

Lewis number and pressure effects on weakly turbulent premixed Bunsen flames – Direct Numerical Simulation studies

<u>M. Klein</u>¹, N. Chakraborty, M. Pfitzner, R. Rasool, I. Boxx, S. Hochgreb, O. Chaib, M. Herbert and many more

¹ Fakultät für Luft- und Raumfahrttechnik Universität der Bundeswehr München, Munich, Germany

Email: markus.klein@unibw.de

Outline

- Motivation
- Challenges
- Mathematical background
- Overview of work conducted
- DNS of lab scale Bunsen burner
- Results

Motivation

Challenges

- Resolution requirements increase with increasing pressure:
 - For hydrocarbon-air flames: $S_L \sim p^{-0.5}$, $\nu \sim p^{-1}$
 - Fixed burner geometry; if $l, u'/S_L = const \Rightarrow Re_t \sim p^{0.5}$
 - Furthermore, $\delta_L = D/S_L^0 \sim p^{-0.5}$
 - Fixed geometric dimensions \rightarrow realistic scale separation
 - p = 1bar $\rightarrow 20$ bar computational extra cost: $(20^{0.5})^4 = 400$
- Evaluation of turbulent flame speed requires long integration times $S_T = \frac{1}{\rho_u A_L} \int_V \dot{\omega_c} \, dV$
- Modelling requires parametric studies: $P, Le, \frac{u'}{S_L}, \frac{l}{\delta_{th}}, \dots$
- DNS of lab scale burner

In this work we use (mostly) simple chemistry (SC) DNS because

- it would be nearly impossible to use detailed chemistry transport for this large parametric study including elevated pressures
- it would have a tremendous carbon footprint (ten thousands kg CO₂)
- results from detailed chemistry can be ambiguous due to different choices of reaction progress variable
- analysis does neither involve emissions nor ignition
- flame propagation and turbulence chemistry interaction can be captured with SC
- there is no correct model for chemistry and transport but different levels of approximation

Mathematical Background

- 3D compressible DNS code with
- Single step irreversible Arrhenius type chemistry
- 10th order special discretization dropping to one sided 2nd order
- Third order low-storage Runge-Kutta scheme
- Very efficient variant of digital filter based synthetic inflow
- Hyperbolic-tangent like mean velocity profile
- Partially non-reflecting outflow everywhere else (NSCBC)
- Viscosity & Arrhenius parameters such that: $S_L \sim p^{-0.5}$, $v_u \sim p^{-1}$

Overview of work conducted

DNS of lab scale Bunsen burner

- Database consists of three atmospheric Bunsen flames
- Varying H_2 content in CH_4 (by volume)
- Low turbulence intensity to focus on flame instabilities

Case	φ	$H_{2}[\%]$	$U_0\left[m/s ight]$	$S_L[m/s]$	$T_{ad} [K]$	$\delta_{th}[mm]$
Α	1.0	0	2.13	0.3654	2229	0.4063
В	0.8	40	2.18	0.3665	2026	0.4112
С	0.65	70	2.12	0.3456	1818	0.4474

U _b	<i>u'</i>	lo	D	u'/S_L	l_0/D	
2.12 m/s	0.25 <i>m/s</i>	3mm	15 <i>mm</i>	0.68	1/5	
Re		Ret	Da		Ка	
1838 – 1	.987 40.8	9 - 46.57	9.83 - 10	0.82 0	0.21 - 0.22	

Grid: 750 \times 750 \times 750 , $\delta_{th}/\Delta x$ > 9, $\Delta x/\eta$ > 0.4

May 2023

There are different ways to determine an effective Lewis number

Following Bechthold & Matalon (for lean mixtures):

$$Le_{eff} = 1 + \frac{(Le_F - 1) + (Le_0 - 1)A}{1 + A} \qquad A = 1 + \beta \left(\frac{1}{\phi} - 1\right)$$

Weak sensitivity to Zel'dovich number β . Here $\beta = 6$ from experiment.

For the fuel Lewis number among different options we use the formula by Dinkelacker et al.

$$\frac{1}{Le_F} = \frac{x_{CH_4}}{Le_{CH_4}} + \frac{x_{H_2}}{Le_{H_2}}$$

Case	ϕ	Le_{CH_4}	Le_{H_2}	Le_{O_2}	Le_F	Le _{eff}	DNS
Α	1.0	0.96	0.29	1.11	0.96	1.04	1.0
В	0.8	1.08	0.32	1.24	0.55	0.75	0.8
С	0.65	1.21	0.34	1.36	0.44	0.61	0.6

Instantaneous snapshots of flame contours

May 2023

Mean flame contours

May 2023

Turbulent flame wrinkling, flame speed, Damköhler's hypothesis

Conclusions & Outlook

- A large DNS database has been generated including variations
 - of u'/S_L , l/δ_{th} , P , Le
 - flame geometry
 - description of chemistry and transport (DC vs. SC)
- The data has been used by many researchers for understanding the physics and modelling the physics in the context of LES and RANS
- Simple chemistry with suitable Arrhenius parameters captures the flame propagation very well in comparison to experiment
- Quantitative comparison btw. experiment and simulation remains challenging because of different resolution and nature of data

Acknowledgement

- Project pn69ga started 2018 and received one extension
- Many contributors: N. Chakraborty, M. Pfitzner, R.S. Cant, U. Ahmed, C. Dopazo, F.B. Keil, H. Nachtigal, D. Alwazzan, M. Hansinger, A. Alqallaf, R. Rasool, V. Mohan, M. Herbert, I. Boxx, S. Hochgreb, O. Chaib
- More than 15 journal contributions, several conference papers
- 6 student theses
- Workshop on high pressure turbulent combustion (HPTC)
- Special issue in Combustion Science and Technology on HPTC

Thanks to LRZ !