
1

PRACE Workshop: Deep Learning
and GPU programming workshop
7 – 10 September 2020

Dr. Volker Weinberg | LRZ | 08.09.2020

MODULE FOUR:
GPU PROGRAMMING

MODULE OVERVIEW
OpenACC Directives

 Multicore CPU vs GPU

 Introduction to GPU Data Management

 CUDA Managed Memory

 GPU Profiling with PGProf

CPU VS GPU

CPU VS GPU
Number of cores and parallelism

 Both are extremely popular parallel processors, but
with different degrees of parallelism

 CPUs generally have a small number of very fast
physical cores

 GPUs have thousands of simple cores able to
achieve high performance in aggregate

 Both require parallelism to be fully utilized, but GPUs
require much more

CPU + GPU WORKFLOW
Application CodeApplication Code

GPU CPU

Small % of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

Large % of Runtime

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

GPU PROGRAMMING IN OPENACC

 Execution always begins and ends on the
host CPU

 Compute-intensive loops are offloaded to the
GPU using directives

 Offloading may or may not require data
movement between the host and device.

Compiler
Hint

CPU + GPU
Physical Diagram

 CPU memory is larger, GPU memory has
more bandwidth

 CPU and GPU memory are usually separate,
connected by an I/O bus (traditionally PCI-e)

 Any data transferred between the CPU and
GPU will be handled by the I/O Bus

 The I/O Bus is relatively slow compared to
memory bandwidth

 The GPU cannot perform computation until the
data is within its memory

High
Capacity
Memory

Shared Cache

High Bandwidth
Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

IO Bus

GPUCPU

BASIC DATA MANAGEMENT

BASIC DATA MANAGEMENT

 The host is traditionally a CPU

 The device is some parallel accelerator

 When our target hardware is multicore, the
host and device are the same, meaning that
their memory is also the same

 There is no need to explicitly manage data
when using a shared memory accelerator,
such as the multicore target

Between the host and device

Host
Device

Host
Memory Device

Memory

BASIC DATA MANAGEMENT

 When the target hardware is a GPU data will
usually need to migrate between CPU and
GPU memory

 The next lecture will discuss OpenACC data
management, for now we’ll assume a unified
Host/Accelerator memory

Between the host and device

High
Capacity
Memory

Shared Cache

High Bandwidth
Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

IO Bus

GPUCPU

CUDA MANAGED MEMORY

Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem
Memory

GPU Memory

Commonly referred to as “unified
memory.”

CUDA MANAGED MEMORY

CPU and GPU memories are
combined into a single, shared pool

CUDA MANAGED MEMORY

 Handling explicit data transfers between the host and device (CPU and GPU) can be
difficult

 The PGI compiler can utilize CUDA Managed Memory to defer data management

 This allows the developer to concentrate on parallelism and think about data
movement as an optimization

Usefulness

$ pgcc –fast –acc –ta=tesla:managed –Minfo=accel main.c

$ pgfortran –fast –acc –ta=tesla:managed –Minfo=accel main.f90

MANAGED MEMORY

 The programmer will almost always be able to
get better performance by manually handling
data transfers

 Memory allocation/deallocation takes longer
with managed memory

 Cannot transfer data asynchronously

 Currently only available from PGI on NVIDIA
GPUs.

Limitations

With Managed Memory

Managed Memory

OPENACC WITH MANAGED MEMORY
while (error > tol && iter < iter_max)
{
error = 0.0;

#pragma acc kernels
{
for(int j = 1; j < n-1; j++)
{
for(int i = 1; i < m-1; i++)
{
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]

+ A[j-1][i] + A[j+1][i]);
error = fmax(error, fabs(Anew[j][i] - A[j][i]));

}
}

for(int j = 1; j < n-1; j++)
{
for(int i = 1; i < m-1; i++)
{
A[j][i] = Anew[j][i];

}
}

}
}

An Example from the Lab Code

Without Managed Memory the
compiler must determine the size of
A and Anew and copy their data to
and from the GPU each iteration to

ensure correctness

With Managed Memory the
underlying runtime will move the

data only when needed

INTRODUCTION TO DATA CLAUSES

BASIC DATA MANAGEMENT
Moving data between the Host and Device using copy

#pragma acc kernels
for(int i = 0; i < N; i++){
a[i] = 0;

}

C/C++

 Data clauses allow the programmer to tell the compiler which data to move and
when

 Data clauses may be added to kernels or parallel regions, but also data, enter
data, and exit data, which will discussed shortly

BASIC DATA MANAGEMENT
Moving data between the Host and Device using copy

#pragma acc parallel loop copyout(a[0:n])
for(int i = 0; i < N; i++){
a[i] = 0;

}

C/C++

 Data clauses allow the programmer to tell the compiler which data to move and
when

 Data clauses may be added to kernels or parallel regions, but also data, enter
data, and exit data, which will discussed shortly

I don’t need the initial value
of a, so I’ll only copy it out
of the region at the end.

BASIC DATA MANAGEMENT
Moving data between the Host and Device using copy

Allocate ‘a’ on
GPU

Copy ‘a’
from CPU

to GPU

Execute
Kernels

Copy ‘a’
from GPU

to CPU

Deallocate
‘a’ from
GPU

#pragma acc parallel loop copy(a[0:N])
for(int i = 0; i < N; i++){
a[i] = 2 * a[i];

}

BASIC DATA MANAGEMENT
Moving data between the Host and Device using copy

Allocate ‘a’ on
GPU

Copy ‘a’
from CPU

to GPU

Execute
Kernels

Copy ‘a’
from GPU

to CPU

Deallocate
‘a’ from
GPU

CPU MEMORY GPU MEMORY

A AA’A’

DATA CLAUSES
copy(list) Allocates memory on GPU and copies data from host to GPU when

entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

ARRAY SHAPING

 Sometimes the compiler needs help understanding the shape of an array

 The first number is the start index of the array

 In C/C++, the second number is how much data is to be transferred

 In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran

BASIC DATA MANAGEMENT
Multi-dimensional Array shaping

copy(array(1:N, 1:M))

copy(array[0:N][0:M]) C/C++

Fortran

PROFILING GPU CODE

PROFILING GPU CODE (PGI)

 Using the pgaccelinfo command will
display information about available
accelerators

Obtaining information about your GPU

$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB
...
Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60

Terminal Window

PROFILING GPU CODE
Obtaining information about your GPU

$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB
...
Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60

Terminal Window
 Using the pgaccelinfo command will

display information about available
accelerators

 Each device is numbered starting with
0

PROFILING GPU CODE
Obtaining information about your GPU

$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB
...
Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60

Terminal Window
 Using the pgaccelinfo command will

display information about available
accelerators

 Each device is numbered starting with
0

 The Device Name identifies the type of
accelerator

PROFILING GPU CODE
Obtaining information about your GPU

$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB
...
Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60

Terminal Window
 Using the pgaccelinfo command will

display information about available
accelerators

 Each device is numbered starting with
0

 The Device Name identifies the type of
accelerator

 Can Managed Memory be used?

 Using the pgaccelinfo command will
display information about available
accelerators

 Each device is numbered starting with
0

 The Device Name identifies the type of
accelerator

 Can Managed Memory be used?

 What compiler options should be used
to target this device?

PROFILING GPU CODE
Obtaining information about your GPU

$ pgaccelinfo
Device Number: 0
Device Name: Tesla P100-PCIE-16GB
...
Managed Memory: Yes
PGI Compiler Option: -ta=tesla:cc60

Terminal Window

$ pgcc –ta=tesla:cc60 main.c
Without Manage Memory

$ pgcc –ta=tesla:cc60,managed main.c
With Manage Memory

COMPILING GPU CODE

$ pgcc –fast –ta=tesla:cc60 –Minfo=accel jacobi.c laplace2d.c
calcNext:

37, Generating copy(Anew[:m*n],A[:m*n])
Accelerator kernel generated
Generating Tesla code
37, Generating reduction(max:error)
38, #pragma acc loop gang /* blockIdx.x */
41, #pragma acc loop vector(128) /* threadIdx.x */

41, Loop is parallelizable
swap:

56, Generating copy(Anew[:m*n],A[:m*n])
Accelerator kernel generated
Generating Tesla code
57, #pragma acc loop gang /* blockIdx.x */
60, #pragma acc loop vector(128) /* threadIdx.x */

60, Loop is parallelizable

Terminal Window

We can see that our data
copies are being applied by

the compiler

COMPILING GPU CODE

$ pgcc –fast –ta=tesla:cc60 –Minfo=accel jacobi.c laplace2d.c
calcNext:

37, Generating copy(Anew[:m*n],A[:m*n])
Accelerator kernel generated
Generating Tesla code
37, Generating reduction(max:error)
38, #pragma acc loop gang /* blockIdx.x */
41, #pragma acc loop vector(128) /* threadIdx.x */

41, Loop is parallelizable
swap:

56, Generating copy(Anew[:m*n],A[:m*n])
Accelerator kernel generated
Generating Tesla code
57, #pragma acc loop gang /* blockIdx.x */
60, #pragma acc loop vector(128) /* threadIdx.x */

60, Loop is parallelizable

Terminal Window

We also see that the
compiler is generating code

for our GPU

COMPILING GPU CODE

$ pgcc –fast –ta=tesla:cc60 –Minfo=accel jacobi.c laplace2d.c
calcNext:

37, Generating copy(Anew[:m*n],A[:m*n])
Accelerator kernel generated
Generating Tesla code
37, Generating reduction(max:error)
38, #pragma acc loop gang /* blockIdx.x */
41, #pragma acc loop vector(128) /* threadIdx.x */

41, Loop is parallelizable
swap:

56, Generating copy(Anew[:m*n],A[:m*n])
Accelerator kernel generated
Generating Tesla code
57, #pragma acc loop gang /* blockIdx.x */
60, #pragma acc loop vector(128) /* threadIdx.x */

60, Loop is parallelizable

Terminal Window

This is the parallelization of
the outer loop

This is the parallelization of
the inner loop

PROFILING GPU CODE (PGPROF)

 PGPROF presents far more
information when running on a GPU

 We can view CPU Details, GPU
Details, a Timeline, and even do
Analysis of the performance

Using PGPROF to profile GPU code

BUG: IGNORE THE WARNING

PROFILING GPU CODE (PGPROF)

PROFILING GPU CODE (PGPROF)

PROFILING GPU CODE (PGPROF)
Using PGPROF to profile GPU code

 MemCpy(HtoD): This includes data
transfers from the Host to the Device
(CPU to GPU)

 MemCpy(DtoH): These are data
transfers from the Device to the Host
(GPU to CPU)

 Compute: These are our
computational functions. We can
see our calcNext and swap function

PROFILING GPU CODE

 Here we can see the runtime of our
application: 151 seconds

 The program is now performing over 3
times worse than the sequential
version

 A profiler can help us understand why
this performance is worse

Receiving unexpected code results

$ pgcc –ta=tesla:cc60 jacobi.c laplace2d.c
$./a.out

0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 151.772627 s

Terminal Window

PROFILING GPU CODE

 Zooming in gives us a better view
of the timeline

 At a first glance, it looks like our
program is spending a significant
amount of time transferring data
between the host and device

 We also see that the compute
regions are very small and spread
out

 What if we try Managed Memory?

Inspecting the PGPROF timeline

PROFILING GPU CODE

 Using managed memory
drastically improves performance

 This managed memory version is
performing over 20x better than
the sequential code

 What does the profiler tell us about
this?

Using managed memory

$ pgcc –ta=tesla:cc60,managed jacobi.c
laplace2d.c

$./a.out
0, 0.250000

100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 1.474951 s

Terminal Window

PROFILING GPU CODE

 The data no longer needs to transfer
between each kernel

 The data is only moved when it’s first
accessed on the GPU or CPU

 During the timestepping data remains on
the device

 Now a higher percentage of time is spent
computing

Using managed memory

ERRATA

 In the section Including Data Clauses in our Laplace Code

 Use !pgcc -fast -ta=tesla,managed -Minfo=accel -o
laplace_data_clauses jacobi.c laplace2d.c &&
./laplace_data_clauses 1024 1024

 -ta=tesla instead of –ta=tesla,managed

KEY CONCEPTS
In this module we discussed…

 The fundamental differences between CPUs and GPUs

 Assisting the compiler by providing information about array sizes for data
management

 Managed memory

THANK YOU

	Foliennummer 1
	MODULE four:�gpu programming
	MODULE OVERVIEW
	CPU vs gpu
	CPU vs gpu
	CPU + GPU Workflow
	GPU PROGRAMMING IN OPENACC
	CPU + GPU
	Basic data management
	Basic data management
	Basic data management
	CUDA Managed memory
	Cuda managed memory
	CUDA Managed memory
	Managed memory
	OpenACC with Managed Memory
	Introduction to data clauses
	Basic data management
	Basic data management
	Basic data management
	Basic data management
	Data Clauses
	Array Shaping
	Basic data management
	Profiling gpu code
	Profiling gpu code (PGI)
	Profiling gpu code
	Profiling gpu code
	Profiling gpu code
	Profiling gpu code
	Compiling gpu code
	Compiling gpu code
	Compiling gpu code
	Profiling gpu code (PGPROF)
	Bug: ignore the warning
	Profiling gpu code (PGPROF)
	Profiling gpu code (PGPROF)
	Profiling gpu code (PGPROF)
	Profiling GPU code
	Profiling GPU code
	Profiling gpu code
	Profiling gpu code
	ERRata
	KEY concepts
	THANK YOU�

