NLP Pre-Transformers

PD Dr. Juan J. Durillo

Working with text

- Working with Neural Networks requires inputs in numerical representation
- Character based representation (e.g., ascii code)
- Word based encoding (each word a different representation)
- Dictionary with all possible words; representation is based on the position on this dictionary

```
from tensorflow.keras.preprocessing.text import Tokenizer
sentences = ['Messi is the best player in the world', 'Barcelona
is the best team in the world']
tokenizer = Tokenizer(num_words=100)
tokenizer.fit_on_texts(sentences)
print(tokenizer.word_index)
{'the': 1, 'is': 2, 'best': 3, 'in': 4, 'world': 5, 'messi': 6,
'player': 7, 'barcelona': 8, 'team': 9}
```


Working with text

- Alternative representation: One Hot Encoding
- Vector of the dictionary length, with all components to 0 except 1
- Assuming the following dictionary

```
{'the': 1, 'is': 2, 'best': 3, 'in': 4, 'world': 5, 'messi':
    6, 'player': 7, 'barcelona': 8, 'team': 9}
```

- The word Messi would be represented by the vector
[000001000]
- The word player by
[000000100]
- The word the by
[100000000]

Text to Sequences

- A sequence (i.e., a sentence) is simply a list of (ordered) tokens
- Previous idea could be used for representing sentences

```
{'the': 1, 'is': 2, 'best': 3, 'in': 4, 'world': 5, 'messi': 6, 'player': 7, 'barcelona': 8, 'team': 9\}
```

- The sentence 'Messi is the best player in the world' can be represented as the array

$$
[6,2,1,3,7,4,1,5]
$$

- And the sentence 'Barcelona is the best team in the world' can be represented as the array

$$
[8,2,1,3,9,4,1,5]
$$

Text to Sequences

- Alternatively, if the One Hot Encoding has been chosen, given the dictionary
\{'the': 1, 'is': 2, 'best': 3, 'in': ${ }^{4}$, 'world': 5, 'messi': 6,
- The sentence 'Messi is the best player in the world' can be represented as the matrix

$$
\begin{aligned}
& \text { [}\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] \\
& \text { [0 } 10000000000 \text {] } \\
& \text { [100000000] } \\
& \text { [0 } 0000001000 \text {] } \\
& \text { [0 } 0010100000 \text { 0] } \\
& \text { [100000000] } \\
& \text { [00 } 0010000 \text { 0]] }
\end{aligned}
$$

From Words to Numbers

From Words to Numbers

From Words to Numbers

From Words to Numbers

Recurrent Neural Networks

Learning From Text

- If you read the partial sentence:
- Today there is an amazing blue ...
- What do you think of next?

Learning From Text

- If you read the partial sentence:
- Today there is an amazing blue ...
- What do you think of next?
- Today there is an amazing blue sky.

Learning from Text

- If you read the partial sentence:
- She was born in Munich, therefore at school the primary language was
- In contrast to the previous example, the word that influences what we need to predict now is not the previous was, but was way beyond in the text
- Do RNN still help in this case?

Recurrent Neural Networks

"Cats say ___."
"Dogs say \qquad ."

[^0]Cats
Dogs
Meow
Say
Woof

Recurrent Neural Networks

Recurrent Neural Networks

[^0]: Dictionary

