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Part 1: Machine Learning in NLP
Lecture: NLP background and the role of DNNs leading to the 
Transformer architecture

Lab: Tutorial-style exploration of a translation task using the 
Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond
Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT 
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and 
exercises to build a text classification task and a named 
entity recognition task using BERT-based language models

Part 3: Production Deployment
Lecture: Discussion of production deployment considerations 
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering 
task to NVIDIA Triton

FULL COURSE AGENDA
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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NEURAL NETWORKS ARE NOT NEW
They are surprisingly simple as an algorithm
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NEURAL NETWORKS ARE NOT NEW
They just historically never worked well
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Algorithm performance in small data regime
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I
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NEURAL NETWORKS ARE NOT NEW
They just historically never worked well
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I
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NEURAL NETWORKS ARE NOT NEW
Historically, we never had large datasets or computers

Dataset Size
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Algorithm performance in small data regime
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The MNIST (1999) database contains 60,000 training 
images and 10,000 testing images.

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I
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COMPUTE
Historically, we never had large datasets or computers

1980 1990 2000 2010 2020

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year
Transistors
(thousands)

GPU-Computing perf
1.5X per year 1000X

By 2025
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CONTEXT
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CONTEXT
8 petaFLOPs in June 2011 (K Computer)
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CONTEXT
5 petaFLOPs for AI - today
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CONTEXT
~100 PFLOPS (FP16) or 48 PFLOPS (TF32) for AI - today
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NEURAL NETWORKS ARE NOT NEW
Large datasets and faster compute transformed the way we do machine learning

Dataset Size
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Algorithm performance in big data regime
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I
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NEURAL NETWORKS ARE NOT NEW
Data and model size the key to accuracy

Dataset Size
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ra
cy

0 50 100 150 200 250 300 350 400 450

Algorithm performance in big data regime

Small NN ML1 ML2 ML3 Big NN
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2016 – Baidu Deep Speech 2
Superhuman Voice Recognition

2015 – Microsoft ResNet
Superhuman Image Recognition

2017 – Google Neural Machine Translation
Near Human Language Translation

100 ExaFLOPS
8700 Million Parameters

20 ExaFLOPS
300 Million Parameters

7 ExaFLOPS
60 Million Parameters

To Tackle Increasingly Complex Challenges

NEURAL NETWORK COMPLEXITY IS EXPLODING
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100 EXAFLOPS
~= 

2 YEARS ON A DUAL CPU 
SERVER
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NEURAL NETWORKS ARE NOT NEW
Exceeding human level performance

Dataset Size
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cy

0 500 1000 1500 2000 2500

Algorithm performance in large data regime

Small NN ML1 ML2 ML3 Big NN Bigger NN

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I
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EMPIRICAL EVIDENCE
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EXPLODING DATASETS
Logarithmic relationship between the dataset size and accuracy

Sun, Chen, et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era." arXiv preprint arXiv:1707.02968 (2017).
Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint 
arXiv:1701.06538 (2017).
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
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EXPLODING DATASETS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Logarithmic relationship between the dataset size and accuracy

• Translation

• Language Models

• Character Language Models

• Image Classification

• Attention Speech Models
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EXPLODING DATASETS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Logarithmic relationship between the dataset size and accuracy
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THE COST
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THE COST OF LABELING

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Limits the utility of deep learning models

Exponential increase
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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SELF-SUPERVISED  LEARNING

• Natural Language Processing:

• Masked Language Model: We mask a percentage of the input tokens at random (say 15%) and ask the neural network to predict the
entire sentence

• Next Sentence Prediction: We choose either two consecutive sentences from text, or two random sentences from the text. We ask
the neural network to establish whether the two sentences occur one after another.

• We use another simpler neural network to replace random words in the sequence and ask the primary neural network to detect 
which words were replaced (using a GAN like configuration).

• Computer Vision:

• Contrastive Learning: Randomly modify (crop and resize, flip, distort color, rotate, cut-out, noise, blur, etc.) and either feed the 
same image, or two randomly selected images, into the neural network, asking it to say whether it is the same image or not

• Noisy labels/Self Training: Use labels generated by a weak algorithm (potentially older generation of the target model) to train a 
target-robust feature extractor

Example training tasks

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709.
Xie, Q., Hovy, E., Luong, M. T., & Le, Q. V. (2019). Self-training with Noisy Student improves ImageNet classification. arXiv preprint arXiv:1911.04252.
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THE COST OF LABELING

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Semi-supervised models

Manageable cost
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1

50

2.500

125.000

BookCorpus English Wikipedia Giga5 ClueWeb 2012-B Common Crawl Open Super-Large
Crawled ALMAnaCH2

corpus

800
2.500

4.000
15.000 16.000

800.000

Number of Words (in Millions)

SELF-SUPERVISED LEARNING
Abundance of unlabeled data
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1

50

2.500

125.000

6.250.000

HACS YFCC100M Moments in Time Sports-1M HowTo100M YouTube-8M

520.000 800.000 1.000.000 1.100.000 1.200.000

8.000.000

Number of videos

SELF-SUPERVISED LEARNING
Abundance of unlabeled data
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OLD IDEAS
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SELF-SUPERVISED LEARNING
What was missing?
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THE SCALE
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GENERATIVE PRETRAINING (GPT)
The scale

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

“Many previous approaches to NLP tasks train relatively small models on a single GPU from scratch.
Our approach requires an expensive pre-training step - 1 month on 8 GPUs. Luckily, this only has to
be done once and we’re releasing our model so others can avoid it. It is also a large model (in
comparison to prior work) and consequently uses more compute and memory — we used a 37-layer
(12 block) Transformer architecture, and we train on sequences of up to 512 tokens. Most
experiments were conducted on 4 and 8 GPU systems. The model does fine-tune to new tasks very
quickly which helps mitigate the additional resource requirements.”
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GENERATIVE PRETRAINING (GPT)
The design

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Transformer 
Decoder

Self-Supervised
Training
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GENERATIVE PRETRAINING (GPT)
The approach

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Step 1 Step 2
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GENERATIVE PRETRAINING (GPT)
The implications

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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GENERATIVE PRETRAINING (GPT)
The implications

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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BIDIRECTIONAL TRANSFORMERS (BERT)
Building on the shoulders of giants

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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BIDIRECTIONAL TRANSFORMERS (BERT)
The “pre” and “post” OpenAI ages

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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SQUAD 2.0
Human performance 91.2
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USING BERT
Feature extractor

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

???

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

? ? ?
Problem formulation

?

GloVe Word2Vec
BERT
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THE LAB
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LAB OVERVIEW
Notebooks 1, 2, 3

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

Problem formulation

Text classification

Fixed pretrained BERT
Your task:

Text classification
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
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• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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BIDIRECTIONAL TRANSFORMERS (BERT)
Base vs Large

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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GPT-2

• Largely the same but:

• Larger in every way:

• More decoder layers: 12->48

• Larger vocabulary:  50,257

• Larger context: 512 -> 1024

• Larger batch size

• Changes to layer normalization

• Different initialization scheme

GPT vs GPT-2

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
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GPT-2
The Impact

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
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BUT BIGGER IS BETTER
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ROBERTA
Robustly Optimized BERT Pretraining Approach

Simplification of the core idea:

• training the model longer, with bigger batches, over more data

• removing the next sentence prediction objective

• training on longer sequences

• dynamically changing the masking pattern applied to the training data

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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ROBERTA
Increasing the dataset size

16GB -> 160GB

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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ROBERTA
Results

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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ROBERTA
Results

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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ROBERTA

“We note that even our longest-trained model does not appear to overfit our
data and would likely benefit from additional training.“

Additional observations

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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WE NEED EVEN LARGER 
MODELS!
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TRANSFORMER EXTRA LONG (XL)

• The challenge:
• Fixed-length contexts not respecting 

semantic boundaries
• Inability to learn longer dependencies
• Relatively slow to execute

• The solution (Transformer XL):
• Segment-level recurrence mechanism

• Positional encoding scheme

• The results:
• Learns 80% longer dependencies than RNNs 

and 450% longer than Transformer

• Up to 1800 times faster than vanilla 
Transformer

Challenges with the Transformer architecture

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019). Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.
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CHALLENGES WITH BERT

• The [MASK] token used during pretraining is not used during fine-tuning

• BERT generates predictions for individual [MASK] tokens independently, not forcing the model to learn 

dependencies

Masking and independent predictions

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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XLNET

1. Transformer -> TransformerXL

2. TransformerXL cannot be applied naively 
and must be adopted

3. “Maximizes the expected log likelihood 
of a sequence w.r.t all possible 
permutations of the factorization 
order.”

4. Does not rely on data corruption ([MASK])

TransformerXL + Permutational Language Model

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
https://mlexplained.com/2019/06/30/paper-dissected-xlnet-generalized-autoregressive-pretraining-for-language-understanding-explained/



62

XLNET

13GB* -> 13GB + 19GB + 110GB = 142GB

And more data

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

* Different pre-processing routine is used hence not 16GB as per ROBERTA 
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XLNET
“Fair” comparison with BERT

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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XLNET
Ablation study

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for understanding. In Advances in neural information processing systems (pp. 5754-5764). language
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XLNET
Scaling up

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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SCALING UP?
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XLNET

“… we scale up the training of XLNet-Large by using 
all the datasets described above. Specifically, we 
train on 512 TPU v3 chips for 500K steps with an 

Adam weight decay optimizer, linear learning rate 
decay, and a batch size of 8192, which takes about 

5.5 days.”

Scaling up

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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XLNET

“It was observed that the model still underfits the 
data at the end of training.”

Scaling up

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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SCALING UP?
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BERT

• Inspired by NVIDIA LARS (Layer-wise Adaptive Rate 
Scaling) they develop LAMB

• This allows to scale batch size to 32k without 
degrading performance

• A lot of improvements introduced since. Please use 
NVLAMB.

5.5 days -> 76 minutes

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/
You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J. (2019, September). Large batch optimization for deep learning: Training bert in 76 minutes. In International Conference on Learning Representations.

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/
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BERT
Fastest training time

https://devblogs.nvidia.com/training-bert-with-gpus/
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CAN WE USE PARAMETERS 
MORE EFFICIENTLY?
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ALBERT

• The size of the model is 
becoming a challenge

• FP16 is addressing the 
problem to some extent 
but still the footprint is 
considerable

• Describes a set of methods 
for reducing the memory 
footprint/ improving 
parameter efficiency

A Lite BERT for Self-Supervised Learning of Language Representations

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

FP32 TF 1.13.1 16GB GPU FP32 TF 1.11.0 12GB GPU
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ALBERT
Model size is the key to success

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.



76

ALBERT

• “… WordPiece embedding size E is tied with the 
hidden layer size H, i.e., E ≡ H”

• “… hidden-layer embeddings are meant to learn 
context-dependent representations.” so we want 
H >> E

• Embedding matrix size is V x E (vocabulary size 
time embedding size)

• “… natural language processing usually requires 
the vocabulary size V to be large.” (BERT 
V=30000)

• So we end up with LargeNumber x LargeNumber

Factorized Embeddings

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

• Factorization of the embeddings matrix:

O(V x H) transformed into O(V x E + E x H)
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ALBERT

• Proposes several cross-layer parameter-sharing 
schemes

• The default Albert configuration shares all 
parameters across all layers

• SOP Loss (Sentence Order Prediction) rather than 
NSP Loss (Next Sentence Prediction)

Cross Layer Parameter Sharing and Inter-Sentence Coherence Loss

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.
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ALBERT
Results

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.
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CAN WE IMPROVE THE 
OBJECTIVE FUNCTION 

FURTHER?



80

ELECTRA
Pre-training Text Encoders as Discriminators Rather Than Generators

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.
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ELECTRA
Pre-training Text Encoders as Discriminators Rather Than Generators

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.
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MULTI-TASK LEARNING
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ERNIE 2.0
Why use only a limited number of simple pretraining tasks?
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ERNIE 2.0
Why use only a limited number of simple pretraining tasks?
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ERNIE 2.0
Performance
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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GOING BIGGER

• If we only consider Parameters, Gradients, and Optimizer states and ignore activations

• If we use FP16 data representation (so two bytes)

• If we use Adam as an optimizer (storing twelve bytes per parameter in mixed precision mode)

• If we consider a model with one billion parameters

10^9 * ( 2B + 2B + 12B) = 10^9*16B = 14.90GB

The challenge

1 billion parameters

2 bytes per parameter

2 bytes per gradient
12 bytes per optimizer 

state
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GOING BIGGER

• What about activations?

• What about 2 or 3 billion parameter models?

10^9 * ( 2B + 2B + 12B) = 10^9*16B = 14.90GB

The challenge

1 billion parameters

2 bytes per parameter

2 bytes per gradient
12 bytes per optimizer 

state



89

MEGATRON
Model Parallel Transformer

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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MEGATRON
76% scaling efficiency using 512 GPUs

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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MEGATRON
Results

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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MEGATRON
More importantly!

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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THE SCALING LAWS
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THE SCALING LAWS
As you increase the dataset size, you must increase the model size

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.
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Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

THE SCALING LAWS
Larger models are more sample-efficient
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Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

THE SCALING LAWS
Larger models generalize better
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Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

THE SCALING LAWS
Its cheaper to use a larger model



98https://bair.berkeley.edu/blog/2020/03/05/compress/

THE SCALING LAWS
Larger models train faster
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THE SCALING LAWS
MOST IMPORTANT!!

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

“… more importantly, we find that the precise architectural 
hyperparameters are unimportant compared to the overall 
scale of the language model.”
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THE SCALING LAWS
Next two years will bring much larger models
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TOWARDS A TRILLION-
PARAMETER MODEL
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TURINGNLG
17 billion parameters
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THE FUTURE
Towards a trillion-parameter model
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GPT-3
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EVEN MORE IMPORTANTLY
Large neural networks use data more efficiently

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165..
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EVEN MORE IMPORTANTLY
Large neural networks use data more efficiently

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165..
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WHAT DO WE MEAN BY BIG?
GPT-3 size comparison

Not a linear scale
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PERSPECTIVE
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WHAT DO WE MEAN BY BIG?
Perspective

ResNet 50

GPT

Bert-Base

Bert Large

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Model Size Comparison
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ResNet-50

GPT

BERT-Base

BERT-Large

GPT-2

MegatronLM

T-NLG GPT-3

0 1 2 3 4 5 6 7 8 9 10

Model Size Comparison

WHAT DO WE MEAN BY BIG?
Perspective
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ResNet-50

GPT

BERT-Base

BERT-Large

GPT-2

MegatronLM

T-NLG GPT-3

0 1 2 3 4 5 6 7 8 9 10

Model Size Comparison

WHAT DO WE MEAN BY BIG?
Perspective
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ResNet-50

GPT

BERT-Base

BERT-Large

GPT-2

MegatronLM

T-NLG GPT-3

0 1 2 3 4 5 6 7 8 9 10

Model Size Comparison

WHAT DO WE MEAN BY BIG?
Perspective
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WHAT DO WE MEAN BY BIG?
GPT-3 size comparison: 538x Bigger than BERT-Large

355 years on a single V100
Not a linear scale
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THE LAB
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why DNNs?
• Self-Supervision
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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IN THE NEXT CLASS…
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NEXT CLASS

1. Discuss how to design your model for efficient inference

2. Discuss how to optimise your model for efficient execution

3. Discuss how to efficiently host a largely Conversational AI application

Overview





PD. Dr. Juan J. Durillo

PRODUCTION DEPLOYMENT
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Part 1: Machine Learning in NLP
Lecture: NLP background and the role of DNNs leading to the 
Transformer architecture

Lab: Tutorial-style exploration of a translation task using the 
Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond
Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT 
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and 
exercises to build a text classification task and a named 
entity recognition task using BERT-based language models

Part 3: Production Deployment
Lecture: Discussion of production deployment considerations 
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering 
task to NVIDIA Triton

FULL COURSE AGENDA
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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YOUR NETWORK IS 
TRAINED
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YOUR NETWORK IS TRAINED
Now what?

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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MEETING REQUIREMENTS 
OF YOUR BUSINESS 
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NLP MODELS ARE LARGE
The Inference cost is high

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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THEY DO NOT LIVE IN ISOLATION
Example of a conversational AI application
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THEY DO NOT LIVE IN ISOLATION
Real Time Applications Need to Deliver Latency <300 ms
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THEY DO NOT LIVE IN ISOLATION
Real Time Applications Need to Deliver Latency <300 ms
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THEY DO NOT LIVE IN ISOLATION
Application bandwidth = Cost

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/
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AND THEY NEED TO EVOLVE OVER TIME
A lot of processes are not stationary

https://en.wikipedia.org/wiki/Stationary_process
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THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Nonfunctional requirements

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning 
systems. In Advances in neural information processing systems (pp. 2503-2511).
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THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Nonfunctional requirements

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning 
systems. In Advances in neural information processing systems (pp. 2503-2511).
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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MODEL SELECTION
Not all models are created equally

NLP Image Classification Object detection
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MODEL SELECTION
Not all models respond in the same way to knowledge distillation, pruning and quantization

https://bair.berkeley.edu/blog/2020/03/05/compress/
Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

https://bair.berkeley.edu/blog/2020/03/05/compress/
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MODEL SELECTION
And very large models are and will continue to be prevalent in NLP

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.
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DIRECT IMPLICATIONS
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INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION
E.g. Train Large then compress

https://bair.berkeley.edu/blog/2020/03/05/compress/
Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

https://bair.berkeley.edu/blog/2020/03/05/compress/
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INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION
Hardware acceleration for reduced precision arithmetic and sparsity
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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QUANTIZATION
The idea
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QUANTIZATION
The rationale
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QUANTIZATION
The rationale
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QUANTIZATION
The results (speedup and throughput)

TensorRT optimized models executed on Tesla T4, input size 224x224 for all apart from the Inception networks for which the input size was 299x299
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QUANTIZATION
Beyond INT8

INT4 quantization for resnet50
"Int4 Precision for AI Inference"
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IMPACT ON ACCURACY
In a wide range of cases minimal
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IMPACT OF MODEL DESIGN
Not all neural network mechanisms quantize well
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IMPACT OF MODEL DESIGN

• GeLU produces highly asymmetric range

• Negative values between [-0.17,0]

• All negative values clipped to 0 

• GeLU10 allows to maintain negative values

Model alterations required



149

LOSS OF ACCURACY

Outlier in the tensor:

• Example: BERT, Inception V4

• Solution: Clip. Tighten the range, use bits more efficiently

Not enough precision in quantized representation

• Example: Int8 for MobileNet V1

• Example: Int4 for Resnet50

• Solution: Train/fine tune for quantization

Reasons
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LEARN MORE

• S9659: Inference at Reduced Precision on GPUs

• S21664: Toward INT8 Inference: Deploying Quantization-Aware Trained Networks using TensorRT

GTC Talks
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QUANTIZATION TOOLS
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NVIDIA TENSORRT
From Every Framework, Optimized For Each Target Platform
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INT8 QUANTIZATION EXAMPLE
TF-TRT

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html
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PRUNING
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PRUNING
The idea 

The opportunity:

• Reduced memory bandwidth

• Reduced memory footprint

• Acceleration (especially in presence of 
hardware acceleration)

Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271.
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DIFFICULT TO GET TO 
WORK RELIABLY
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STRUCTURED SPARSITY
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SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores

• 50% fine-grained sparsity

• 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

• Accuracy: maintains accuracy of the original, unpruned network

• Medium sparsity level (50%), fine-grained

• Training: a recipe shown to work across tasks and networks

• Speedup: 

• Specialized Tensor Core support for sparse math

• Structured: lends itself to efficient memory utilization

= zero value

2:4 structured-sparse matrix
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PRUNING
Structured sparsity
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RELIABLE APPROACH
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PRUNING
Model performance



162

PRUNING
Model performance
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PRUNING
Model performance
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IMPACT ON NLP
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NETWORK PERFORMANCE
BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance
Some operations remain dense:

Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, …)
GEMMs without weights to be pruned – Attention Batched Matrix Multiplies
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TRAINING RECIPE
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2) Prune for 2:4 sparsity

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

1) Train (or obtain) a dense network

Dense weights

2:4 sparse weights

Retrained 2:4 sparse 
weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

3) Repeat the original training procedure
• Same hyper-parameters as in step-1

• Initialize to weights from step-2

• Maintain the 0 pattern from step-2: no need to recompute the mask
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EXAMPLE LEARNING RATE SCHEDULE

Le
ar

ni
ng

 R
at

e Dense Training Sparse Retraining

Step 1 Step 3Step 2
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BERT SQUAD EXAMPLE
SQuAD Dataset and fine-tuning is too small to compensate for pruning on its own

Le
ar

ni
ng

 R
at

e

Phase 1:
Pretrain language model

Le
ar

ni
ng

 R
at

e

Phase2:
Finetune for SQuAD

Phase 1: Sparse
Pretrain language model

Phase2: Sparse
Finetune for SQuAD

Phase 1:
Pretrain language model

Step 1 Step 3Step 2
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APEX: AUTOMATIC 
SPARSITY
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TAKING ADVANTAGE OF STRUCTURED SPARSITY
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model



173

QUANTIZATION
Approaches

Quantization-aware training (QAT)Post-training quantization(PTQ)
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EXTREME MODEL COMPRESSION
Training with quantization noise

Polino, A., Pascanu, R., & Alistarh, D. (2018). Model compression via distillation and quantization. arXiv preprint arXiv:1802.05668.
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“We used Quant-Noise to compress Facebook AI’s
state-of-the-art RoBERTa Base model from 480 MB
to 14 MB while achieving 82.5 percent on MNLI,
compared with 84.8 percent for the original model.”
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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KNOWLEDGE DISTILLATION
The idea
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KNOWLEDGE DISTILLATION
DistillBERT

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.



179

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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NOT ALL MODELS HAVE 
THE SAME CODE QUALITY
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COMPUTE MATTERS
But so does code quality

Monthly DL Framework Updates & Optimizations Drive Performance

ResNet-50 v1.5 Training  | 8x V100 | DGX-1
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NGC: GPU-OPTIMIZED SOFTWARE HUB
Simplifying DL, ML and HPC Workflows

Pre-trained Models
NLP, Classification, Object Detection & more

Model Training Scripts
NLP, Image Classification, 
Object Detection & more

NGC
Helm Charts

AI applications, K8s cluster, Registry
Containers
DL, ML, HPC

Industry SDKs
Medical Imaging, Intelligent Video Analytics
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PRETRAINED MODELS & MODEL SCRIPTS

PRE-TRAINED MODELS

• Deploy AI quickly with models for industry specific use cases

Covers everything from speech to object detection

Integrate into existing workflows with code samples

• Easily use transfer learning to adapt to your bespoke use case

MODEL SCRIPTS

• Reference neural network architectures across all domains and popular 
frameworks with latest SOTA

• Jupyter notebook starter kits

Build AI Solutions Faster

Healthcare (~30 models) BioBERT (NLP), Clara (Computer Vision)

Manufacturing (~25 Models) Object Detection, Image Classification

Retail (~25 models) BERT, Transformer

70 TensorRT Plans Classification/Segmentation for v5, v6, v7

Natural Language Processing 25 Bert Configurations

Recommendation Engines Neural Collaborative Filtering, VAE

Speech Jasper, Tacotron, WaveGlow

Translation GNMT
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THIS APPLIES NOT ONLY 
TO TRAINING BUT 

INFERENCE AS WELL
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CODE QUALITY IS KEY
Dramatic differences in model performance

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

3-layer BERT with 128 sequence length

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu
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OPTIMIZING INFERENCE 
WITH TENSORRT
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NVIDIA TENSORRT
From Every Framework, Optimized For Each Target Platform
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TENSORRT
Optimizations

developer.nvidia.com/tensorrt
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TensorRT ONNX PARSER

Optimize and deploy models from ONNX-supported 
frameworks to production

Apply TensorRT optimizations to any ONNX 
framework (Caffe 2, Microsoft Cognitive Toolkit, 
MxNet & PyTorch)

Import TensorFlow and Keras through converters 
(tf2onnx, keras2onnx)

Use with C++ and Python apps

20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

High-Performance Inference for ONNX 
Models

developer.nvidia.com/tensorrt

https://github.com/onnx/onnx-tensorrt/blob/7.0/operators.md
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TENSORRT
Tight integration with DL frameworks

Pytorch -> TRTorch TensorFlow -> TF-TRT
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WIDELY ADOPTED
Accelerating most demanding applications
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IMPACT ON NLP
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TENSORRT
BERT Encoder optimizations
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CUSTOM PLUGINS

• Naïve implementation would require a large 
number of TensorRT elementary layers

• For k layers, the naïve implementation would 
require k-1 memory roundtrips

• The skip and layer-normalization(LN) layers occur 
twice per Transformer layer and are fused in a 
single kernel

Optimized GeLU as well as skip and layer-normalization operations

Result = x^3
Result = c * Result
Result = x + Result
Result = b * Result
Result = tanh(Result)
Result = x * Result
Result = a * Result

gelu(x) = a * x * (1 + tanh( b * (x + c * x^3) ))
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CUSTOM PLUGINS
Self-attention layer
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IMPLICATIONS
Significant impact on latency and throughput (batch 1)

Using a Tesla T4 GPU, BERT optimized with TensorRT can perform inference in 2.2 ms for a QA task similar to available in SQuAD with batch size =1 and sequence length = 128.
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IMPLICATIONS
Significant impact on latency and throughput
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BEYOND BERT
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FASTER TRANSFORMER

• Encoder:
• 1.5x compare to TensorFlow with XLA on FP16

• Decoder on NVIDIA Tesla T4
• 2.5x speedup for batch size 1 (online translating scheme)
• 2x speedup for large batch size in FP16

• Decoding on NVIDIA Tesla T4
• 7x speedup for batch size 1 and beam width 4 (online translating scheme)
• 2x speedup for large batch size in FP16.

• Decoding on NVIDIA Tesla V100
• 6x speedup for batch size 1 and beam width 4 (online translating scheme)
• 3x speedup for large batch size in FP16.

Designed for training and inference speed

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer#feature-support-matrix

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer
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CONSIDER USING 
TENSORRT
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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INEFFICIENCY LIMITS INNOVATION
Difficulties with deploying data center inference

Single Framework OnlySingle Model Only Custom Development 

Some systems are overused while 
others are underutilized

Solutions can only support
models from one framework

Developers need to reinvent the 
plumbing for every application

ASR NLP
Rec-

ommender

!
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NVIDIA TRITON INFERENCE SERVER
Production data center inference server

Maximize real-time inference 
performance of GPUs

Quickly deploy and manage multiple 
models per GPU per node  

Easily scale to heterogeneous GPUs 
and multi GPU nodes

Integrates with orchestration 
systems and auto-scalers via latency 
and health metrics

Now open source for thorough 
customization and integration
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Concurrent Model Execution
Multiple models (or multiple instances of same 
model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference 
requests on the CPU

Metrics
Utilization, count, memory, and latency

Custom Backend
Custom backend allows the user more flexibility 
by providing their own implementation of an 
execution engine through the use of a shared 
library

Model Ensemble
Pipeline of one or more models and the 
connection of input and output tensors between 
those models (can be used with custom 
backend)

Dynamic Batching
Inference requests can be batched up by the 
inference server to 1) the model-allowed 
maximum or 2) the user-defined latency SLA

Multiple Model Format Support
PyTorch JIT (.pt)
TensorFlow GraphDef/SavedModel
TensorFlow and TensorRT GraphDef
ONNX graph (ONNX Runtime)
TensorRT Plans
Caffe2 NetDef (ONNX import path)

CMake build
Build the inference server from source making it 
more portable to multiple OSes and removing 
the build dependency on Docker

Streaming API
Built-in support for audio streaming input e.g. 
for speech recognition

FEATURES
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DYNAMIC BATCHING SCHEDULER

Framework Backend

Dynamic 
Batcher

Runtime

Context

Context

Batch-1 Request
Batch-4 Request

Triton Inference Server
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DYNAMIC BATCHING SCHEDULER

ModelY Backend

Dynamic 
Batcher

Runtime

Context

Context

Preferred batch size and wait 
time are configuration options.

Assume 4 gives best utilization in 
this example.

Grouping requests into a 
single “batch” increases 
overall GPU throughput

Triton Inference Server
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DYNAMIC BATCHING

Triton Inference Server groups 
inference requests based on 
customer defined metrics for 
optimal performance

Customer defines 1) batch size 
(required) and 2) latency 
requirements (optional)

Example: No dynamic batching   
(batch size 1 & 8) vs dynamic 
batching

2.5X Faster Inferences/Second at a 50ms End-to-End Server Latency Threshold
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CONCURRENT MODEL EXECUTION - RESNET 50

Time

6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

Common Scenario 1

One API using multiple copies of the 
same model on a GPU

Example: 8 instances of TRT FP16 ResNet50 
(each model takes 2 GB GPU memory) are 
loaded onto the GPU and can run 
concurrently on a 16GB T4 GPU.
10 concurrent inference requests happen: 
each model instance fulfills one request 
simultaneously and 2 are queued in the 
per-model scheduler queues in Triton 
Inference Server to execute after the 8 
requests finish. With this configuration, 
2680 inferences per second at 152 ms with 
batch size 8 on each inference server 
instance is achieved.

Inference 
Requests

Triton Inference Server

ResNet
50

Request 
Queue

T4 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

RN50 Instance 5 CUDA Stream

RN50 Instance 6 CUDA Stream

RN50 Instance 8 CUDA Stream

RN50 Instance 7 CUDA Stream

10 
concurrent 
requests
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Common Scenario 1

One API using multiple copies of the 
same model on a GPU

Example: 8 instances of TRT FP16 ResNet50 
(each model takes 2 GB GPU memory) are 
loaded onto the GPU and can run 
concurrently on a 16GB T4 GPU.
10 concurrent inference requests happen: 
each model instance fulfills one request 
simultaneously and 2 are queued in the 
per-model scheduler queues in Triton 
Inference Server to execute after the 8 
requests finish. With this configuration, 
2680 inferences per second at 152 ms with 
batch size 8 on each inference server 
instance is achieved.

CONCURRENT MODEL EXECUTION - RESNET 50
6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency
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Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50 
and 4 instances of TRT FP16 Deep 
Recommender are running concurrently on 
one GPU. Ten requests come in for both 
models at the same time (5 for each 
model) and fed to the appropriate model 
for inference. The requests are fulfilled 
concurrently and sent back to the user. 
One request is queued for each model.
With this configuration, 5778 inferences 
per second at 80 ms with batch size 8 on 
each inference server instance is achieved.

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Inference 
Requests

Triton Inference Server

Resnet
50

Request 
Queue

T4 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

DeepRec Instance 1 CUDA Stream

DeepRec Instance 2 CUDA Stream

DeepRec Instance 4 CUDA Stream

DeepRec Instance 3 CUDA Stream

5 concurrent 
requests

Deep 
Rec

Request 
Queue

5 concurrent 
requests
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Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50 
and 4 instances of TRT FP16 Deep 
Recommender are running concurrently on 
one GPU. Ten requests come in for both 
models at the same time (5 for each 
model) and fed to the appropriate model 
for inference. The requests are fulfilled 
concurrently and sent back to the user. 
One request is queued for each model.
With this configuration, 5778 inferences 
per second at 80 ms with batch size 8 on 
each inference server instance is achieved.

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER
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● One model per GPU
● Requests are steady across all models
● Utilization is low on all GPUs

● Spike in requests for blue model
● GPUs running blue model are being fully utilized
● Other GPUs remain underutilized

Before Triton Inference Server - 5,000 FPSBefore Triton Inference Server - 800 FPS

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING
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● Load multiple models on every GPU 
● Load is evenly distributed between all GPUs 

● Spike in requests for blue model
● Each GPU can run the blue model concurrently
● Metrics to indicate time to scale up

○ GPU utilization
○ Power usage
○ Inference count
○ Queue time
○ Number of requests/sec

After Triton Inference Server - 15,000 FPSAfter Triton Inference Server - 5,000 FPS

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING
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STREAMING INFERENCE REQUESTS

Corr 2Corr 2

Corr 3Corr 3

Corr 1Corr 1Corr 1Corr 1

Corr 2Corr 2Corr 3Corr 3

DeepSpeech2

Wave2Letter

Per Model Request Queues

Corr 1Corr 1Corr 1Corr 1

DeepSpeech2 Sequence Batcher

Wav2Letter Sequence Batcher

Corr 1Corr 1Corr 1Corr 1 Corr 2 Corr 2 Corr 3 Corr 3

New Streaming API

Based on the correlation ID, the 
audio requests are sent to the 
appropriate batch slot in the 

sequence batcher*

*Correct order of requests is 
assumed at entry into the endpoint
Note: Corr = Correlation ID

Inference Request

Framework 
Inference 
Backend

NEW

NEW
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MODEL ENSEMBLING

• Pipeline of one or more models and the 
connection of input and output tensors between 
those models

• Use for model stitching or data flow of multiple 
models such as data preprocessing → inference 
→ data post-processing

• Collects the output tensors in each step, 
provides them as input tensors for other steps 
according to the specification

• Ensemble models will inherit the characteristics 
of the models involved, so the meta-data in the 
request header must comply with the models 
within the ensemble
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perf_client TOOL

• Measures throughput (inf/s) and 
latency under varying client loads

• perf_client Modes

1. Specify how many concurrent 
outstanding requests and it 
will find a stable latency and 
throughput for that level

2. Generate throughput vs 
latency curve by increasing 
the request concurrency until 
a specific latency or 
concurrency limit is reached

• Generates a file containing CSV 
output of the results

• Easy steps to help visualize the 
throughput vs latency tradeoffs
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ALL CPU WORKLOADS SUPPORTED

217

Deploy the CPU workloads used today and benefit from Triton Inference 
Server features (TRT not required)

Triton relies on framework backends (Tensorflow, Caffe2, 
PyTorch) to execute the inference request on CPU

Support for Tensorflow and Caffe2 CPU optimizations using Intel 
MKL-DNN library

Allows frameworks backends to make use of multiple CPUs and 
cores

Benefit from Triton features:
• Multiple Model Framework Support
• Dynamic batching
• Custom backend
• Model Ensembling
• Audio Streaming API
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TRITON INFERENCE SERVER COLLABORATION 
WITH KUBEFLOW

What is Kubeflow?

• Open-source project to make ML workflows on Kubernetes simple, portable, and 
scalable

• Customizable scripts and configuration files to deploy containers on their chosen 
environment

Problems it solves

• Easily set up an ML stack/pipeline that can fit into the majority of enterprise 
datacenter and multi-cloud environments

How it helps Triton Inference Server

• Triton Inference Server is deployed as a component inside of a production workflow 
to

• Optimize GPU performance

• Enable auto-scaling, traffic load balancing, and redundancy/failover via 
metrics

https://github.com/kubeflow/kubeflow/tree/master/kubeflow/nvidia-inference-server
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TRITON INFERENCE SERVER HELM CHART

Helm: Most used “package manager” for Kubernetes

We built a simple chart (“package”) for the Triton 
Inference Server.

You can use it to easily deploy an instance of the server.
It can also be easily configured to point to a different 
image, model store, …
https://github.com/NVIDIA/tensorrt-inference-
server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server

Simple helm chart for installing a single instance of the NVIDIA Triton Inference Server

https://github.com/NVIDIA/tensorrt-inference-server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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APPLICATION != SINGLE 
MODEL
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THE APPLICATION
Typically composed of many components

Audio Feature Extraction Acoustic Model Decoder

Language Model

Machine Translation

Query Search

Autocorrect

Visual Search

Search Ranking

Speech SynthesisVoice EncoderAudio

ASR

TTS

NLU

“What date is the 
Chinese New Year?”
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RIVA
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NVIDIA RIVA
Fully Accelerated Framework for Multimodal Conversational AI Services

End-to-End Multimodal Conversational AI Services

Pre-trained SOTA models-100,000 Hours of DGX 

Retrain with NeMo

Interactive Response – 150ms  on A100  versus 25sec on CPU

Deploy Services with One Line of Code

RETRAIN

video

audio

Multi-Speaker
TranscriptionNVIDIA GPU CLOUD NVIDIA AI TOOLKIT

Transfer Learning

NeMo

Service Maker

TRITON INFERENCE SERVER

Dialog Manager

ChatbotMulti-Speaker 
Transcription Look to Talk

Gesture 
Recognition

Speech

Vision

NLU

Riva
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PRETRAINED MODELS AND AI TOOLKIT
Train SOTA Models on Your Data to Understand your Domain and Jargon

100+ pretrained models in NGC

SOTA models trained over 100,000 hours on NVIDIA DGX™

Retrain for your domain using NeMo & TAO Toolkit

Deploy trained models to real-time services using Helm charts
Riva
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MULTIMODAL SKILLS
Use speech and vision for natural interaction

Multimodal application with multiple users 
and contexts

Build new skills by fusing services for ASR, NLU, TTS, and CV

Reference skills include:

• Multi-speaker transcription

• Chatbot

• Look-to-talk

Dialog manager manages multi-user and multi-context scenarios

Riva
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BUILD CONVERSATIONAL AI SERVICES
Optimized Services for Real Time Applications

Build applications easily by connecting 
performance tuned services

Task specific services include:

• ASR

• Intent Classification

• Slot Filling

• Pose Estimation

• Facial Landmark Detection

Services for streaming & batch usage

Build new services from any model in ONNX format

Access services for gRPC and HTTP endpoints

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis

Riva Client 
Applications

Riva

Riva Services

Dialog Manager

ASR

Intent

TTS

...

Dialog Manager

Riva AI services

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis
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DEPLOY MODELS AS REAL-TIME SERVICES
One Click to Create High-Performance Services from SOTA Models

Deploy models to services in the cloud, data 
center, and at the edge

Single command to set up and run the entire Riva application 

through Helm charts on Kubernetes cluster

Customization of Helm charts for your setup and use case.

Riva SERVICES

One click deployment

Speech 
Synthesis

Voice 
Encoder

Decoder Feature 
Extraction

Acoustic 
Model

NLU &
Recommenders

Speech

Vision

NLU

Language 
Model

TensorRT
Triton Inference Server

Riva API Server

Helm command to deploy models to production
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Look To Talk Virtual Assistant

RIVA SAMPLES

Visual Diarization
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model




