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0. Mathematical Background
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Hanoi graphs with base p ∈ N3 and exponent n ∈ N0

[p]0 = {0, . . . , p− 1}, [n] = {1, . . . , n},

V
(
Hn

p

)
= {sn . . . s1 | sd ∈ [p]0, d ∈ [n]} ∼= [p]n0 ,

E
(
Hn

p

)
=
{
{sis, sjs} | {i, j} ∈

(
[p]0
2

)
, d ∈ [n], s ∈ ([p]0 \ {i, j})d−1

}

Hanoi graphs Hn
3

n = 0 n = 1 n = 2 n = 3

d3(0
n, 1n) = ε3(0

n) = diam(Hn
3 ) = 2n − 1



R. S. Schmid, 2010

H3
4



H4
4

C. Petr, 2013

|Hn
p | = pn, ∥Hn

p ∥ =
p(p− 1)

4
(pn − (p− 2)n)



2n−1
(1)
≤ dp(0

n, 1n)
(2)
≤ εp(0

n)
(3)
≤ diam(Hn

p )
(4)
≤ 2n−1

1. with “=” iff 1 ≤ n < p

2. with “=” expected, but Korf’s phenomenon (2004):

ex(n) := ε4(0
n)−d4(0

n, 1n) = 1 > 0 for n = 15

3. no case of “<” known; in particular,

EX(n) := diam(Hn
4 )−d4(0

n, 1n) = ex(n) so far

4. with “=” iff p = 3 or n ≤ 2



Let ∀n ∈ N0 : FSn
3 = 2n − 1 and for p ∈ N4:

FS0
p = 0, ∀n ∈ N : FSn

p = min
{
2FSm

p + FSn−m
p−1 | m ∈ [n]0

}
.

Frame-Stewart conjecture: dp(0
n, 1n) = FSn

p

confirmed for p = 4: Bousch (2014)

Subtower conjecture: only subtower solutions exist for 0n → 1n if n ≥
(
p
2

)
.

Korf-Felner conjecture: ex(n) > 0 for n ≥ 20.

behavior of ε(Hn
p )/diam(Hn

p )

Dudeney-Stockmeyer conjecture: similar optimal strategy for Tower of Hanoi

variants like the Star Tower of Hanoi; cf. OEIS A291877

Linear Tower of Hanoi for p ≥ 4; cf. OEIS A160002



1. Computational Approach

What the BFS algorithm offers

• distances

• Korf phenomenon

• Frame-Stewart conjecture

• eccentricities (radius, center, diameter, periphery)

• generating all shortest paths

• analyzing movements of the largest or any other disc



BFS and data structures in internal memory

k

k+1

bit vector

visited curLevel nxtLevel

bit vectors or

vertices vectors



Many approaches and limitations to implement BFS (1/2)

• for small p, n using RAM

• limits on 32 bit architectures

• also on 64 bit architectures arrays are limited, but can be splitted into

many pieces

• internal memory enables direct addressing, but is limited

• external memory is usualy file system, by nature sequential



Many approaches and limitations to implement BFS (2/2)

• vertex representation n-tuples, number in p base, 2 bits for each disc

in Hn
4

• unique starting vertices, using representatives of equivalence classes

• sorted non-starting pegs

• Delayed Duplicate Detection (DDD BFS)

• Frontier Search DDD BFS

• DDD without sorting



State representation

0 1 2 3 4

6

4

5 3

2

1

r=(0,2,0,3,3,3)

p=5, n=6

(10)

(2)



Current implementation limits
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1: procedure DDD BFS(G, r)

2: G graph

3: r root vertex {r ∈ V (G)}

4: level← −1; nxtLevel← {r}

5: while nxtLevel ̸= {}

6: level← level + 1

7: curLevel← nxtLevel; nxtLevel← {}

8: for u ∈ curLevel do

9: for v ∈ N(u) do

10: put vertex v into nxtLevel

11: end for

12: end for

13: nxtLevel← sortUnique(nxtLevel)

14: nxtLevel← nxtLevel − curLevel

15: end while

16: end procedure



Splitting level states

{ {
p pegs

n discs

k largest discs:

n-k smallest discs:

level l

level l+1

Distribution of k largest discs defines hash function for 
splitting large set of states into many smaller separate files.

level l

level l+1

{

{

requires bit array of size p     per workern-k

at most p  files per levelk



Generating next tree level

} level l

}} generate neighbour
candidates

}
}} purge candidates

sort files
by size

level l+1

sort files
by size

parallel 
workers

parallel 
workers



Some implementation details

• all file I/O operations are buffered (4 KB)

• we keep information about existence of all files also for programmatic later removal,

since the cost of querying the file system is high

• workers are appending data concurrently into the same files, atomicity of operation

fwrite is assurred on GPFS

• we have structured directories on the file system preventing too many files in the

same directory

• since we have tasks of uneven size, we first sort them by size and then push them

from largest to smallest using the “producer-consumer scheme”; this way the load

per workers-consumers becomes quite even and consequently we have minimized

wait time before MPI Barrier



Graph growth from a perfect state in Hn
4 , n ≤ 26

To store the largest level 565 of the graph H26
4 we needed approx. 330 TB of space on

GPFS. The algorithm needs two consecutive levels at the same time.



Equivalence of states

Two states are considered to be equivalent if one state emanates from the other by

a permutation of the pegs:

s ∼ s′ :⇔ ∃σ ∈ Sp : σ ◦ s = s′,

where σ ◦ s := σ(sn) . . . σ(s1).

A formula for the number of equivalence classes (also called equi-sets) of states on

Hn
p depending on p and n can be derived using Burnside’s Lemma.

|V (Hn
p )/ ∼ | =

1

p!

p∑
q=1

(
p

q

)
qn(p− q)¡ =

p∑
q=0

qn
(p− q)¡

q!(p− q)!

where

k¡ := k!
k∑

j=0

(−1)j

j!

is the subfactorial of k, representing the number of derangements on [k].



Generating representatives of equivalence classes of H4
3

K.A.M. Götz (2008)

0

00 01

000 001 010 011 012

0000 0001 0010 0011 0012 0100 0101 0102 0110 0111 0112 0120 0121 0122

In each level a new disc is added to all already occupied pegs and to the

first empty peg.



Computing diam(Hn
4 )

n
np

Since the diameter is the maximal eccentricity, one should compute the

eccentricity (i.e. span a tree) for one representative of each equivalence

class. Luckily we have a method to reduce the search space.



Reducing the search space

root vertex 

maximal
known
eccentricity

vertices that can 
be removed from 
further search 

max - 

max - 



Reductions of the search space through sequential batches of spans in Hn
4 using jobs farming.

We have executed (8642, 9028, 14332, 57880) spans grouped into (9, 10, 46, 97) batches.



2. Results and Outlook

Frame-Stewart conjecture has been confirmed for

p = 5 and n ≤ 20, p = 6 and n ≤ 16, p = 7 and n ≤ 21.

Subtower conjecture has been confirmed for p ≤ 7 and n ≤
(
p
2

)
.

Korf-Felner conjecture has been confirmed for n ≤ 26:

n 13 14 15 16 17 18 19 20 21 22 23 24 25 26

d4(0
n, 3n) 97 113 129 161 193 225 257 289 321 385 449 513 577 641

ε4(0
n) 97 113 130 161 193 225 257 294 341 394 453 516 585 669

ex(n) 0 0 1 0 0 0 0 5 20 9 4 3 8 28

EX(n) 0 0 1 0 0 0 0 ≥ 5 ≥ 20 ≥ 9 ≥ 4 ≥ 3 ≥ 8 ≥ 28

No Korf phenomenon detected for p > 4 and accessible n.
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Variations of the Tower of Hanoi

Star Tower of Hanoi Hn
K1,3

: A291877(n) = dK1,3(0
n, 1n) (with B. Lužar)

n 16 17 18 19 20 21 22

dK1,3(0
n, 1n) 480 579 700 835 1 012 1 201 1 428

Linear Tower of Hanoi Hn
P1+3

: A160002(n) = dP1+3(0
n, 1n)

n 21 22 23

dP1+3(0
n, 1n) 4 377 5 276 6 247

000 030 020 010

003 033 023 013

002 032 022 012

001 031 021 011

300 330 320 310

303 333 323 313

302 332 322 312

301 331 321 311

200 230 220 210

203 233 223 213

202 232 222 212

201 231 221 211

100 130 120 110

103 133 123 113

102 132 122 112

101 131 121 111

H3
P1+3



Cham, 2018

http://www.tohbook.info
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