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Research topics covered in 2022-2023

1. Turbulent convection at very low Prandtl numbers

2. Development of numerical tools for wall-bounded MHD flows

3. Evolution of MHD flows in ducts and rectangular boxes

Solar convection with Pr  10-6 Liquid-metal cooling blankets with Pr  10-2

for fusion reactors (iter.org)

Applications:

https://eng.libretexts.org/@go/page/5948?pdf



Tools applied

1. In-house flow solver for incompressible flows in rectangular 
geometries (TU Ilmenau, UMICH Dearborn)

*Key features: based on 2nd order finite-differences, conservative scheme, 
structured collocated grids, MPI + Open MP hybrid parallelization

2. NEK 5000 solver, open-source community driven code
(TU Ilmenau, NYU, NYU Abu-Dhabi)

*Key features: spatial discretization with spectral elements, unstructured 
grids, multi-domain decomposition, MPI parallelization

3. Experimental facilities with liquid mercury (Moscow)

*Solenoid magnet up to 1.7T, temperature probes, electric potential sensors



Not anymore !!!

T = 0.5

T = -0.5



Parameters of simulations with FD in-house solver

rectangular box with aspect ratio L/H = 25/1 (width/height)

Ra = 105 … 107 and Pr = 0.021, 0.005, 0.001

Simulation Resolution Computing information Nu Re

Ra = 1e6, Pr = 0.021 81922 x 512 34 Bill. points, @ 24576 cores 4.74282523 3155

Ra = 1e6, Pr = 0.005 81922 x 512 34 Bill. points, @ 24576 cores 3.48979662 7638

Ra = 1e6, Pr = 0.001 128002 x 800 131 Bill. points, @ 38400 cores 2.47784979 19901

Ra = 1e5, Pr = 0.001 96002 x 640 60 Bill. points, @ 28800 cores 1.21289961 4776

Ra = 1e7, Pr = 0.001 204802 x 1280 0.54 Trill. points, @ 144000 cores 4.60336402 56103

#1: Turbulent convection at low Prandtl numbers

Information about the largest simulation at Ra = 107 and Pr = 10-3

(*) consumed compute time totals 35 Mill. core-hours (one run at 144000 cores)

(*) highest resolution maxed out at 224002 x 1400 = 0.7 Trill. points

(*) one snapshot with 3D flow field exceeds 17 TB

(*) total data to be post-processed more than 190 TB



#1: Turbulent convection at low Prandtl numbers

Flow field at Ra = 105 and Pr = 0.001 and  = 25 (L/H)

Superstructures shown by streamlines, seeded with 15000 lines

25 H



#1: Turbulent convection at low Prandtl numbers

Flow fields at Pr = 0.001

Ra = 105 Ra = 106 Ra = 107

 – characteristic length of superstructures as typical distance between two up- or down-welling regions, about  3H

  



#1: Turbulent convection at low Prandtl numbers

Vertical velocity Vz in the mid-plane at Ra = 106 and Pr = 0.001

Important finding: Turbulence in the bulk is 
Kolmogorov-like with E(k)  k-5/3

Zoom into a 1/1 region, displaying highly 
intertial small-scale turbulence

On the left – entire domain, visualized at 
full resolution of 12800 x 12800 pixels
(i.e. one pixel = one grid point)

• Pandey et.al., J. Fluid. Mech. (2022)

dT indicates thickness of the thermal
boundary layer



• Boundary condition for electric potential, idealized cases
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Hunt‘s flow,
laminar state at Ha=100

Hartmann flow,
laminar state at Ha=100

Hartmann case: all 4 walls are insulating Hunt‘s case: conducting Hartmann walls,
insulating sidewalls (Shercliff walls)

Archetypal system: MHD flow in square duct
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Side wall 𝜕𝜑/𝜕𝑛 = 0 𝜕𝜑/𝜕𝑛 = 0

Hartmann wall 𝜕𝜑/𝜕𝑛 = 0 𝜑 = 𝑐𝑜𝑛𝑠𝑡

perfectly insulating perfectly conducting



Ideally conducting 
Hartmann walls

Finite conductance 
ratio Cw = 0.1

Case 1: Ha = 100

Ideally conducting 
Hartmann walls

Finite conductance 
ratio Cw = 0.1

Case 2: Ha = 1000

Importance: at high Ha the basic velocity profile develops inflection points in the region of side-jets 
– the flow, therefore, may (and do!) become unstable even at very low-Re

Finite-wall conductivity (realistic scenario)

Wall conductance ratio
w and w – conductivity and thickness of the wall

 and L – conductivity and thickness of the fluid layer



#2: Development of numerical tools for wall-bounded MHD flows

Tensor-product Elliptic solver for finite-wall conductivity

First proposed: J.S. Walker, J. Méc. (1981)

Main issue: solution depends on boundary conditions, whereas 
boundary conditions depend on solution – chicken and egg problem

Elliptic (Poisson) equation for electric potential  Perfectly insulating wall (Neumann bc) Perfectly conducting wall (Dirichlet bc)

Classic boundary conditions

and/or

Realistic boundary 
condition for thin-walls 
with finite conductivity

Wall-normal derivative Tangential 2D Laplace 
operator at the wall

Wall conductance ratio Cw

Efficient and simple direct solution:

Tensor-product approach, based on identifying the 
eigenmodes expansion for tridiagonal matrices of 
discrete Laplace operator, modified by embedded
thin-wall conditions

The approach can be applied on structured grids 
with arbitrary clustering/stretching



#2: Development of numerical tools for wall-bounded MHD flows

What is tensor-product approach for elliptic equations?

Discrete 3D Poisson equation for 
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can be represented as tridiagonal matrix
for the 3-point stencils of 2nd derivative

Tridiag. matrix Tx

for x-uniform grid

For uniform grids this approach retains full compatibility with fast transforms (FFT, cosFT, sinFT)!!!

Tensor-product approach can be seen as the most generalized form of Fourier expansion, i.e. expansion into eigenmodes

(1) Core idea – find eigenvalues , eigenvectors and inverse eigenvectors for tridiagonal 
matrices Tx and Ty corresponding to horizontal operators in x- and y-directions:

Tx → A (direct), x and A-1 (inverse) and Ty → B (direct), y and B-1 (inverse)

(2) 3D elliptic problem can be converted to the eigenmodes space as series of 1D problems 
amenable to fast Thomas tridiagonal solver in the remaining z-direction

The eigenvectors A, B converge to
Fourier modes for periodic conditions
Cosine modes for Neumann conditions
Sine modes for Dirichlet conditions

The eigenvalues x and y become −𝑘𝑥
2 and −𝑘𝑦

2, i.e. negatives of the square of the wave-numbers



#2: Development of numerical tools for wall-bounded MHD flows

Embedding thin-wall b.c. into eigenmode expansion

Discrete 3D Poisson equationDiscrete thin-wall boundary condition

Example of rectangular grid in (y,z)

This form of thin-wall condition can be implemented with eigenmodes expansion

Two methods are possible, both amount to modification of the tridiagonal matrices

Method 1. Solving problem in transformed (eigenmodes) space, corner elements of the tridiag. matrix for Thomas solver are modified

Method 2. Modify tridiag. matrix in real space, then use this matrix to identify modified eigenmodes, then transform and solve



#2: Development of numerical tools for wall-bounded MHD flows

Benchmarks of tensor-product vs. other methods
(performed on SuperMUC-NG)

Rayleigh-Bénard convection in a rectangular box computed on grids with various Nx = Ny = N and Nz = 256
Clock time required to compute 100 time steps on 256 cores is shown as a function of N

Matrix multiplications in general TPT are performed with MKL multi-thread routines

General TPT = Tensor-Product-Thomas solver, i.e. MatMul in x,y and Thomas method in z
Cycl. Reduct. = Cosine-FT in x and 2D Cyclic reduction method (Fishpack) in y,z
FT TPT = Fast Transform Tensor-Product-Thomas, i.e. Cosine-FT in x,y and Thomas method in z

Only TPT allows for arbitrary 
grid-clustering in x,y,z



• Transform matrices grow in size as n2 – potential issue at hi-res
• Matrix multiplication scales as O(n3), vs. O(n2log2(n)) for FFT/CosFT/SinFT

Annoying points

• Direct solver – no iterations, no convergence issues
• Arbitrary grid-clustering in all 3 directions
• MKL matmul routines scale up almost linearly vs. number of threads
• Can be extended to curvilinear grid if separable (e.g. cylinder coords.)
• No speed-penalty vs. classic Neumann and Dirichet conditions
• Each wall can be assigned its own conductance ratio Cw

• Can be applied for finite thermal conductivity, even for unsteady form 

Good points

Prerequisite – elliptic problem should be separable,
thus decomposition into eigenmodes can be applied
(basically that implies constant coefficients and structured grids)

• Five good points about the car
• Five annoying points about the car

Copyright carwow.co.uk and Mat Watson

#2: Tensor-product elliptic solver, list of pros and cons
(in part inspired by car reviews ☺ from Mat Watson/carwow youtube)



#3: Evolution of MHD flows in ducts and rectangular boxes (examples)

Hunt’s flow instability at Ha=2000

MHD flows in ducts with conducting walls – typical configuration for liquid-metal fusion blankets
Spatial evolution of Hunt’s flow at Re = 2000, Ha = 2000 and Cw = 0.03

Region (1): Onset of sidewall jet instabilities Region (2): Fully developed jet detachments

• Krasnov et.al. J. Comp. Phys. (2023)



#3: Evolution of MHD flows in ducts and rectangular boxes (examples)

• Belyaev et.al., J. Fluid. Mech. (2023)

Effect of wall conductivity on instability of a submerged round jet, entering square duct
Uniform vertical magnetic field Bz at Ha=500, flow at Re=1000



#3: Evolution of MHD flows in ducts and rectangular boxes (examples)

MHD convection in a rectangular box at Ra=107 and Ha=1000
Wall-modes are killed at conducting side-walls Cw=0.1
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Magneto-thermal convection flows around and above the Chandrasekhar stability limit
At these conditions convective motion is expected to be fully suppressed by strong magnetic field
However, residual motion at the sidewalls – wall-modes – can exist far above even if the rest has “died”

Fundamental: effect of wall conductivity
on the wall-modes at uniform magnetic field

Fusion relevant:
wall-modes at fringing magnetic field

MHD convection
in a flat enclosure at Ra=105 and Ha=120

Gradual change of convective pattern towards
anisotropic structures and wall-modes

• Bhattacharya et.al., J. Fluid Mech. (2023)
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Outlook & Possible next steps

• Convection at low Pr: exploring broader parameter space and longer
statistics (time-evolution)

• Extension of the tensor-product approach to solve problems with finite
thermal wall-conductivity → conjugate heat transport “made easy”

• It would be interesting to explore application of practical algorithms of
fast matrix multiplication possibly utilizing the symmetry properties of
the transform matrices to achieve scaling better than O(n3)

Thanks a lot for your attention!
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