

PRACE Workshop: Deep Learning and GPU programming workshop

7 – 10 September 2020

IT4INNOVATIONS NATIONAL SUPERCOMPUTING CENTER

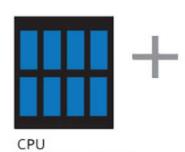
MODULE FOUR: GPU PROGRAMMING

Dr. Volker Weinberg | LRZ | 08.09.2020

MODULE OVERVIEW

OpenACC Directives

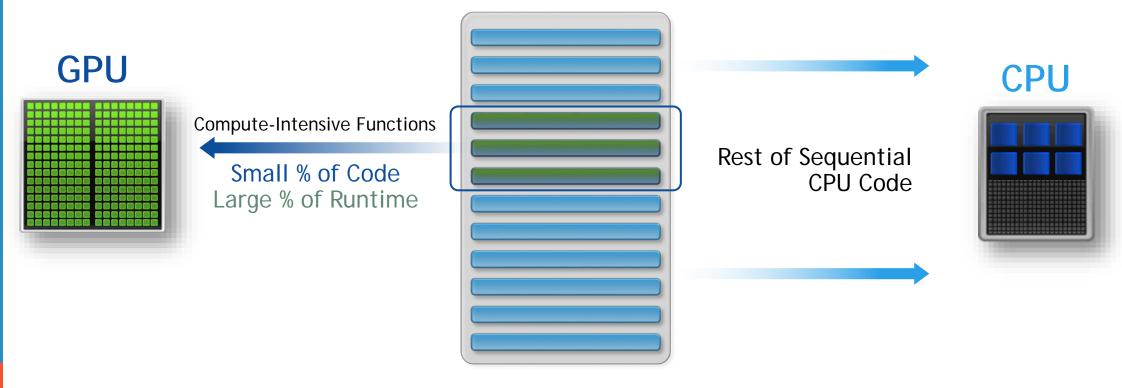
- Multicore CPU vs GPU
- Introduction to GPU Data Management
- CUDA Managed Memory
- GPU Profiling with PGProf



CPU VS GPU

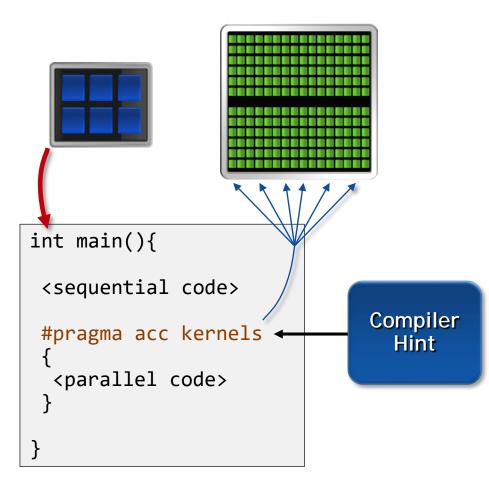
CPU VS GPU Number of cores and parallelism

- Both are extremely popular parallel processors, but with different degrees of parallelism
- CPUs generally have a small number of very fast physical cores
- GPUs have thousands of simple cores able to achieve high performance in aggregate
- Both require parallelism to be fully utilized, but GPUs require much more

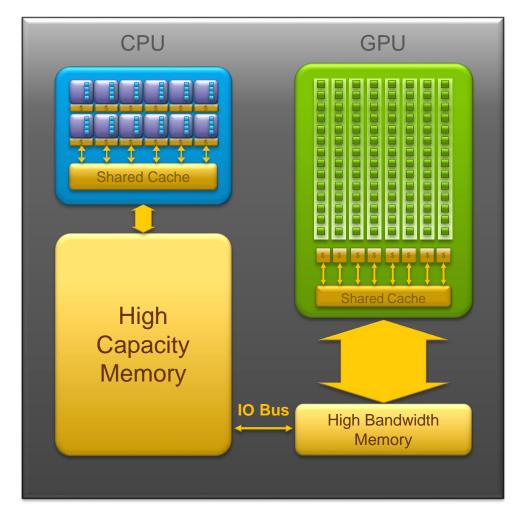

MULTIPLE CORES

GPU THOUSANDS OF CORES

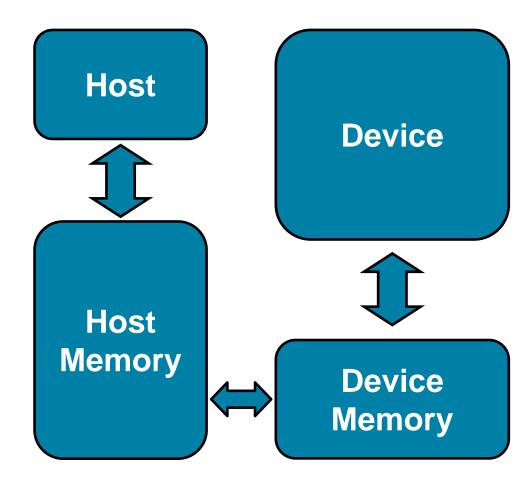
CPU + GPU WORKFLOW


Application Code

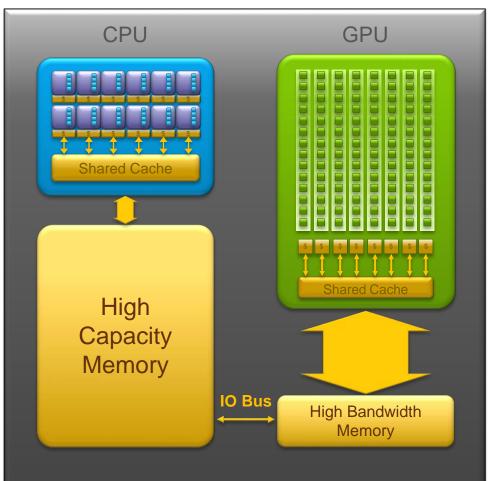
GPU PROGRAMMING IN OPENACC


- Execution always begins and ends on the host CPU
- Compute-intensive loops are offloaded to the GPU using directives
- Offloading may or may not require data movement between the *host* and *device*.

- CPU memory is larger, GPU memory has more bandwidth
- CPU and GPU memory are usually separate, connected by an I/O bus (traditionally PCI-e)
- Any data transferred between the CPU and GPU will be handled by the I/O Bus
- The I/O Bus is relatively slow compared to memory bandwidth
- The GPU cannot perform computation until the data is within its memory

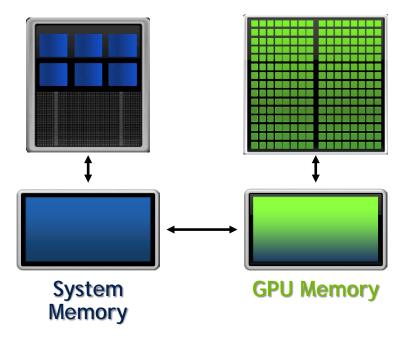


Between the host and device

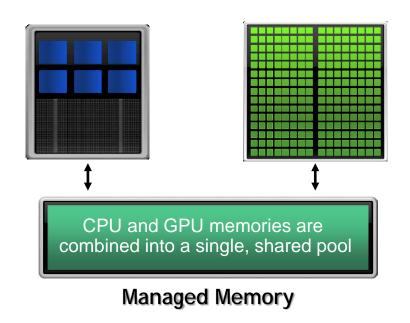

- The host is traditionally a CPU
- The device is some parallel accelerator
- When our target hardware is multicore, the host and device are the same, meaning that their memory is also the same
- There is no need to explicitly manage data when using a shared memory accelerator, such as the multicore target

Between the host and device

- When the target hardware is a GPU data will usually need to migrate between CPU and GPU memory
- The next lecture will discuss OpenACC data management, for now we'll assume a unified Host/Accelerator memory


CUDA MANAGED MEMORY

CUDA MANAGED MEMORY


Simplified Developer Effort

Without Managed Memory

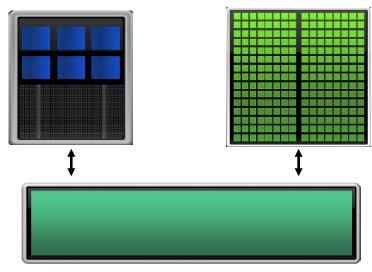
Commonly referred to as "unified memory."

With Managed Memory

CUDA MANAGED MEMORY Usefulness

- Handling explicit data transfers between the host and device (CPU and GPU) can be difficult
- The PGI compiler can utilize CUDA Managed Memory to defer data management
- This allows the developer to concentrate on parallelism and think about data movement as an optimization

\$ pgcc -fast -acc -ta=tesla:managed -Minfo=accel main.c


\$ pgfortran -fast -acc -ta=tesla:managed -Minfo=accel main.f90

MANAGED MEMORY Limitations

- The programmer will almost always be able to get better performance by manually handling data transfers
- Memory allocation/deallocation takes longer with managed memory
- Cannot transfer data asynchronously
- Currently only available from PGI on NVIDIA GPUs.

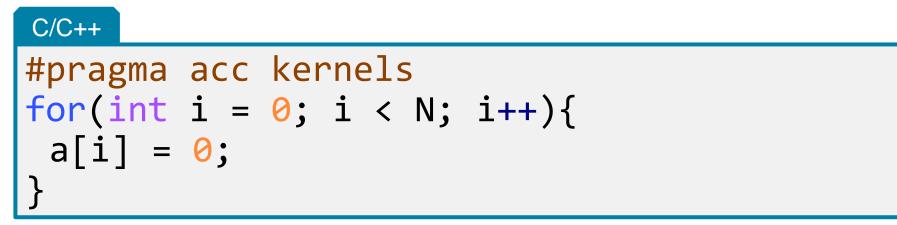
With Managed Memory

Managed Memory

OPENACC WITH MANAGED MEMORY

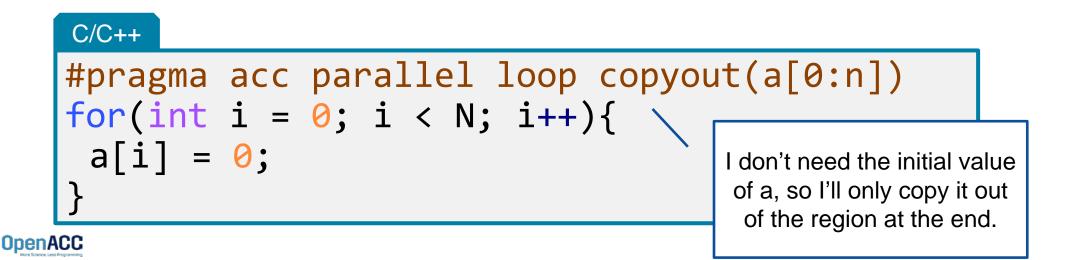
An Example from the Lab Code

```
while ( error > tol && iter < iter max )
  error = 0.0;
#pragma acc kernels
    for( int j = 1; j < n-1; j++)</pre>
      for( int i = 1; i < m-1; i++ )</pre>
        Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1])
                              + A[j-1][i] + A[j+1][i]);
        error = fmax( error, fabs(Anew[j][i] - A[j][i]));
    for( int j = 1; j < n-1; j++)</pre>
      for( int i = 1; i < m-1; i++ )</pre>
        A[j][i] = Anew[j][i];
OpenACC
```

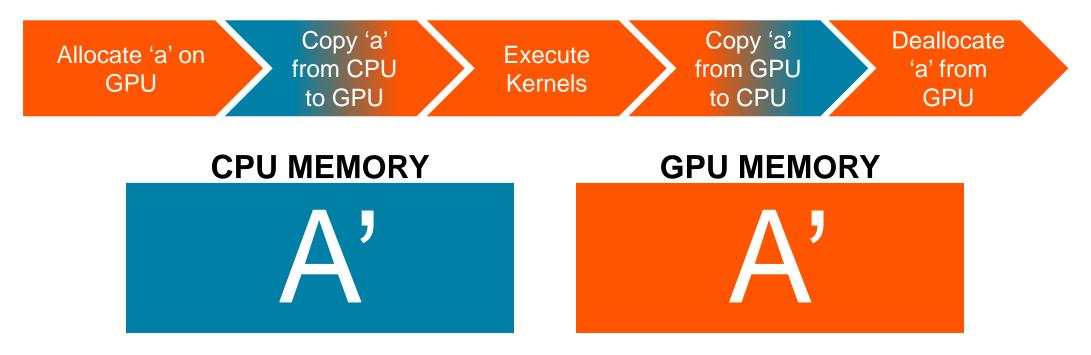

Without Managed Memory the compiler must determine the size of A and Anew and copy their data to and from the GPU each iteration to ensure correctness

With Managed Memory the underlying runtime will move the data only when needed

INTRODUCTION TO DATA CLAUSES



- Data clauses allow the programmer to tell the compiler which data to move and when
- Data clauses may be added to kernels or parallel regions, but also data, enter data, and exit data, which will discussed shortly


- Data clauses allow the programmer to tell the compiler which data to move and when
- Data clauses may be added to kernels or parallel regions, but also data, enter data, and exit data, which will discussed shortly


```
#pragma acc parallel loop copy(a[0:N])
for(int i = 0; i < N; i++){
    a[i] = 2 * a[i];
}</pre>
```


DATA CLAUSES

COPY(*list*) Allocates memory on GPU and copies data from host to GPU when entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a logical default to input, modify and return the data.

copyin(*list*) Allocates memory on GPU and copies data from host to GPU when entering region.

Principal use: Think of this like an array that you would use as just an input to a subroutine.

copyout(*list*) Allocates memory on GPU and copies data to the host when exiting region.

Principal use: A result that isn't overwriting the input data structure.

create(*list* **)** Allocates memory on GPU but does not copy.

OpenACC

Principal use: Temporary arrays.

ARRAY SHAPING

- Sometimes the compiler needs help understanding the shape of an array
- The first number is the start index of the array
- In C/C++, the second number is how much data is to be transferred
- In Fortran, the second number is the ending index

copy(array[starting_index:length]) C/C++
copy(array(starting_index:ending_index)) Fortran

Multi-dimensional Array shaping

copy(array[0:N][0:M])

C/C++

Obtaining information about your GPU

 Using the pgaccelinfo command will display information about available accelerators

Terminal Window

```
$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB
...
Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60
```


Obtaining information about your GPU

- Using the pgaccelinfo command will display information about available accelerators
- Each device is numbered starting with
 0

Terminal Window

\$ pgaccelinfo Device Number: 0 Device Name: Tesla P100-PCIE-16GB ... Managed Memory: Yes PGI Compiler Option: -ta=tesla:cc60

Obtaining information about your GPU

- Using the pgaccelinfo command will display information about available accelerators
- Each device is numbered starting with
 0
- The Device Name identifies the type of accelerator

Terminal Window

\$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB
• • •
Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60

Obtaining information about your GPU

- Using the pgaccelinfo command will display information about available accelerators
- Each device is numbered starting with
 0
- The Device Name identifies the type of accelerator
- Can Managed Memory be used?

Terminal Window

<pre>\$ pgaccelinfo</pre>	
Device Number: 0	
Device Name: Tesla P	100-PCIE-16GB
Managed Memory: Yes	
PGI Compiler Option:	-ta=tesla:cc60

Obtaining information about your GPU

- Using the pgaccelinfo command will display information about available accelerators
- Each device is numbered starting with
 0
- The Device Name identifies the type of accelerator
- Can Managed Memory be used?
- What compiler options should be used to target this device?

Terminal Window

<pre>\$ pgaccelinfo Device Number: 0 Device Name: Tesla P100-PCIE-16GB</pre>
 Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60

Without Manage Memory

\$ pgcc -ta=tesla:cc60 main.c

With Manage Memory

\$ pgcc -ta=tesla:cc60,managed main.c

COMPILING GPU CODE

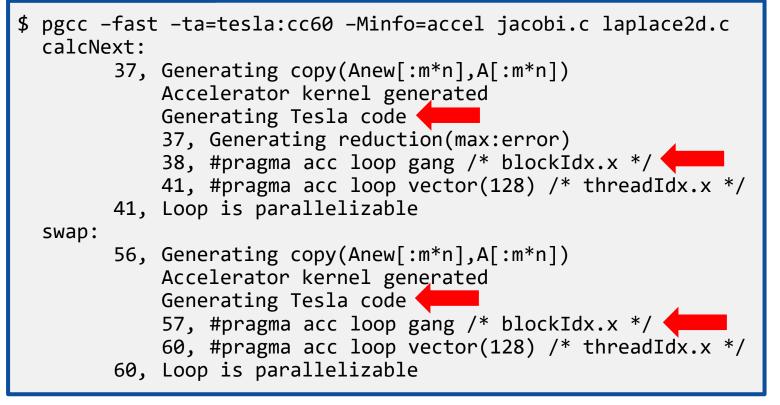
Terminal Window

OpenACC

```
$ pgcc -fast -ta=tesla:cc60 -Minfo=accel jacobi.c laplace2d.c
  calcNext:
        37, Generating copy(Anew[:m*n],A[:m*n])
            Accelerator kernel generated
            Generating Tesla code
            37, Generating reduction(max:error)
            38, #pragma acc loop gang /* blockIdx.x */
            41, #pragma acc loop vector(128) /* threadIdx.x */
        41, Loop is parallelizable
  swap:
        56, Generating copy(Anew[:m*n],A[:m*n])
            Accelerator kernel generated
            Generating Tesla code
            57, #pragma acc loop gang /* blockIdx.x */
            60, #pragma acc loop vector(128) /* threadIdx.x */
        60, Loop is parallelizable
```

We can see that our data copies are being applied by the compiler

COMPILING GPU CODE

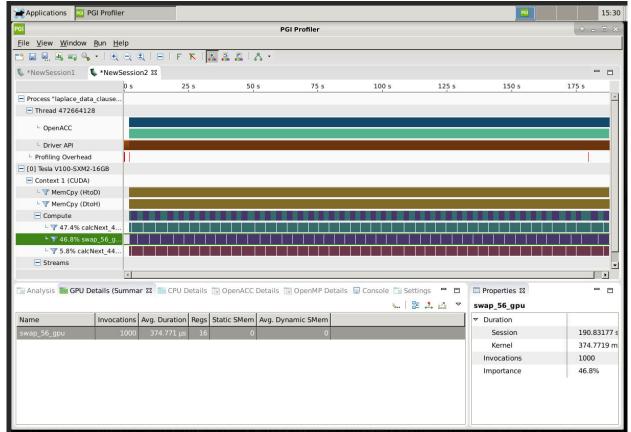

Terminal Window

```
$ pgcc -fast -ta=tesla:cc60 -Minfo=accel jacobi.c laplace2d.c
  calcNext:
        37, Generating copy(Anew[:m*n],A[:m*n])
            Accelerator kernel generated
            Generating Tesla code
            37, Generating reduction(max:error)
            38, #pragma acc loop gang /* blockIdx.x */
            41, #pragma acc loop vector(128) /* threadIdx.x */
        41, Loop is parallelizable
  swap:
        56, Generating copy(Anew[:m*n],A[:m*n])
            Accelerator kernel generated
            Generating Tesla code
            57, #pragma acc loop gang /* blockIdx.x */
            60, #pragma acc loop vector(128) /* threadIdx.x */
        60, Loop is parallelizable
```

We also see that the compiler is generating code for our GPU

COMPILING GPU CODE

Terminal Window



This is the parallelization of the **buter loop**

Using PGPROF to profile GPU code

- PGPROF presents far more information when running on a GPU
- We can view CPU Details, GPU Details, a Timeline, and even do Analysis of the performance

BUG: IGNORE THE WARNING

Applications PGI Profiler				13:11
PGI Applications	PGI Profiler			↑ _ □ ×
<u>F</u> ile <u>V</u> iew <u>W</u> indow <u>R</u> un <u>H</u> elp				
한 📓 🖳 📑 👒 - [🕂 그 오 [🖃 []	× 🕅 🔚 📮 🙏 +			
🕵 *NewSession1 📄 laplace2d.c 📄 lapla	ce2d.c 🔍 *NewSession2 🚺 *NewS	ession3 🛙		
0 s	0.25 s	0.5 s	0.75 s	
	Progress Inforn	nation	* ×	
PGI	Dropped Inva	id Data	• ×	
	The start and end timestamps on 200 profile data are invalid. Those profilir be displayed in the timeline	g records have been dropped and		
🕞 Analysis 🖿 GPU Details (Summar 🎛 CPU D	etails ர OpenACC Details ர OpenMP De	tails 📮 Console 🕱 🗔 Settings	Properties X	
		: 🙀 [🗟 🚮 📮 🚝 [🛃 🖷	- 🔂 -	
<terminated> /opt/pgi/linux86-64-llvm/2019/cur 300, 0.000804</terminated>	da/10.1/bin/nvprof		Select or highlight a single in properties	terval to see
300, 0.000603 500, 0.000603 500, 0.000403 700, 0.000403 700, 0.000345 800, 0.000345 900, 0.000259 total: 1.134571 s nyprof log: /root/nyy_workspace/.metad:	sta/.plugins/com.nvidia.viper/launch	/3/nvprof_461.log	y poperces	

Applications PGI Profiler					PGI	. <i>1</i> 4 . 4	16:32
PGI	Р	GI Profiler				Ŷ	_ 0 ×
<u>File View Window Run Help</u>							
📸 📓 📲 🖷 🗞 • [🕂 🔍 🗶 [🖃 [F 🔭 🛛 🛄 📮 🖓 🔹						
\$\ *NewSession1 \$\overline\$							- 0
72.5 s	75 s 77.5 s	80 s	82.5 s	85 s	87.5 s	90 s	
 Process "laplace_unmanage Thread 3227076672 							*
L OpenACC							
L Driver API							
Profiling Overhead							
[0] Tesla V100-SXM2-16GB							
Context 1 (CUDA)							
└ 𝕎 MemCpy (HtoD)							
- T MemCpy (DtoH)							
► Y 47.4% calcNext 4							
└ 𝔐 46.9% swap_56_g							
- ▼ 5.7% calcNext_44							
Streams							
1							Þ
🗔 Analysis 🧰 GPU Details (Summar ដ 🔠 Cf	PU Details 🏢 OpenACC Details	OpenMP Details	📮 Console 🛛 📷 Settin	gs 🗖 🗖	Properties 🛙		- 0
			N [📑	. ⊿ ⊽	calcNext_40_gpu		
Name Invocations Avg. Duration Reg	s Static SMem Avg. Dynamic SM	lem		1			
calcNext_40_ 1000 376.816 µs 33		048			Session	16	5.86158
					Kernel	37	6.81626
					Invocations	10	00
					Importance	47.	4%



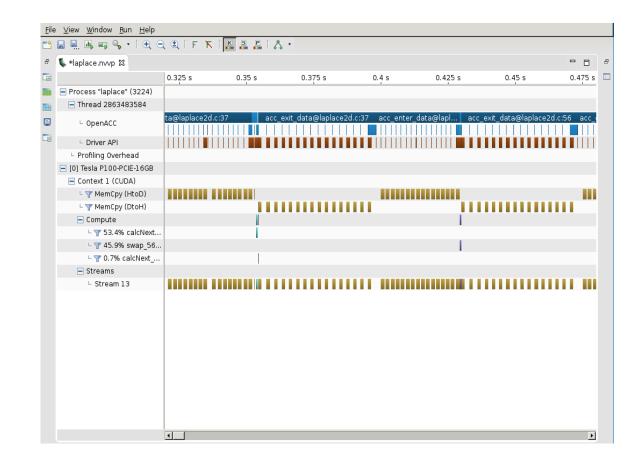
Applications 📴 PGI Profiler						PG	16:2
PGI			PGI Prof	iler			×
File View Window Run Help	D						
😬 📓 🖳 📑 👒 🔸 l 🕀 🤆		F 📉 📕	🚨 l 🙏 🔹				
≰ *NewSession1 ☎							
þ	s	25 s	50 s	75 s	100 s	125 s	150 s
Process "laplace_unmanage							
Thread 3227076672							
L OpenACC							
L Driver API							
L Profiling Overhead							
[0] Tesla V100-SXM2-16GB							
Context 1 (CUDA)							
🗆 🍸 MemCpy (HtoD)							
L 🍸 MemCpy (DtoH)							
Compute							
└ 🍸 47.4% calcNext_4							الا و او و و و و و
└ ⋎⋎ 46.9% swap_56_g							
└ 🍸 5.7% calcNext_44							
Streams							-
	4						
🔚 Analysis 🔚 GPU Details (Sun	nmar 🛅 CPU 🛙	Details 🗇 Open	ACC Details 🕱 🗇 Ope	nMP Details 📮 Conso	ole 🗖 Settings 🗖 🗖	□ Properties 🖾	- 0
					િંહ લ	swap_56_gpu	
Summary of OpenACC events or	process: 416				- 10 M		I
		-	Colle				105 00150
Name	%	Time	Calls			Session	165.86158 s
 laplace2d.c:61 	1.922%	3.15668 s	19000			Kernel	372.52206 r
acc_wait	1.776%	2.91668 s	1000			Invocations	1000
acc_enqueue_download	0.146%	0.23999 s	18000			Importance	46.9%
Iaplace2d.c:47	1.914%	3.14388 s	19000				
Iaplace2d.c:36	1.446%	2.37444 s	19001				
Iaplace2d.c:52	1.314%	2.15863 s	18000				
Iaplace2d.c:40	0.262%	0.43092 s	3000				

Using PGPROF to profile GPU code

- MemCpy(HtoD): This includes data transfers from the Host to the Device ' (CPU to GPU)
- MemCpy(DtoH): These are data transfers from the Device to the Host (GPU to CPU)
- Compute: These are our computational functions. We can see our calcNext and swap function

Receiving unexpected code results

- Here we can see the runtime of our application: 151 seconds
- The program is now performing over 3 times worse than the sequential version
- A profiler can help us understand why this performance is worse


Terminal Window

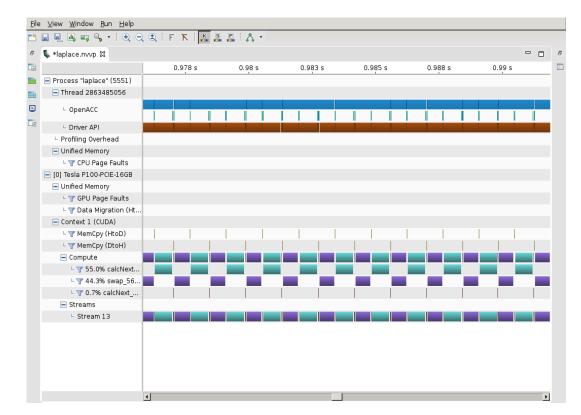
\$ pgcc	<pre>-ta=tesla:cc60</pre>	jacobi.c	laplace2d.c
\$./a.d	out		
0,	0.250000		
100,	0.002397		
200,	0.001204		
300,	0.000804		
400,	0.000603		
500,	0.000483		
600,	0.000403		
700,	0.000345		
800,	0.000302		
900,	0.000269		
total	l: 151.772627 s		

Inspecting the PGPROF timeline

- Zooming in gives us a better view of the timeline
- At a first glance, it looks like our program is spending a significant amount of time transferring data between the host and device
- We also see that the compute regions are very small and spread out
- What if we try Managed Memory?

Using managed memory

- Using managed memory drastically improves performance
- This managed memory version is performing over 20x better than the sequential code
- What does the profiler tell us about this?


Terminal Window

```
$ pgcc -ta=tesla:cc60,managed jacobi.c
 laplace2d.c
$ ./a.out
   0, 0.250000
  100, 0.002397
  200, 0.001204
  300, 0.000804
 400, 0.000603
  500, 0.000483
 600, 0.000403
  700, 0.000345
 800, 0.000302
 900, 0.000269
  total: 1.474951 s
```


Using managed memory

- The data no longer needs to transfer between each kernel
- The data is only moved when it's first accessed on the GPU or CPU
- During the timestepping data remains on the device
- Now a higher percentage of time is spent computing

ERRATA

- In the section Including Data Clauses in our Laplace Code
- Use !pgcc -fast -ta=tesla,managed -Minfo=accel -o laplace_data_clauses jacobi.c laplace2d.c && ./laplace_data_clauses 1024 1024

-ta=tesla instead of -ta=tesla, managed

KEY CONCEPTS

In this module we discussed...

- The fundamental differences between CPUs and GPUs
- Assisting the compiler by providing information about array sizes for data management
- Managed memory

THANK YOU

