives visual feedback of how the
code ran

= Gives numbers and statistics, such
as program runtime

= Also gives runtime information for
individual functions/loops within the
code

= Includes many extra features for
profiling parallel code

OpenACC

File View
=

window

Run Help

o &y &

< conjugate_gradient.nvvp 2

[=| Process "cg.x" (5127)
|=| Thread 1601578816

" OpenACC

- Driver API
“ Profiling Overhead
=/ [0] Quadro GP100
[=| Conkext 1 (CUDA)

- SF MemCpy (HtoD)
L 5F MemCpy (DtoH)

= compute

L 5F 89.0% _Z6matvecR...
- 5F 7.2% _Z6waxpbydR...
L 97 2.4% _73dotRK6ve...
~ % 1.3% _Z3dotRKéve...

[=| Streams

Y Stream 13

i Analysis B8 GPU Details £

Name

Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]
Memcpy HtoD [async]

Start Time
307.712 ms
308.386 ms
310.385ms
312.464 ms
313.983ms
314.374 ms
316.287 ms
318.214 ms

CPU Details B console Settings

1 (X)) K 5 P
A=A 1N | oo | o

0.6|9 s 0.6?5 s 0'.? 5 0‘795 s

= 8

O.YI‘\ s 0.7]5 5 O‘YIE s 0‘7?5 s 0.7‘3 5

acc_update@vector.h... Jacc_compute_construct@vector.... ll]acc_compute_construct@vector.... [illll acc_compute _constructg

|
I | s wait@vectorh:ss Jl| acc wait@vectorh:zs JIl] acc wait@vectort
NI custreamsynchronize cuStreamSynchronize || cuStreamSynchrof
HENEN | | |
| | |
| _Z6matvecRK6matrixRK6vectors...| || Z6matvecRKematrixRK6vectors... | _ZematvecRK6matrixRK(
_Z6matvecRK6matrixRKévectors... _Z6ématvecRK6matrixRK6vectors... | _ZomatvecRKomatrixRKqg
|] i

Duration Grid Size Block Size Regs Static SMem
2.08 s
1.344 ps
1.281ms
1.356 ms
2.848 s

282.264 s
1.351ms

1.351 ms

= Properties 2

Stream 13

¥ Duration
Session

PROFILING SEQUENTIAL CODE

CPU Detalls

* Please make sure to choose "Profile
current process only" from the
dropdown instead of "Profile child
process". The CPU details will not be
displayed in the profiler otherwise.

OpenACC

&

Create New 5ess

able Properties

utable properties

Connectio
Toolkit/Script:
File:

w | Manage conne

|cupa

it 10.1 (/o

ux86-64-1lvm/2019/cuda/10.1/bin/)

|/homejopenacciia bs/module2/English/C/laplace

Working directory: lFr[‘.ﬂr working directory [optional]

|F_rrr-_lr command-line arguments

| Profile child processes

Arguments:

Environment:

Profile child processes
Profile all processes
Profile current process only

[

aaaaa

PROFILING SEQUENTIAL CODE

First sight when using PGPROF

e view window R e
r4 B o=y O v o # F I EEEIA-~

= Profiling a simple, sequential code = vweenws

000000000000000000000000000000000

= Qur sequential program will run on
the CPU

= To view information about how our
code ran, we should select the
“CPU Detalls” tab

OpenACC

PROFILING SEQUENTIAL CODE

CPU Detalls

= Within the “CPU Detalls” tab, we
can see the various parts of our
code, and how long they took to run

= We can reorganize this info using
the three options in the top-right
portion of the tab

= We will expand this information, and
see more details about our code

OpenACC

[Applications|"s | i

|A|I threads >0 maK

Event %
= /home/openacc/labs/module2/English/C/laplace2d.c 54.116% 33.2s533.2s
b calcNext 54.099% 33.2si33.2s
swap 0.016% 10ms 10 ms
= Jopt/pgi/linux86-64-1lvm/19.10/lib/libpgc.so 45.607% 285 285
= Unknown Filename 45.607% 28s 28s
P _ c_mcopy8_avx 45.607% 285285

2|

o PGI Profiler
File View Window Run Help
CEHE WG S - Hgidl8lFRIESEEA-
§ *NewSessionl & =g
1s
&4 CPU Details £ =g
ngle interval

PROFILING SEQUENTIAL CODE

CPU Detalls

= We can see that there are two bopiatond” [= e

ol PGI Profiler PG

places that our code is spending e

CEE NS -8 FRIEIEES -

most of its time n==n - e

= 33.2 seconds in the “calcNext” e RS S i S o SR —
fu n Ctl O n All threads j o - maK ;:;;Zl;;:lghhght a single interval to see

Event %

| 2 8 S e CO n d S I n a m e m C py fu n Ctl O n = /homelopenaccilabsimoadule2/English/C/laplace2d.c 54.116% B el e

I b calcNext 54.099% 33.2s5/33.25 I
= The c_mcopy8_avx that we see is
actually a compiler optimization that

IS being applied to our “swap”
fu n Ctl O n = Unknown Filename 45.607% 285 285

I P _ c_mcopy8_avx 45.607% 285285 I

PROFILING SEQUENTIAL CODE
PGPROF

“w Applications |] PGI Profiler m.-- 14:08 ‘1' |

& PGl Profiler [
File View Window Help |
il

= We are also able to select the nensessons g pcezec - =

@ * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserued.D

different elements in the CPU

#include <stdlib.h=>

Details by double-clicking to open | s oo v m e+ o
~void initialize(double *restrict A, double *restrict Anew, int m, int

the associated source code { e ;e

memset(A, @, n * m * sizeof(double));
memset (Anew, 8, n * m * sizeof(double));

= Here we have selected the e =
“calcNext” element, which opened | .. e wesic s soste wrestrict e, 1t 0, 1 0

{

up the source file in the top part of | _ &sirrist . . o

[I+]
the WI ndo + Analysis Fi GPU Details (Summar [CPU Details 3% [/ OpenACC Details [OpenMP Details B Console [y Settings = O £ Properties 58 = g

|4 =

| Select or highlight a single interval to see
All threads *|0 -~ maX properties
vent

33.2 SI

__c_mcopy8_avx 45.994% 2855 2855

[« : I I

OpenACC

PROFILING SEQUENTIAL CODE

Step 2: Profile Your Code Lab Code: Laplace Heat Transfer

Obtain detailed information about how
the code ran. Total Runtime: 39.43 seconds

This can include information such as:

= Total runtime

= Runtime of individual routines
calcNext

= Hardware counters

21.49s

|dentify the portions of code that took
the longest to run. We want to focus on
these “hotspots” when parallelizing.

OpenACC

PROFILING SEQUENTIAL CODE

Step 3: Identify Parallelism

Observe the loops contained within the vold pairing(int “input, int “output, int N){
identified hotspots for(int i = 6; 1 < Nj i++) _
output[i] = input[i*2] + input[i*2+1];
: }
Are these loops parallelizable?
Can the loop iterations execute
independently of each other? 6 3 10 7 2 4
Are the loops multi-dimensional, and input
does that make them very large?
Loops that are good to parallelize tend
to have a lot of iterations to map to 9 17
parallel hardware. output

OpenACC

PLEASE START LAB NOW!

OpenACC

TRAINING SETUP

= To get started, follow these steps:

= Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log Iin
with my NVIDIA Account" and then "'Create Account” (done yesterday)

= Visit http://courses.nvidia.com/dli-event and enter the event code

PRACE_OACC_AMBASSADOR_SE20

OpenACC

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

© & hitpsy/courses.nvidia.com/courses/course-v1%3ADLI%2BC-AC-03%2BV 1 /course/

< NVIDIA.

Home Course Progress

Fundamentals of Accelerated Computing with OpenACC

Fundamentals of Accelerated Computing with OpenACC

‘ [Click here to get started Resume Course © |

Feedback

- @

Courses Volker_Weinberg_Test «

Course Tools

R Bookmarks

Important Course Dates

Today is Jun 15, 2020 17:20 CEST

Course Handouts

No Course Handouts

+

N @

Fundamentals of Accelerated Computing with OpenACC

[Bookmark this page

@ DEEP
LEARNING

NVIDIA. INSTITUTE

To get started with this live GPU enabled interactive content please click the "Start” button on the top right of this block.

This will launch a pre-configured GPU workstation, it may take 5-10 minutes.

OpenACC

START

PROFILING MULTICORE CODE

OpenACC

PROFILING MULTICORE CODE

What i1s multicore?

Multicore refers to using a CPU with multiple _ CPU
computational cores as our parallel device

These cores can run independently of each
other, but have shared access to memory

Loop iterations can be spread across CPU
threads and can utilize SIMD/vector instructions
(SSE, AVX, etc.)

Parallelizing on a multicore CPU is a good
starting place, since data management is
unnecessary

OpenACC

PROFILING MULTICORE CODE

Using a multicore CPU with OpenACC

OpenACC'’s generic model involves a
combination of a host and a device

Host generally means a CPU, and the device
IS some parallel hardware

When running with a multicore CPU as our
device, typically this means that our
host/device will be the same

This also means that their memories will be :
the same Device

Memory

OpenACC

PROFILING MULTICORE CODE

Compiling code for a specific parallel hardware

= The ‘-ta’ flag will allow us to compile our code for a specific, target parallel hardware

= ‘ta’ stands for “Target Accelerator,” an accelerator being another way to refer to a
parallel hardware

= Our OpenACC code can be compiled for many different kinds of parallel hardware
without having to change the code

$ pgcc -fast -Minfo=accel -ta=multicore laplace2d.c
calcNext:

35,L§gnerating Multicore code

36, #pragma acc loop gang

OpenACC

PROFILING MULTICORE CODE
PGPROF

“w Applications [] PG Profiler mgji 14:16 |

PGl Profiler | NI
File View Window Run Help

Q- |HOABIEBIF R I|EIE] 5 |
= The first difference we see inthis [=07 0

§ *NewSessionl - laplace2d.c ‘ *NewSession:. 2 8%

multicore profile is that there is now h - = =
a “timeline” [
= This timeline will show when our
parallel hardware is being used,
and how it is being used
= Each of the blue bars represent a e - T T -

portion of our program that was run o i *'_j

on the multicore CPU —

b do_futex_wait 14.286%

b pthread cond wait@@GLIBC_2.3.2 14.187%

OpenACC

PROFILING MULTICORE CODE

CPU Detalls

= Looking at our CPU Details, we can
see that there is a lot more
happening compared to our
sequential program

= For the most part, these extra
details revolve around the need for
the CPU cores to communicate with
each other

OpenACC

“w Applications Iﬁ] PG Profiler (=] | [EX

o | PGl Profiler [+ E
File View Window Help
NE G
Analysis GPU Details (Summary) B8 CPU Details 22 OpenACC Details OpenMP Details El Console Settings Y E 5 28 £
m|
[Thread 0 L] 0 . max
Event %
initialize_1F1L48 42.736%
__€_mcopy8_avx 38.511%
sched_yield 9.698%
__kmp_hardware_timestamp 4.024%
__kmp_join_barrier(int) 3.179%
0.644%
__kmp_yield 0.121%
_mp_bcs_nest 0.04%
%

PROFILING MULTICORE CODE

View of computational threads

“wit Applications || PGI Profiler

Po| PGI Profiler
File View Window Help

= You can see statistics for all threads | -
or select a specific thread in the box |~

i Analysis GPU Details (Summary) EH CPU Details 22 OpenACC Details OpenMP Details & ¢

A reads * 0 ~ mag
on the top left of the CPU Details :
tab . I:::g ; b_yield 0.035% 20 ms 40 ms

Thread 3
Thread 4

Thread 5 23.06%
Thread 6

¥ main 8.734%

= calcNext 71.517%

OpenACC

PROFILING MULTICORE CODE

View of all computational threads

= When moving the mouse on the % value, one can see

Bl B b

1

ra

Mean across all threads
Total across all threads

Total as a percentage of all the time spent on one / all threads.

Function: calcNext
Mean across all threads: 13 s
Total across all threads: 13 s

Percentage of all the time spent on Thread 0: 52.193%

OpenACC

5118

Function: ¢ mcopy8 avx

Mean across all threads: 9.9 s

— | Total across all threads: 39.8 s

Percentage of all the time spent on Thread 0: 38.511%

PROFILING MULTICORE CODE

OpenACC Detalls

“w Applications Iﬁ PGI Profiler

“w Applications I@ PGl Profiler

m PGl Profiler o B 83 ﬁ PGl Profiler
File View Window Help | File View Window Help
o ave (Ctri+5)
% *NewsSessionl o/ laplace2d.c | laplace2d.c & = " % *NewSessionl c| laplace2d.c |5| laplace2d.c & = 0
= } =
return error; }
}
~ double calcNext(double *restrict A, double *restrict Anew, int m, int n)
void swap(double *restrict A, double *restrict Anew, int m, int n)
double error = 0.6;
for(int j = 1; j < n-1; j++) for(int j = 1; j < n-1; j+)
{
for(dnt i =1; i <m-1; i++) for(int i =1; i <m-1; i++)
A[OFFSET(j, 1, m)] = Anew[OFFSET(j, i, m)]; Anew[OFFSET(j, i, m)] = ©.25 * (A[OFFSET(j, i+l, m)] + A[OFFSET(j, i-1, m})]
+ A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m)1);
} error = fmax(error, fabs(Anew[OFFSET(j, i, m)] - A[OFFSET(j, i , m)1));
} }
}
~void deallocate(double *restrict A, double *restrict Anew)) return error;
free(A); % % % % =
free(Anew) ; -~ void swap(double *restrict A, double *restrict Anew, int m, int n)
for(int j = 1; j < n-1; j++)
- i L=l
[| KT]
: Analysis [GPU Details (Summar [CPU Details [z OpenACC Details)2 1) OpenMP Details =l Console T Settings = [£ Properties 5% =\ i Analysis [GPU Details (Summar Ei CPU Details [T OpenACC Details 33 75 OpenMP Details B Console CiSettings = 0 E Properties 3 = o
lﬁ(’k acc_compute_constr 2d. IWH@- acc_compute_constr
Summary of OpenACC events on process: 384 Start 5.62979 Summiary of OpenACC events on process: 384 Start 5.62979
Name % Time calls End 5.6403 s Name % Time Calls | End 5.6403 s
v laplace2d.c:36 52.204% 9742785 | 1000 Duration 1051828 - laplace2d.c: 36 5223a4% 19.742785° 11000 Duration 1051828
b acc_compute_construct 52.244% 9.74278 s 1000 Event Kind acc_com) ; Event Kind Accicom
< laplace2d.c:52 47.334% 8.82718 s 1000 Parent Construct unknown b laplace2d.c:52 47.334% 8.82718 s 1000 Parent Construct unknown
v acc_compute_construct 33 827185 1000 Varsion 201711 Version 201711
Implicit false Implicit false
Device Type acc_devi Device Type acc_devid|.,
[0 | [T I3l

OpenACC

LAPLACE HEAT TRANSFER

Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal
plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

OpenACC

LAPLACE HEAT TRANSFER

Introduction to lab code - technical

The lab simulates a very basic
2-dimensional heat transfer problem.
We have two 2-dimensional arrays,
A and Anew.

The arrays represent a 2-
dimensional, metal plate. Each
element in the array is a double
value that represents temperature.

We will simulate the distribution of
heat until a minimum change value
IS achieved, or until we exceed a
maximum number of iterations.

OpenACC

A
0.0]100]100]0.0
0.0100]0.0]0.0
0.0]100]100]0.0
0.0]100]100]0.0

Anew
00]00)]0.0]}]0.0
00]00]00]}]0.0
00]00]0.0]}]0.0
00]00]0.0]}]0.0

LAPLACE HEAT TRANSFER

Introduction to lab code - technical

We initialize the top row to be a

temperature of 1.0 A Anew

The calcNext function will iterate
through all of the inner elements of
array A, and update the
corresponding elements in Anew

0.0 0.0) 0.0} @O 0.0

0.0

We will take the average of the
neighboring cells, and record it in
Anew.

0.0

0.0

The swap function will copy the
contents of Anew to A

OpenACC

LAPLACE HEAT TRANSFER

Introduction to lab code

The swap function will copy the
contents of Anew to A

OpenACC

Anew

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.25

0.25

0.0

0.0

0.25

0.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

KEY CONCEPTS

In this module we discussed...

= Compiling sequential and parallel code
= CPU profiling for sequential and parallel execution

= Specifics of our Laplace Heat Transfer lab code

OpenACC

LAB GOALS

In this lab you will do the following...

= Build and run the example code using the PGI compiler

= Use PGProf to understand where the program spends its time

OpenACC

TRAINING SETUP

= To get started, follow these steps:

= Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log Iin
with my NVIDIA Account" and then "'Create Account” (done yesterday)

= Visit http://courses.nvidia.com/dli-event and enter the event code

PRACE_OACC_AMBASSADOR_SE20

OpenACC

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

© & hitpsy/courses.nvidia.com/courses/course-v1%3ADLI%2BC-AC-03%2BV 1 /course/

< NVIDIA.

Home Course Progress

Fundamentals of Accelerated Computing with OpenACC

Fundamentals of Accelerated Computing with OpenACC

‘ [Click here to get started Resume Course © |

Feedback

- @

Courses Volker_Weinberg_Test «

Course Tools

R Bookmarks

Important Course Dates

Today is Jun 15, 2020 17:20 CEST

Course Handouts

No Course Handouts

+

N @

Fundamentals of Accelerated Computing with OpenACC

[Bookmark this page

@ DEEP
LEARNING

NVIDIA. INSTITUTE

To get started with this live GPU enabled interactive content please click the "Start” button on the top right of this block.

This will launch a pre-configured GPU workstation, it may take 5-10 minutes.

OpenACC

START

TRAINING SETUP

Fundamentals of Accelerated Computing with OpenACC

[l Bookmark this page

@ EIIEEEENING 1:96:47 ’ .

NVIDIA. INSTITUTE REMAINING TIME LAUNCH TASK STOP TASK

Please wait 5 - 10 minutes while your interactive GPU enabled environment loads. When the "Launch” button appears, click it to get started.

OpenACC

TRAINING SETUP

Files Running Clusters
Select items to perform actions on them. Upload || New~ || &
[(Jo |~ Wm{ Name < | Last Modified File size
O O module2 vor 4 Tagan
[0 O module3 vor 4 Tagen
[O moduled vor 4 Tagen
J 3 moduleb vor 4 Tagen
[0 © moduleb vor 4 Tagan
(] & START HERE.ipynb - vord Tagen 1.36 kB

OpenA

s Programeming

TRAINING SETUP

Welcome to the OpenACC labs

Please select the appropriate lab below.

‘ « Module 2 - Application Profiling with PGProf Lab - This lab introduces students to application profiling using the PGProf profiler.
Module 3 - OpenACC Directives Basics - This lab introduces OpenACC directives.

Module 4 - GPU Programming with OpenACC - This lab introduces GPU programming with OpenACC.
Module 5 - Data Management with OpenACC - This lab introduces OpenACC data management directives.
Module & - OpenACC Loop Optimizations - This 1ab introduces students to loop optimizations in OpenACC.

Application Profiling with PGProf Lab

This lab is meant to accompany Module 2 of the OpenACC.org teaching materials. The purpose of this lab is to introduce students to application profiling
using the PGProf profiler. Lab instructions and source code is available for C/C++ and Fortran.

Please see the following files to begin the lab:

-
= Fortran

PROFILING SEQUENTIAL CODE

CPU Detalls

* Please make sure to choose "Profile
current process only" from the
dropdown instead of "Profile child
process". The CPU details will not be
displayed in the profiler otherwise.

OpenACC

&

Create New 5ess

able Properties

utable properties

Connectio
Toolkit/Script:
File:

w | Manage conne

|cupa

it 10.1 (/o

ux86-64-1lvm/2019/cuda/10.1/bin/)

|/homejopenacciia bs/module2/English/C/laplace

Working directory: lFr[‘.ﬂr working directory [optional]

|F_rrr-_lr command-line arguments

| Profile child processes

Arguments:

Environment:

Profile child processes
Profile all processes
Profile current process only

[

aaaaa

	Foliennummer 1
	MODULE two:�profiling
	Module OVERVIEW
	Compiling sequential code
	PGI Compiler Basics
	PGI Compiler Basics
	Profiling sequential code
	Openacc development CYCLE
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	�Please start LAB now!
	TRAINING SETUP
	TRAINING SETUP
	profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	KEY concepts
	Lab Goals
	THANK YOU�
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	Profiling sequential code

