Eccentricities in Hanoi Graphs (pr87mo) Andreas M. Hinz \& Ciril Petr

LMU München (Germany) \& Univerza v Mariboru (Slovenia) hinz@math.Imu.de \& ciril.petr@gmail.com

SuperMUC-NG Status and Results Workshop, 2023-05-10

(C)A.M.Hinz, 1986

La Tour d’Hanoï (Édouard Lucas, 1883)

0. Mathematical Background

Hanoi graphs with base $p \in \mathbb{N}_{3}$ and exponent $n \in \mathbb{N}_{0}$

$$
\begin{gathered}
{[p]_{0}=\{0, \ldots, p-1\},[n]=\{1, \ldots, n\},} \\
V\left(H_{p}^{n}\right)=\left\{s_{n} \ldots s_{1} \mid s_{d} \in[p]_{0}, d \in[n]\right\} \cong[p]_{0}^{n}, \\
E\left(H_{p}^{n}\right)=\left\{\{\underline{s i s}, \underline{s} j \bar{s}\} \left\lvert\,\{i, j\} \in\binom{\left[p_{0}\right]_{0}}{2}\right., d \in[n], \bar{s} \in\left([p]_{0} \backslash\{i, j\}\right)^{d-1}\right\}
\end{gathered}
$$

Hanoi graphs H_{3}^{n}

$$
\mathrm{d}_{3}\left(0^{n}, 1^{n}\right)=\varepsilon_{3}\left(0^{n}\right)=\operatorname{diam}\left(H_{3}^{n}\right)=2^{n}-1
$$

R. S. Schmid, 2010

$2 n-1 \stackrel{(1)}{\leq} \mathrm{d}_{p}\left(0^{n}, 1^{n}\right) \stackrel{(2)}{\leq} \varepsilon_{p}\left(0^{n}\right) \stackrel{(3)}{\leq} \operatorname{diam}\left(H_{p}^{n}\right) \stackrel{(4)}{\leq} 2^{n}-1$

1. with " $=$ " iff $1 \leq n<p$
2. with " $=$ " expected, but Korf's phenomenon (2004):

$$
\operatorname{ex}(n):=\varepsilon_{4}\left(0^{n}\right)-\mathrm{d}_{4}\left(0^{n}, 1^{n}\right)=1>0 \text { for } n=15
$$

3. no case of " $<$ " known; in particular,

$$
\operatorname{EX}(n):=\operatorname{diam}\left(H_{4}^{n}\right)-\mathrm{d}_{4}\left(0^{n}, 1^{n}\right)=\operatorname{ex}(n) \text { so far }
$$

4. with " $=$ " iff $p=3$ or $n \leq 2$

Let $\forall n \in \mathbb{N}_{0}: F S_{3}^{n}=2^{n}-1$ and for $p \in \mathbb{N}_{4}$:

$$
F S_{p}^{0}=0, \forall n \in \mathbb{N}: F S_{p}^{n}=\min \left\{2 F S_{p}^{m}+F S_{p-1}^{n-m} \mid m \in[n]_{0}\right\}
$$

Frame-Stewart conjecture: $\mathrm{d}_{p}\left(0^{n}, 1^{n}\right)=F S_{p}^{n}$ confirmed for $p=4$: Bousch (2014)

Subtower conjecture: only subtower solutions exist for $0^{n} \rightarrow 1^{n}$ if $n \geq\binom{ p}{2}$.
Korf-Felner conjecture: ex $(n)>0$ for $n \geq 20$.
behavior of $\bar{\varepsilon}\left(H_{p}^{n}\right) / \operatorname{diam}\left(H_{p}^{n}\right)$
Dudeney-Stockmeyer conjecture: similar optimal strategy for Tower of Hanoi variants like the Star Tower of Hanoi; cf. OEIS A291877

Linear Tower of Hanoi for $p \geq 4$; cf. OEIS A160002

1. Computational Approach

What the BFS algorithm offers

- distances
- Korf phenomenon
- Frame-Stewart conjecture
- eccentricities (radius, center, diameter, periphery)
- generating all shortest paths
- analyzing movements of the largest or any other disc

BFS and data structures in internal memory

 visited curLevel nxtLevel
bit vectors or

$$
k+1
$$

Many approaches and limitations to implement BFS (1/2)

- for small p, n using RAM
- limits on 32 bit architectures
- also on 64 bit architectures arrays are limited, but can be splitted into many pieces
- internal memory enables direct addressing, but is limited
- external memory is usualy file system, by nature sequential

Many approaches and limitations to implement BFS (2/2)

- vertex representation n-tuples, number in p base, 2 bits for each disc in H_{4}^{n}
- unique starting vertices, using representatives of equivalence classes
- sorted non-starting pegs
- Delayed Duplicate Detection (DDD BFS)
- Frontier Search DDD BFS
- DDD without sorting

State representation

$$
\begin{aligned}
& p=5, n=6 \\
& r=(0,2,0,3,3,3) \\
& 0 * 5^{\wedge} 5+2 * 5^{\wedge} 4+0 * 5^{\wedge} 3+3 * 5^{\wedge} 2+3 * 5^{\wedge} 1+3 * 5^{\wedge} 0 \\
& 1343_{(10)} \\
& 10100111111_{(2)}
\end{aligned}
$$

Current implementation limits

$$
\mathrm{p}+\log _{2}\left(\mathrm{p}^{\mathrm{n}}\right)>2^{64}
$$

1: procedure $D D D _B F S(G, r)$
G graph
r root vertex $\{r \in V(G)\}$
level $\leftarrow-1 ; n x t$ Level $\leftarrow\{r\}$
while $n x t$ Level $\neq\{ \}$
level \leftarrow level +1
curLevel $\leftarrow n x t$ Level; nxtLevel $\leftarrow\}$
for $u \in$ cur Level do
for $v \in N(u)$ do put vertex v into nxtLevel
end for
end for
$n x t$ Level $\leftarrow \operatorname{sortUnique(nxtLevel)}$
$n x t$ Level $\leftarrow n x t$ Level - cur Level
end while
end procedure

Splitting level states

Generating next tree level

Some implementation details

- all file I/O operations are buffered (4 KB)
- we keep information about existence of all files also for programmatic later removal, since the cost of querying the file system is high
- workers are appending data concurrently into the same files, atomicity of operation fwrite is assurred on GPFS
- we have structured directories on the file system preventing too many files in the same directory
- since we have tasks of uneven size, we first sort them by size and then push them from largest to smallest using the "producer-consumer scheme"; this way the load per workers-consumers becomes quite even and consequently we have minimized wait time before MPI_Barrier

Graph growth from a perfect state in $H_{4}^{n}, n \leq 26$

To store the largest level 565 of the graph H_{4}^{26} we needed approx. 330 TB of space on GPFS. The algorithm needs two consecutive levels at the same time.

Equivalence of states

Two states are considered to be equivalent if one state emanates from the other by a permutation of the pegs:

$$
s \sim s^{\prime}: \Leftrightarrow \exists \sigma \in S_{p}: \sigma \circ s=s^{\prime}
$$

where $\sigma \circ s:=\sigma\left(s_{n}\right) \ldots \sigma\left(s_{1}\right)$.
A formula for the number of equivalence classes (also called equi-sets) of states on H_{p}^{n} depending on p and n can be derived using Burnside's Lemma.

$$
\left|V\left(H_{p}^{n}\right) / \sim\right|=\frac{1}{p!} \sum_{q=1}^{p}\binom{p}{q} q^{n}(p-q) \mathbf{i}=\sum_{q=0}^{p} q^{n} \frac{(p-q) \mathbf{i}}{q!(p-q)!}
$$

where

$$
k i:=k!\sum_{j=0}^{k} \frac{(-1)^{j}}{j!}
$$

is the subfactorial of k, representing the number of derangements on $[k]$.

Generating representatives of equivalence classes of H_{3}^{4}

K.A.M. Götz (2008)

In each level a new disc is added to all already occupied pegs and to the first empty peg.

Computing $\operatorname{diam}\left(H_{4}^{n}\right)$

n	p^{n}	equi sets
1	4	1
2	16	2
3	64	5
4	256	15
5	1024	51
6	4096	187
7	16384	715
8	65536	2795
9	262144	11051
10	1048576	43947
11	4194304	175275
12	16777216	700075
13	67108864	2798251
14	268435456	11188907
15	1073741824	44747435
16	4294967296	178973355
17	17179869184	715860651
18	68719476736	2863377067
19	274877906944	11453377195
20	1099511627776	45813246635

Since the diameter is the maximal eccentricity, one should compute the eccentricity (i.e. span a tree) for one representative of each equivalence class. Luckily we have a method to reduce the search space.

Reducing the search space

Reductions of the search space through sequential batches of spans in H_{4}^{n} using jobs farming.

We have executed $(8642,9028,14332,57880)$ spans grouped into $(9,10,46,97)$ batches.

2. Results and Outlook

Frame-Stewart conjecture has been confirmed for

$$
p=5 \text { and } n \leq 20, p=6 \text { and } n \leq 16, p=7 \text { and } n \leq 21 .
$$

Subtower conjecture has been confirmed for $p \leq 7$ and $n \leq\binom{ p}{2}$.
Korf-Felner conjecture has been confirmed for $n \leq 26$:

n	13	14	15	16	17	18	19	20	21	22	23	24	25	26
$\mathrm{~d}_{4}\left(0^{n}, 3^{n}\right)$	97	113	129	161	193	225	257	289	321	385	449	513	577	641
$\varepsilon_{4}\left(0^{n}\right)$	97	113	$\mathbf{1 3 0}$	161	193	225	257	$\mathbf{2 9 4}$	$\mathbf{3 4 1}$	$\mathbf{3 9 4}$	$\mathbf{4 5 3}$	$\mathbf{5 1 6}$	$\mathbf{5 8 5}$	$\mathbf{6 6 9}$
$\operatorname{ex}(n)$	0	0	$\mathbf{1}$	0	0	0	0	$\mathbf{5}$	$\mathbf{2 0}$	$\mathbf{9}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{8}$	$\mathbf{2 8}$
$\operatorname{EX}(n)$	0	0	1	0	0	0	0	≥ 5	≥ 20	≥ 9	≥ 4	≥ 3	≥ 8	≥ 28

No Korf phenomenon detected for $p>4$ and accessible n.

Variations of the Tower of Hanoi
Star Tower of Hanoi $H_{K_{1,3}}^{n}$: $\operatorname{A} 291877(n)=\mathrm{d}_{K_{1,3}}\left(0^{n}, 1^{n}\right)$ (with B. Lužar)

n	16	17	18	19	20	21	22
$\mathrm{~d}_{K_{1,3}}\left(0^{n}, 1^{n}\right)$	480	579	700	835	1012	1201	1428

Linear Tower of Hanoi $H_{P_{1+3}}^{n}: \operatorname{A160002}(n)=\mathrm{d}_{P_{1+3}}\left(0^{n}, 1^{n}\right)$

n	21	22	23
$\mathrm{~d}_{P_{1+3}}\left(0^{n}, 1^{n}\right)$	4377	5276	$\mathbf{6 2 4 7}$

The Tower of Hanoi Myths and Maths

Second Edition
http://www.tohbook.info

Further reading:

Bousch, T., La quatrième tour de Hanoï, Bull. Belg. Math. Soc. Simon Stevin 21 (2014) 895-912.
Hinz, A. M., Lužar, B., Petr, C. The Dudeney-Stockmeyer Conjecture, Discrete Appl. Math. 319 (2022) 19-26.

Hinz, A. M., Movarraei, N., The Hanoi Graph H_{4}^{3}, Discuss. Math. Graph Theory 40 (2020) 1095-1109. Hinz, A. M., Petr, C., Computational Solution of an Old Tower of Hanoi Problem, Electron. Notes Discrete Math. 53 (2016) 445-458.

Korf, R. E., Best-First Frontier Search with Delayed Duplicate Detection, in: Nineteenth National Conference on Artificial Intelligence, The MIT Press, Cambridge MA, 2004, 650-657.

Korf, R. E., Finding the Exact Diameter of a Graph with Partial Breadth-First Searches, in: Proceedings of the Fourteenth International Symposium on Combinatorial Search, AAAI Press, 2021, 73-78.

Korf, R. E., Felner, A., Recent Progress in Heuristic Search: A Case Study of the Four-Peg Towers of Hanoi Problem, in: M. M. Veloso (ed.), Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, AAAI Press, Menlo Park CA, 2007, 2324-2329.

Stockmeyer, P. K., Variations on the four-post Tower of Hanoi puzzle, Congr. Numer. 102 (1994) 3-12.

