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Research topics covered in 2022-2023

1. Turbulent convection at very low Prandtl numbers
2. Development of numerical tools for wall-bounded MHD flows

3. Evolution of MHD flows in ducts and rectangular boxes

Applications:

Liquid-metal cooling blankets with Pr ~ 102

Solar convection with Pr~ 10°® _ :
for fusion reactors (iter.org) ___

Photosphere

Chromosphere _
NG

Radiative
Zone

https://eng.libretexts.org/@go/page/5948?pdf



Tools applied

1. In-house flow solver for incompressible flows in rectangular
geometries (TU lImenau, UMICH Dearborn)

*Key features: based on 2nd order finite-differences, conservative scheme,
structured collocated grids, MPIl + Open MP hybrid parallelization

2. NEK 5000 solver, open-source community driven code
(TU llmenau, NYU, NYU Abu-Dhabi)

*Key features: spatial discretization with spectral elements, unstructured
grids, multi-domain decomposition, MPI parallelization

3. Experimental facilities with liqguid mercury (Moscow)

*Solenoid magnet up to 1.7T, temperature probes, electric potential sensors



Physical model:

» Governing equations: T=-05 X
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Not anymore !!!

» Approximations:

@ The Boussinesq approximation

@ The quasi-static model of electromagnetic interactions: Re,, << 1 and Pr,, << 1

» Non-dimensional control parameters:
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#1: Turbulent convection at low Prandtl numbers

Parameters of simulations with FD in-house solver

rectangular box with aspect ratio L/H = 25/1 (width/height)

Ra =10° ... 10”7 and Pr=0.021, 0.005, 0.001

Simulation Resolution Computing information Nu Re
Ra = 1e6, Pr=0.021 81922x 512 34 Bill. points, @ 24576 cores 4.74282523 3155
Ra = 1e6, Pr=0.005 81922x 512 34 Bill. points, @ 24576 cores 3.48979662 7638
Ra = 1le6, Pr=0.001 128002 x 800 131 Bill. points, @ 38400 cores 2.47784979 19901
Ra =1e5, Pr=0.001 96002 x 640 60 Bill. points, @ 28800 cores 1.21289961 4776
Ra = 1e7, Pr=0.001 204802 x 1280 | 0.54 Trill. points, @ 144000 cores 4.60336402 56103

Information about the largest simulation at Ra = 10” and Pr =107

(*) consumed compute time totals 35 Mill. core-hours (one run at 144000 cores)
(*) highest resolution maxed out at 224002 x 1400 = 0.7 Trill. points

(*) one snapshot with 3D flow field exceeds 17 TB

(*) total data to be post-processed more than 190 TB




#1: Turbulent convection at low Prandtl numbers

Flow field at Ra = 10° and Pr = 0.001 and I" = 25 (L/H)

Superstructures shown by streamlines, seeded with 15000 lines



#1: Turbulent convection at low Prandtl numbers
Flow fields at Pr = 0.001
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A — characteristic length of superstructures as typical distance between two up- or down-welling regions, about ~ 3H



#1: Turbulent convection at low Prandtl numbers
Vertical velocity Vz in the mid-plane at Ra = 10° and Pr = 0.001

On the left — entire domain, visualized at
full resolution of 12800 x 12800 pixels
(i.e. one pixel = one grid point)

0.4 Zoom into a 1/1 region, displaying highly
intertial small-scale turbulence

0.2 8 indicates thickness of the thermal

boundary layer
Py w& ’
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25 H Important finding: Turbulence in the bulk is
Kolmogorov-like with E(k) ~ k3

* Pandey et.al., J. Fluid. Mech. (2022)



Archetypal system:

laminar state at Ha=100
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Hartmann flow, I B L
H

Side walls

Electric currents
form closed loops
Vi with tangential
components only

Hartmann case: all 4 walls are insulating

MHD flow in square duct

Hunt’s flow, B ¢ L
laminar state at Ha=100

Electric currents
develop normal
y component at

conducting wall

Hunt’s case: conducting Hartmann walls,
insulating sidewalls (Shercliff walls)

e Boundary condition for electric potential, idealized cases

Side wall

Hartmann wall

perfectly insulating

do/on =20
dp/on =0

de/on =0
@ = const

perfectly conducting



Finite-wall conductivity (realistic scenario)
o, and 7, — conductivity and thickness of the wall

OwTw
o and L — conductivity and thickness of the fluid layer

Wall conductance ratio C,, =
ol
Case 2: Ha = 1000

=

Case 1: Ha =100

Finite conductance
ratio C, = 0.1

\
Ideally conducting ',
\
Hartmann walls
\
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Ideally conducting . Finite conductance
Hartmann walls ° ratio C,, = 0.1
Importance: at high Ha the basic velocity profile develops inflection points in the region of side-jets

— the flow, therefore, may (and do!) become unstable even at very low-Re



#2: Development of numerical tools for wall-bounded MHD flows

Tensor-product Elliptic solver for finite-wall conductivity

Classic boundary conditions

9 _
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Elliptic (Poisson) equation for electric potential ¢ Perfectly insulating wall (Neumann bc) Perfectly conducting wall (Dirichlet bc)
Reall'st'lc bounda}ry 8@5 5 OwTw
condition for thin-walls — = CWVJ_qb Cw=—
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Wall-normal derivative Tangential 2D Laplace Wall conductance ratio C,,

operator at the wall

Efficient and simple direct solution:

Tensor-product approach, based on identifying the
First proposed: J.S. Walker, J. Méc. (1981) eigenmodes expansion for tridiagonal matrices of

discrete Laplace operator, modified by embedded
Main issue: solution depends on boundary conditions, whereas - thin-wall conditions

boundary conditions depend on solution — chicken and egg problem _
The approach can be applied on structured grids

with arbitrary clustering/stretching




#2: Development of numerical tools for wall-bounded MHD flows

What is tensor-product approach for elliptic equations?

Tensor-product approach can be seen as the most generalized form of Fourier expansion, i.e. expansion into eigenmodes

_ 5x2’ 5y?’ &z2 62 1 2 e Tridiag. matrix T,
Sx2 5y2 572 can be represented as tridiagonal matrix = 5,2 ~ p2 -2 1 for x-uniform grid
for the 3-point stencils of 2" derivative e =2

52¢ 82¢) 82(}5 Each of these operators

Discrete 3D Poisson equation for ¢

(1) Core idea — find eigenvalues A, eigenvectors and inverse eigenvectors for tridiagonal
matrices T, and T, corresponding to horizontal operators in x- and y-directions:

T,— A (direct), A, and A (inverse) and T, — B (direct), A, and B (inverse)

(2) 3D elliptic problem can be converted to the eigenmodes space as series of 1D problems
amenable to fast Thomas tridiagonal solver in the remaining z-direction

8%\ » . . .
(Ax,f"‘ly,j‘*‘ Q)Cbi,j(z):ﬁ,j(.?), i=1,....Nx, j=1,...,Ny

For uniform grids this approach retains full compatibility with fast transforms (FFT, cosFT, sinFT)!!!

Fourier modes for periodic conditions
The eigenvectors A, B converge to Cosine modes for Neumann conditions
Sine modes for Dirichlet conditions

The eigenvalues A, and ., become —k? and —ka,, i.e. negatives of the square of the wave-numbers



#2: Development of numerical tools for wall-bounded MHD flows

Embedding thin-wall b.c. into eigenmode expansion
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L Two methods are possible, both amount to modification of the tridiagonal matrices
Example of rectangular grid in (y,z)

Method 1. Solving problem in transformed (eigenmodes) space, corner elements of the tridiag. matrix for Thomas solver are modified
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Method 2. Modify tridiag. matrix in real space, then use this matrix to identify modified eigenmodes, then transform and solve
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#2: Development of numerical tools for wall-bounded MHD flows

Benchmarks of tensor-product vs. other methods
(performed on SuperMUC-NG)

Rayleigh-Bénard convection in a rectangular box computed on grids with various N, = N, = N and N, = 256
Clock time required to compute 100 time steps on 256 cores is shown as a function of N
Matrix multiplications in general TPT are performed with MKL multi-thread routines

1600 . . . i
1400 t FTTPT —&— y
. R o
1200 L cycl. reduct o
S 1000 general TPT ----m----
i H o"' = l.‘.ﬂ)
3 ) 0(N3) scaling =~~~
S 600 r |
400 r
200 r
0 M Ty T ) |
256 768 1536 2048 2560
N, Ny
General TPT= Tensor-Product-Thomas solver, i.e. MatMul in x,y and Thomas method in z mmmmmdp  Only TPT allows for arbitrary
Cycl. Reduct. = Cosine-FT in x and 2D Cyclic reduction method (Fishpack) in y,z grid-clustering in x,y,z

FTTPT = Fast Transform Tensor-Product-Thomas, i.e. Cosine-FT in x,y and Thomas method in z



#2: Tensor-product elliptic solver, list of pros and cons

(in part inspired by car reviews © from Mat Watson/carwow youtube)

* Five good points about the car
* Five annoying points about the car

Prerequisite — elliptic problem should be separable,

thus decomposition into eigenmodes can be applied
(basically that implies constant coefficients and structured grids)

Good POl nts Copyright carwow.co.uk and Mat Watson

* Direct solver — no iterations, no convergence issues

* Arbitrary grid-clustering in all 3 directions

MKL matmul routines scale up almost linearly vs. number of threads
Can be extended to curvilinear grid if separable (e.g. cylinder coords.)
No speed-penalty vs. classic Neumann and Dirichet conditions

Each wall can be assigned its own conductance ratio C,,

* Can be applied for finite thermal conductivity, even for unsteady form

Annoying points

* Transform matrices grow in size as n? — potential issue at hi-res
* Matrix multiplication scales as O(n3), vs. O(n?log,(n)) for FFT/CosFT/SinFT



#3: Evolution of MHD flows in ducts and rectangular boxes (examples)

MHD flows in ducts with conducting walls — typical configuration for liquid-metal fusion blankets
Spatial evolution of Hunt’s flow at Re = 2000, Ha = 2000 and C,, = 0.03

Region (1): Onset of sidewall jet instabilities Region (2): Fully developed jet detachments
U \ . o I \ |
-1 04 18 32 46 6 74 88 -1 04 18 32 46 6 74 88

_— e — ———— —

Method 1 Method 1

Method 2

* Krasnov et.al. J. Comp. Phys. (2023)



#3: Evolution of MHD flows in ducts and rectangular boxes (examples)

Effect of wall conductivity on instability of a submerged round jet, entering square duct
Uniform vertical magnetic field B, at Ha=500, flow at Re=1000
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* Belyaev et.al,, J. Fluid. Mech. (2023)



#3: Evolution of MHD flows in ducts and rectangular boxes (examples)

Magneto-thermal convection flows around and above the Chandrasekhar stability limit
At these conditions convective motion is expected to be fully suppressed by strong magnetic field
However, residual motion at the sidewalls — wall-modes — can exist far above even if the rest has “died”

Fundamental: effect of wall conductivity Fusion relevant:
on the wall-modes at uniform magnetic field wall-modes at fringing magnetic field
Conducting

2 Convection cell

......... Tt
H I ......... [
.......... |

...........

Heated bottom wall

Insulating
o

Insulating

Conducting

-2
0 1 2 3 4

MHD convection in a rectangular box at Ra=107 and Ha=1000 MHD convection -}
Wall-modes are killed at conducting side-walls C,,=0.1 in a flat enclosure at Ra=10° and Ha=120
Gradual change of convective pattern towards
anisotropic structures and wall-modes

*  Bhattacharya et.al., J. Fluid Mech. (2023)
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Convective mesoscale turbulence at very low
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Horizontally extended turbulent convection, termed mesoscale convection in natural
systems, remains a challenge to investigate in both experiments and simulations. This is
andtl numbers, such as occur in stellar convection
and in the Earth's outer core. The present study reports three-dimensional direct numerical
simulations of turbulent Rayleigh-Bénard convection in square boxes of side length L and
height H with the aspect = L/H of 25, for Prandtl numbers that span almost 4
orders of magnitude, 10~* < Pr < 7, and Rayleigh numbers 10° < Ra < 107, obtained
by massively parallel computations on grids of up to 5.36 x 10'! points. The low end of
this Pr-range cannot be accessed in controlled laboratory measurements. We report the
essential properties of the flow and their trends with the Rayleigh and Prandtl numbers,
in particular, the global transport of momentum and heat ~ the latter decomposed into
convective and diffusive contributions - across the convection layer, mean vertical profiles
of the temperature and temperature fluctuations and the kinetic e and thermal
dissipation rates. We also explore the degree to which the turbulence in the bulk of the
neous and isotropic turbulence in terms of
nomaly, and find close similarities. Finally
we show that a characteristic scale of the order of the mesoscale seems (0 saturate to a
wavelength of A 2 3H for Pr < 0.005. We briefly discuss possible implications of these
results for the development of subgrid-scale parameterization of turbulent convection.

particularly so for very low molecular

convection layer resembles classical hon
spectra, increment moments and dissipat
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Tensor-product-Thomas elliptic solver for liquid-metal o
magnetohydrodynamics oer
Dmitry Krasnov™*, Ali Akhtari®, Oleg Zikanov®, Jérg Schumacher®
e o a Dssesi

i it Dearburs, 4512881, USA
ARTICLE INFO ABSTRACT
S X new apprach to_ mumencal simuaton of magnetohydrodymamic fows of iquid
ucalmd 25 Mach 222 metals is presented. It combines the conservative finite-difference discretization with a
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tensor-product-Thomas solution of the elliptic problems for pressure, electric potentia,
velocity, and temperature. The method is realizable on an arbitrarily clustered structured
grid. The main novelty of the approach is the efficient solution of the practically

important and challenging elliptic problemns for electric potential in flow
domains with thin electrically conducting walls. The method is verified via solution

Ellprc sobvers of benchmark problems for stresrmuise-uriform snd nonuniform, steady and unsteady

Magaecolydrodynamic flaws magnetohydrodynamic flows in ducts, and for thermal convection in baves of various

Flow nstabliy aspect ratios. Computationsl efficiency of the method in comparison o the existing ones is

Wall conductivity demonstrated.

Thermal convecion © 2022 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamic (MHD) flows of liquid metals and other strongly electrically conducting fluids are found in tradi-
tional and emerging technologies, such as casting and remelting of steel and aluminum [1], growth of semiconductor crystals
21, or liquid-metal blankets and divertors conceptualized for future nuclear fusion reactors [3]. A steady magnetic field is
either purposely imposed to control the flow, as. eg. in casting of metals and growth of crystals, or required by techno-
fogical needs unrelated to the flow as in fusion reactors. In practically all such systems, perturbations of the magnetic field
caused by motion of the fluid are weak in comparison to the imposed magnetic field. The problem can be simplified by ne-
glecting the perturbations in the expressions of the Ohn's law and Lorentz force. Derivation and discussion of applicability
of this quasi-static (inductionless) approximation can be found, e.g. in [4]. Another commonly valid approximation is that
of modeling the liquid metal as an incompressible (or Boussinesq in systems with thermal convection) constant-property

Despite being simpler than the full MHD model, the quasi-static approximation presents significant and yet not fully
answered challenges to computational analysis. The main reason is the profound transformation of the flow caused by the
magnetic field. Mechanisms of the transformation and its types are discussed in literature (see, c:5. the recent reviews |5-
8]). Here we only st the main features: suppression of turbulent velocity fluctuations, development of thin MHD boundary
and internal shear layers, and transformaticn of a flow into an anisotropic state, in which gradients of flow variables along
the magnetic field lines are reduced. If the effect of the magnetic field is strong, i.e., the Hartmann Ha and Stuart N numbers

* Conesponding author.
.

. (D. Kasenon)

bupsfdoiorg/1 01016 1734
00219091/ 2022 Elevier Inc. Al sghts reserved.




Outlook & Possible next steps

* Convection at low Pr: exploring broader parameter space and longer
statistics (time-evolution)

* Extension of the tensor-product approach to solve problems with finite
thermal wall-conductivity — conjugate heat transport “made easy”

* It would be interesting to explore application of practical algorithms of
fast matrix multiplication possibly utilizing the symmetry properties of
the transform matrices to achieve scaling better than O(n3)

Thanks a lot for your attention!
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