
Introduction to
Neural Networks
Operations and
Distributed
Training

PD. Dr. Juan J. Durillo

Deep Learning and GPU Programming
Workshop @ 14.7.2022

Machine
Learning

with (deep)
Neural

Networks

Machine
Learning

with (deep)
Neural

Networks

Machine
Learning

with (deep)
Neural

Networks

Forward Operations

Forward Operations
a b c j
d e f k
g h i l

1 2 3
4 5 6
7 8 9

1 2 3 4 5 6 7 8 9 a
b
c
d
e
f
g
h
i

b
c
j
e
f
k
h
i
l

Duplication of elements

Built of special matrices causes overhead

Convolutions as Matrix
Multiplication

Attention Layers are also
Matrix Multiplications

Back
Propagation

and Gradient
Descent

• Linear regression y = w * x + b (I.e., a NN of a single neuron,
and identity, f(x) = x, as activation function)

• Loss function defined as C = (a – y)2

• How does C change with w and b variations?
• compute the ratio at with C changes with changes in w

and b
• use this ratio to modify then w and b in order to move

C towards a minimum

x
w

b

𝞼 (w * x + b) = 𝞼 (z) if we define z as w * x + b

Σ | 𝞼 a (activation)

Computing the Gradient

C

y
a

z

𝞼 (z) = z

(a-y)2

x

w

b

Fixed

w1w2

z2z1

a2a1

C1C2

!"
!#

= !$
!#

!%
!$

!"
!%
= 2𝑥(𝑎 − 𝑦)

wx + b

!$
!#

= x

!%
!$
= 1

!"
!%
= 2(a-y)

!"
!&
= !$

!&
!%
!$

!"
!%
= 2(𝑎 − 𝑦)

!$
!&
= 1

!%
!$
= 1

!"
!%
= 2(a-y)

Gradient Vector

𝜕𝐶
𝜕𝑤
𝜕𝐶
𝜕𝑏

=
2𝑥(𝑎 − 𝑦)
2(𝑎 − 𝑦)

Gradient with a single input, that generates prediction 𝑎

Computing the Gradient

C

y1,y2 a

z

𝞼 (z) = z

x1,x2

w

b

Fixed

w2

z2z1

a2a1

C1C2

!"
!#

= '
(
∗ (2𝑥 𝑎 − 𝑦' + 2𝑥 𝑏 − 𝑦()

wxi + b

Gradient with two inputs that generates predictions:
𝑎 and 𝑏

w2

'
(
∗ (𝑎 − 𝑦((+ (𝑏 − 𝑦()()

!"
!&
= '

(
∗ (2 𝑎 − 𝑦' + 2 𝑏 − 𝑦()

Gradient Vector

𝜕𝐶
𝜕𝑤
𝜕𝐶
𝜕𝑏

=

1
2
∗ (2𝑥 𝑎 − 𝑦' + 2𝑥 𝑏 − 𝑦()

1
2
∗ (2 𝑎 − 𝑦' + 2 𝑏 − 𝑦()

Back
Propagation
and Gradient

Descent

Back Propagation and Gradient Descent

Step 1Step 2

Starting Point

Back Propagation and Gradient Descent
Starting Point

St
ep

 1 Step 1

smaller learning rate larger learning rate

Back Propagation and Gradient Descent

Back Propagation and Gradient Descent
Starting Point

St
ep

 1

St
ep

 1

gradient with batch 1 gradient with batch 2

Back Propagation and
Gradient Descent

• Batch size implications
• Smaller batches imply more steps per epoch:

• More updates to weights --> More updates to the
net

• Smaller batches do not imply larger/smaller gradients

Parallel/Distributed ML Training

Pipeline Model
• Complete layer per device

• Weights stay within device
• Activations are communicated

between GPUs
• Non efficient implementations

may lead to inefficient usage of
resources

• Research area

1. Model Parallelism: Memory usage and
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism

Parallel/Distributed ML Training

Tensor Parallelism
• Tensor operations (e.g., computing a layer output) distributed across device

• Allows larger, more computationally expensive models
• Activations are communicated between GPUs
• Further points for inefficiencies

• A device might depend on the activations computed by more than one device

1. Model Parallelism: Memory usage and
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism

Parallel/Distributed ML Training

• Model must fit into the memory of a single device
• Weights are the same in each device

• Gradients are communicated across all devices
(all-to-all)

2. Data Parallelism: Training mini-batch is split
across devices

