
1

Best Practice Guide - Parallel I/O
Sandra Mendez, LRZ, Germany

Sebastian Lührs, FZJ, Germany

Dominic Sloan-Murphy (Editor), EPCC, United Kingdom

Andrew Turner (Editor), EPCC, United Kingdom

Volker Weinberg (Editor), LRZ, Germany
Version 2.0 by 07-02-2019

Best Practice Guide - Parallel I/O

2

Table of Contents
1. Introduction .. 4

1.1. About this Document .. 4
1.2. Guide Structure .. 4

2. High Performance I/O Systems .. 5
2.1. Introduction ... 5
2.2. I/O Strategies in Parallel Applications .. 5

2.2.1. Serial I/O .. 6
2.2.2. Parallel I/O ... 6

2.3. The I/O Software Stack ... 8
2.3.1. Low-level: POSIX .. 8
2.3.2. Middle-level: MPI-IO .. 8
2.3.3. High level I/O software ... 9

2.4. General Pointers for Efficient I/O .. 9
3. Parallel File Systems .. 10

3.1. Introduction .. 10
3.2. Lustre ... 10

3.2.1. Lustre File Layout (Striping) .. 11
3.2.2. Choosing a stripe count ... 11
3.2.3. Choosing a stripe_size ... 12

3.3. IBM Spectrum Scale (formerly GPFS) .. 12
3.3.1. Block size ... 13

3.4. BeeGFS (formerly FhGFS) ... 13
3.5. Object Storage .. 14

4. MPI-IO .. 15
4.1. Introduction .. 15

4.1.1. MPI-IO data access operations .. 16
4.1.2. General Hints ... 16

4.2. Manipulating Files in MPI .. 16
4.2.1. Opening a File ... 17

4.3. File View .. 17
4.4. ROMIO optimisation ... 18
4.5. Setting Hints for MPI-IO .. 19
4.6. MPI-IO General Considerations ... 19

5. File Per Process .. 21
5.1. Introduction .. 21
5.2. File Per Process vs. Shared File ... 21
5.3. Optimising File Per Process .. 22
5.4. Sample Performance Data ... 22

6. High-Level I/O Libraries ... 24
6.1. Introduction .. 24
6.2. NetCDF ... 24

6.2.1. Architecture of NetCDF APIs and Libraries ... 24
6.2.2. Parallel I/O with netCDF ... 25

6.3. HDF5 .. 26
6.3.1. HDF5 Design ... 26
6.3.2. HDF5 File Organization and Data Model .. 27
6.3.3. Selecting a Portion of a Dataspace ... 27
6.3.4. Chunking in HDF5 ... 28
6.3.5. Parallel HDF5 .. 29
6.3.6. Parallel HDF5 Example ... 30

6.4. pNetCDF ... 31
6.5. SIONLib .. 32

6.5.1. SIONLib file format .. 32
6.5.2. SIONLib API and utilities .. 32

6.6. Touching on Low-level I/O: POSIX, C and Fortran File Manipulation 33

Best Practice Guide - Parallel I/O

3

6.6.1. POSIX and the C Standard Library .. 33
6.6.2. Fortran Files .. 35

6.7. I/O Libraries Summary .. 38
7. I/O Performance Analysis ... 39

7.1. Introduction .. 39
7.2. Darshan Tool ... 39
7.3. Darshan Runtime .. 39

7.3.1. Using the Darshan Runtime .. 40
7.4. Darshan Util ... 41

7.4.1. Darshan Plots: FLASH-IO Benchmark .. 41
7.5. Vampir .. 44

7.5.1. Using Vampir .. 45
7.6. MPI-IO Reporting with Cray MPICH ... 52

Further documentation ... 54

Best Practice Guide - Parallel I/O

4

1. Introduction

1.1. About this Document
This best practice guide provides information about High Performance I/O systems, parallel I/O APIs and I/O
optimisation techniques. The guide presents a description of the storage architecture and the I/O software stack.

1.2. Guide Structure
The best practice guide is split into chapters covering specific topics. These chapters are described in more detail
below.

Introduction This chapter! Describes the guide and its structure.

High Performance I/O Systems Covers the basic concepts of parallel I/O in HPC, including: general parallel
I/O strategies (e.g. shared files, file per process), parallel file systems, the
parallel I/O software stack and potential performance bottlenecks.

Parallel File Systems Describes the major parallel file systems in use on HPC systems: Lustre
and Spectrum Scale/GPFS. An overview is given of BeeGFS, a file system
gaining popularity, and object storage, a data storage method which is not
based on files.

MPI-IO Brief introduction to MPI-IO with links to further, detailed information
along with tips on how to get best performace out of the MPI-IO library on
parallel file systems.

File per process Describes the file per process model for parallel I/O along with performance
considerations.

High-level parallel I/O libraries Covers the use of high-level libraries (HDF5, NetCDF, pNetCDF, SIONlib)
and considerations for getting best peformance.

Parallel I/O performance analysis Information on how to gather performance data on your use of I/O. Covers
general advice along with the built-in options for MPI-IO and tools such
as Darshan and Vampir.

Best Practice Guide - Parallel I/O

5

2. High Performance I/O Systems

2.1. Introduction

Current HPC facilities are composed of thousands of compute nodes, high performance networking infrastructures,
and parallel I/O environments capable of scaling to terabytes/second of I/O bandwidth while providing tens of
petabytes of capacity. In HPC systems, the I/O is a subsystem composed by software and hardware as can be
seen in Figure 1, “Typical High Performance I/O System” . The I/O software stack includes the I/O libraries, file
system and some operating system utilities. The I/O hardware, also known as I/O infrastructure, is composed of
the storage network, storage nodes, I/O nodes and the I/O devices. In most cases the available I/O resources for
a single application scale together with the amount of reserved compute resources. However their efficient usage
depend on the individual application implementation.

The performance of many research applications is limited by the I/O system. Infrastructure under-utilisation or
performance bottlenecks can be related to the I/O software stack and its interaction with the application I/O pat-
terns. Efficient use of I/O on HPC systems requires an understanding of how parallel I/O functions work (in both
software and hardware) so that the correct decisions can be made to extract best performance.

Figure 1. Typical High Performance I/O System

2.2. I/O Strategies in Parallel Applications

Parallel applications usually perform I/O in both serial and parallel. We briefly describe serial I/O below but the
remainder of this guide will concentrate on parallel I/O.

Best Practice Guide - Parallel I/O

6

2.2.1. Serial I/O

Figure 2. Typical serial I/O in parallel applications

In serial I/O (see Figure 2, “Typical serial I/O in parallel applications”), a single process accesses a single file.
As all of the data must flow to a single process, the bandwidth is generally limited by the amount of data that can
be passed from the I/O system to a single client (usually a single compute node) leading to low I/O performance.
Serial I/O operations should be limited to small data volume access performed infrequently.

2.2.2. Parallel I/O

In essence, a file is simply a stream of bytes so a user may have to substantially rearrange their program data
before writing it to disk. For example, if a weather model has three main arrays storing air velocity, pressure and
temperature then it might make sense for all values for a particular grid point to be stored together in memory
within the application (e.g. for performance reasons). However, in the file it might be preferable for the velocities
for all gridpoints to be stored in sequence, then all the pressure values then the temperatures (e.g. to help in post-
processing). The problem in parallel is that data rearrangement is almost always required if the parallel code should
produce the same file as the serial one. For example, in a general domain decomposition parallel tasks do not own
a single contiguous chunk of the global data set. Even in a simple 2D decomposition, the local data comes from
many different locations in the file, with each local row coming from a different place.

This rearrangement implies communication between tasks during the IO phases, often in a new pattern that is not
used within the computational phases. There are a number of ways to simplify this communication pattern which
leads to four common I/O strategies. Here we concentrate on the case of writing data: HPC codes typically write
much more data than they read, and also writing is a more complicated operation in parallel than reading.

File per process (Multiple files,
multiple writers)

The simplest approach is to avoid the data rearrangement completely, with
each task writing its data to a different file. In practice this does not avoid
the issue, but simply delays it to a later time: subsequent post-processing or
analysis programs will almost certainly have to access multiple files to read
the data they require. For very large core counts (>10,000) this scheme starts
to run up against technological limits in parallel file systems (particularly
in metadata operations) and this limits the scaling of this approach at this
scale.

Figure 3. File per process approach to parallel I/O

Best Practice Guide - Parallel I/O

7

Single file, single writer This is the other extreme, where a single master task coordinates the data
rearrangement, e.g. receiving rows from many tasks and reconstructing the
global data set prior to writing it out. This pattern is also called Master I/O.
Normally a single process cannot benefit from the total available bandwidth
and such an access scheme is also limited by the memory capabilities of the
single master process. Larger chunks of data might be transferred step by
step which serialises the write process even more.

Single file, multiple writers Here the data rearrangement is achieved by each task writing its data di-
rectly to the correct place in the file, e.g each individual row is written to a
different location. Although this does not involve transfer of data between
tasks, the tasks will still have to communicate to avoid their writes clashing
with each other if there are overlapps between the individual data chunks.

Figure 4. Single file, multiple writers approach to parallel
I/O

Single file, collective writers This sits between the two approaches above, where either one or all of the
parallel tasks perform I/O; here we identify a subset of tasks to perform the
I/O operations. These I/O tasks must communicate with the computational
tasks to receive and rearrange the data, and must coordinate with each other
to avoid I/O clashes.

This technique can also be implemented using an I/O server approach where
a subset of the processes in the application are specialised to handle parallel
I/O operations. This allows the I/O to potentially proceed asynchronously to
the rest of the application and enable more efficient use of HPC resources.

Figure 5. Single file, collective writers approach to parallel
I/O

Note that, other than “multiple files, multiple writers”, all these methods should produce identical output to each
other on any number of processors. However, they may have very different performance characteristics. The
“multiple files, multiple writers” scheme creates a local process related data view (in comparision of the global
data view for all other schemes).

Best Practice Guide - Parallel I/O

8

2.3. The I/O Software Stack

Figure 6. The I/O Software Stack

The I/O software stack provides users and administrators with application programming interfaces (APIs) that al-
low them to use the hardware in a common way without worrying about the specific hardware technology. Parallel
I/O libraries provide APIs that enable parallel access to a single or several files. Unlike the parallel versions, serial
I/O libraries (such as those that provide the basic file operations in high-level programming languages: C/C++,
Fortran, Python) do not usually offer specific APIs for parallel access.

2.3.1. Low-level: POSIX

The lowest level in the software stack we find is the POSIX interface, which refers to file operations such as open,
close, read, write, stat and so on. POSIX HPC extensions were designed to improve performance of POSIX on
large-scale HPC environments where the requirement for performance usually outweighs consistency considera-
tions. For example, it often relaxes the rather strict POSIX consistency semantics [1] . In general most other APIs
are build on top of POSIX and POSIX approaches are often used in context of task local file access.

At the lowest level is the file system software itself which manages access to the hardware resources and imple-
ments the functions required by the POSIX API. File systems have two key roles: i) Organising and maintaining
the file name space and; ii) storing contents of files and their attributes.

On HPC facilities, we usually find networked file systems (NFS) and parallel file systems. Networked file systems
must solve two problems: 1) File servers coordinate sharing of their data by many clients and 2) Scale-out storage
systems coordinate actions of many servers. We will not consider NFS further in this document as they generally
only use limited levels of parallelism (in the form of RAID configurations), so do not have the ability to provide
high performance when using parallel I/O strategies in HPC. Generally NFS is not used for reading/writing data
during large parallel calculations for this reason. Parallel file systems (usually) distribute single file data across
multiple servers and provide for concurrent access to single files by multiple tasks of a parallel application. They
have the potential to provide high levels of read/write bandwidth to single files by parallelising the access across
multiple I/O streams.

We look at parallel file systems in the next chapter of this guide, Chapter 3.

2.3.2. Middle-level: MPI-IO

On HPC systems the middle level in the I/O software stack is dominated by MPI-IO. By using MPI-IO, it is
possible to apply optimisation techniques such as collective buffering and data sieving. ROMIO [12] is the most
common implementation of the MPI-IO standard and it is used in MPI distributions such as MPICH (which also
covers Cray MPT and HPE MTP), MVAPICH, IBM PE and Intel MPI.

Best Practice Guide - Parallel I/O

9

MPI-IO is discussed in more detail in Chapter 4.

2.3.3. High level I/O software

The highest level in I/O software stack (See Figure 6, “The I/O Software Stack”) presents the high-level libraries.
These are APIs that help to express scientific simulation data in a more natural way such as multi-dimensional data,
labels and tags, non-contiguous data and typed data. Parallel versions sit on top of the MPI-IO layer and can use
MPI-IO optimisations. High-level libraries provide simplicity for visualisation and analysis; and portable formats.
HDF5 [7] and NetCDF [8] are the most popular high level libraries. Over the last years PnetCDF [9] and ADIOS
[10] have also been selected by HPC users to perform parallel I/O. Another library that is gaining popularity is
SIONLib [11] , a scalable I/O library for parallel access to task-local files. The library not only supports writing
and reading binary data to or from several thousands of processors into a single or a small number of physical files
but also provides global open and close functions to access SIONlib file formats in parallel.

These high-level libraries are described in more detail in Chapter 6.

All of the libraries and interfaces described above implement parallel I/O using a shared file approach with multiple
processes writing to the same logical file (some approaches also allow to use multiple physical files, which are
treated together as one logical file). An alternative approach is to use the standard programming language I/O
interfaces can be used to implement a file per process model of parallel I/O where every parallel process writes its
own file. This approach has its own advantages and disadvantages and is described in more detail in Chapter 5.

2.4. General Pointers for Efficient I/O
A few "rules of thumb" are given below to consider when running or designing I/O-intensive applications on HPC
systems.

• Avoid unnecessary I/O. For example, switch off debug output for production runs.

• Perform I/O in few and large chunks. In parallel file systems, the chunk size should be a multiple of the block
size or stripe size.

• Prefer binary/unformatted I/O instead of formatted data.

• Avoid unnecessary/large-scale open/close statements. Remember that metadata operations are latency bound.

• Use an appropriate file system. Parallel file systems may not scale well for metadata operations, but provide
high/scalable bandwidth. NFS-based file systems may show the reversed behaviour.

• Avoid explicit flushes of data to disk, except when needed for consistency reasons.

• Use specialised I/O libraries based on the I/O requirements of your applications. These provide more portable
way of writing data and may reduce metadata load when properly used.

• Convert to target / visualisation format in memory if possible.

• For parallel programs, a file-per-process strategy can provide high throughput, but usually needs a further post-
processing stage to collate the outputs.

Best Practice Guide - Parallel I/O

10

3. Parallel File Systems

3.1. Introduction
Parallel file systems provide high-performance I/O when multiple clients (a "client" usually meaning a compute
node, in this instance) share the same file system. The ability to scale capacity and performance is an important
characteristic of a parallel file system implementation. Striping is the basic mechanism used in parallel file systems
for improving performance, where file data is split up and written across multiple I/O servers. Primarily, striping
allows multiple servers, disks, network links to be leveraged during concurrent I/O operations, thus increasing
available bandwidth. The most popular parallel file systems on HPC platforms are Lustre and IBM Spectrum Scale
(formerly GPFS) [1] and form the focus of this chapter. A brief overview is given of BeeGFS, a file system gaining
popularity, and object storage, a data storage method which is not based on files.

3.2. Lustre

Figure 7. Lustre cluster at scale

Lustre is a Linux file system implemented entirely in the kernel and provides a POSIX standards-compliant file
system interface. Its architecture is founded upon distributed object-based storage. This delegates block storage
management to its back-end servers and eliminates significant scaling and performance issues associated with the
consistent management of distributed block storage metadata.

Lustre file systems are typically optimised for high bandwidth: they work best with a small number of large,
contiguous I/O requests rather than a large number of small ones (i.e. small numbers of large files rather than
large numbers of small files).

A Lustre file system consists of the following components:

• Metadata Servers (MDS) : The MDS makes metadata stored in one or more Metadata Targets (MDTs) avail-
able to Lustre clients. Each MDS manages the names and directories in the Lustre file system(s) and provides
network request handling for one or more local MDTs. Operations such as opening and closing a file can require
dedicated access to the MDS and it can become a serial bottleneck in some circumstances.

Best Practice Guide - Parallel I/O

11

• Metadata Targets (MDT) : For Lustre software release 2.3 and earlier, each file system has one MDT; multiple
MDTs are supported on later versions. The MDT stores metadata (such as filenames, directories, permissions
and file layout) on storage attached to an MDS. An MDT on a shared storage target can be available to multiple
MDSs, although only one can access it at a time. If an active MDS fails, a standby MDS can serve the MDT
and make it available to clients. This is referred to as MDS failover.

• Object Storage Servers (OSS) : The OSS provides file I/O service and network request handling for one or
more local Object Storage Targets (OSTs). Typically, an OSS serves between two and eight OSTs, up to 16 TB
each. A typical Lustre configuration consists of an MDT on a dedicated node, two or more OSTs on each OSS
node, and a client on each of a large number of compute nodes.

• Object Storage Target (OST) : User file data is stored in one or more objects, each object on a separate OST in
a Lustre file system. Each OST can write data at around 500 MB/s. You can think of an OST as being equivalent
to a disk, although in practice it may comprise multiple disks, e.g. in a RAID array. An individual file can be
stored across multiple OSTs; this is called striping. The default is dependent on the particular system (1 is a
common choice), although this can be changed by the user to optimize performance for a given workload.

• Lustre clients : Lustre clients are compute, visualisation or login nodes that are running Lustre client software,
allowing them to mount the Lustre file system. Good performance is achieved when multiple clients (usually
compute nodes for HPC calculations) simultaneously access the file system.

3.2.1. Lustre File Layout (Striping)

Lustre file systems have the ability to stripe data across multiple OSTs in a round-robin fashion. Users can option-
ally configure for each file the number of stripes, stripe size, and OSTs that are used. Although these parameters
can be set on a per-file basis they are usually set on directory where your output files will be written so that all
output files inherit the same settings. The stripe_size indicates how much data to write to one OST before mov-
ing to the next OST. The stripe_count indicates how many OSTs to use. The default values for stripe_count and
stripe_size are system dependent but are often 1 and 1 MiB respectively.

You can use the lfs getstripe command to see the layout of a specific file:

 >lfs getstripe reads2.fastq
 reads2.fastq
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 42
 obdidx objid objid group
 42 37138823 0x236b187
 0

In this case, the file reads2.fastq has a single stripe of size 1 MiB (1048576 bytes). To change the layout of specific
directory (or file) we can use the lfs setstripe command. (Note that this command will not repartition the
data on existing files but will ensure that new files created within the directory use the updated settings.)

 >lfs setstripe -c -1 results_dir/

In the example, we set the stripe count to -1 (maximal striping) to make the largest potential bandwidth available
to new files in this directory.

3.2.2. Choosing a stripe count

The stripe count sets the number of OSTs (Object Storage Targets) that Lustre stripes the file across. In theory,
the larger the number of stripes, the more parallel write performance is available. However, large stripe counts for
small files can be detrimental to performance as there is an overhead in using more stripes.

Best Practice Guide - Parallel I/O

12

The stripe count has the largest potential impact on performance on Lustre files systems. The following advice
generally applies:

• When using shared files you should use maximal striping (lfs setstripe -c -1) to give the largest
potential bandwidth for parallel access.

• Using multiple stripes with large numbers of files (for example in a file per process scheme with large core
counts) can have an adverse impact on the performance of Lustre file systems. You will generally see the best
performance for large file counts with a stripe count of 1.

3.2.3. Choosing a stripe_size

The size of each stripe generally has less of an impact on performance than the stripe count but can become
important as the size of the file being written increases. We outline some considerations below but bear in mind
that the impact is linked to the I/O pattern used in the application (and that stripe count is usually a more important
parameter anyway). Note:

• The stripe size should be a multiple of the page size

• The smallest recommended stripe size is 512 KB

• A good stripe size for sequential I/O using high-speed networks is between 1 MB and 4 MB

• The maximum stripe size is 4 GB

Further information can be found on [32]

3.3. IBM Spectrum Scale (formerly GPFS)

Figure 8. NSD Server Model

IBM Spectrum Scale is a cluster file system that provides concurrent access to a single file system or set of file
systems from multiple nodes. The nodes can be SAN attached, network attached, a mixture of SAN attached
and network attached, or in a shared nothing cluster configuration. This enables high performance access to this
common set of data to support a scale-out solution or to provide a high availability platform.

Its main characteristics are:

• Scalability: It uses the concept of wide striping that means distribute the data and metadata across all resources.
Large files are divided into equal-sized blocks and the consecutive blocks are placed on different disks in a
round-robin fashion.

Best Practice Guide - Parallel I/O

13

• Caching: It is client-side, which is kept in a dedicated and pinned area of each node called the pagepool. The
cache is managed with both read-ahead techniques and write-behind techniques.

• Cache coherence and protocol: It uses the distributed locking to synchronize the access to data and metadata
on a shared disk.

• Metadata management: It uses inodes and indirect blocks to record file attributes and data block addresses.

At the user level, the GPFS main parameter to consider is the block size. Parallel applications should use request
sizes (chunk size) that are multiples of the block size to obtain a high data transfer rate.

Unlike other parallel file systems such as Lustre, in GPFS, the user cannot change the block size or select the
number of data servers. A large file is distributed across all the disks that are part of GPFS storage.

Parallel applications that use MPI-IO should write/read in multiples of the block size and align the request size to
block size to avoid file lock contention that can seriously degrade I/O performance.

3.3.1. Block size

To display the amount of available disk space for each filesystem:

 di98het@login05:~> df -Th
 Filesystem Type Size Used Avail
 Use% Mounted on
 /dev/fs1 gpfs 12P 8.8P 3.0P 75% /gpfs
 /dev/fs2 gpfs
 5.2P 3.8P 1.4P 73% /gss/scratch

The I/O operation size should be a multiple of the block size. To display the properties of a GPFS, this command
can be used:

 di98het@login05:~> mmlsfs fs1
 flag value description
 --
 -f 262144
 Minimum fragment size in bytes
 ...
 -B 8388608 Block size
 ...

Further information can be found on [31]

3.4. BeeGFS (formerly FhGFS)
BeeGFS, also known as FhGFS prior to 2014, is a file system which has gained popularity in recent years in the
European HPC community. Attributed in part to its relative ease of deployment, it being free and open source
(in contrast to proprietary solutions like IBM Spectrum Scale), and its support of a wide range of Linux kernel
versions.

Comparable to Lustre in terms of system architecture, BeeGFS also consists of Management Server (MS), Meta-
data Server (MDS) and Object Storage Server (OSS) components[4] . It similarly uses the concept of file striping
for parallelism and provides tools to enable users to query and configure stripe parameters.

The beegfs-ctl utility enables clients to affect BeeGFS parameters. To query the existing stripe pattern for a
file, beegfs-ctl --getentryinfo is used[34]:

Best Practice Guide - Parallel I/O

14

 > beegfs-ctl --getentryinfo /mnt/beegfs/testdir/test.txt

 Path: /testdir/test
 Mount: /mnt/beegfs
 EntryID: 0-5429B29A-AFA6
 Metadata node: meta01 [ID: 1]

 Stripe pattern details:
 + Type: RAID0
 + Chunksize: 512K
 + Number of storage targets: desired: 4; actual: 4
 + Storage targets:
 + 102 @ storage01 [ID: 1]
 + 101 @ storage01 [ID: 1]
 + 201 @ storage02 [ID: 2]
 + 202 @ storage02 [ID: 2]

Indicating the test.txt file has four stripes, each with a size of 512KB. Similarly, setting the stripe pattern can
be accomplished with beegfs-ctl --setpattern as follows:

> beegfs-ctl --setpattern --chunksize=1m --numtargets=4 /data/test

which sets the stripe count to four, each with a size of 1MB, for all files created under the /data/test directory. Note
that default installations of BeeGFS restrict the --setpattern mode to superuser/root access only. Non-root
users may still set striping configurations but only if the site has explicitly allowed it by enabling the sysAl-
lowUserSetPattern setting on the MDS[5].

More information on BeeGFS stripe settings and performance considerations is at [6]

3.5. Object Storage
A relatively new data storage technique being driven by advances in cloud and internet-based services is object
storage. This eschews the directory hierarchy of a traditional file system in favour of a collection of data "objects",
each containing their own unique identifier. A comparison can be drawn between object storage and key-value
pairs, such as those implemented in Java Maps or Python dictionaries.

The primary advantage of object storage over a traditional file system is improved scalability. As traditional file
systems grow, they are often limited by the increasing complexity required to keep track of their hierarchical
structure. In contrast, the simple flat structure of object storage allows further capacity to be added without intro-
ducing further complexity. The drawback to the approach is it is suited more for long-term storage of large vol-
umes of unstructured data. Frequently changed data is generally not suited for object storage due to performance
limitations, which can have implications for HPC applications.

A functional consideration for application authors is that specialised methods must be used to interact with an
object store, rather than typical read/write file system calls. The API used by Amazon's Simple Storage Service
(S3) has become a de facto standard in this area, with multiple storage vendors implementing it as the interface to
their services and a wide variety of tools supporting it. However, directly interfacing with cloud stores may not be
suitable for many HPC I/O patterns, due to the performance limitations on transactional data. A possible workflow
for HPC use would be writing to a scratch space in a traditional file system before pushing the data to an object
store for future analysis or archiving. This does not require any change to the software or compute stage of a task
but does mean the user must still operate under the fundamental limitations of traditional file systems.

Best Practice Guide - Parallel I/O

15

4. MPI-IO

4.1. Introduction
POSIX is a standard that maintains compatibility with the broadest base of applications while enabling high per-
formance. Parallel file systems used across HPC provide parallel access while retaining POSIX semantics. How-
ever, the portability and optimisation needed for parallel I/O cannot easily be achieved with the POSIX interface.
In order to face this issue, the HPC community defined the MPI-IO interface. MPI-IO provides a high-level inter-
face supporting partitioning of file data among processes and a collective interface supporting complete transfers
of global data structures between process memories and files. An implementation of MPI-IO is typically layered
on top of a parallel file system that supports the notion of a single and common file shared by multiple processes.
(Both of the common parallel file systems currently in use: Lustre and IBM Spectrum Scale, support this concept.)

MPI-IO was initially defined as part the MPI-2 (Message Passing Interface) Standard in 1997. MPI-IO provides
capabilities to exploit I/O performance improvements that can be gained via support for asynchronous I/O, strided
accesses, and control over physical file layout on storage devices (disks). Instead of defining I/O access modes
to express the common patterns for accessing a shared file, the approach in the MPI-IO standard is to express the
data partitioning using derived datatypes. Figure 9, “MPI-IO File concepts” depicts the logical view of a MPI-IO
file and the accompanying table shows the main concepts defined for MPI-IO in the MPI-3 standard [33].

Figure 9. MPI-IO File concepts

Concept Definition

file An ordered collection of typed data items

etype The unit of data access and positioning. It can be any MPI predefined or derived datatype

filetype The basis for partitioning a file among processes and defines a template for accessing the file. A
filetype is either a single etype or a derived MPI datatype constructed from multiple instances of
the same etype.

view Defines the current set of data visible and accessible from an open file as an ordered set of etypes.
Each process has its own view of the file, defined by three quantities: a displacement, an etype,
and a filetype. The pattern described by a filetype is repeated, beginning at the displacement, to
define the view.

Offset It is a position in the file relative to the current view, expressed as a count of etypes. Holes in the
view’s filetype are skipped when calculating this position.

Displace-
ment

It is an absolute byte position relative to the beginning of a file. The displacement defines the
location where a view begins.

file size and
end of file

The size of an MPI file is measured in bytes from the beginning of the file.

file pointer A file pointer is an implicit offset maintained by MPI. “Individual file pointers” are file pointers
that are local to each process that opened the file. A “shared file pointer” is a file pointer that is
shared by the group of processes that opened the file.

file handle A file handle is an opaque object created by MPI_FILE_OPEN and freed by MPI_FILE_CLOSE.

Best Practice Guide - Parallel I/O

16

4.1.1. MPI-IO data access operations

MPI-IO defines three orthogonal aspects to data access from processes to files: positioning, synchronism and
coordination. Positioning can be an explicit offset or implicit through the file pointer. Synchronism provides three
access modes blocking, nonblocking and split collective. Coordination allows to the MPI processes to perform
noncollective or collective operations.

Collective operations are generally required to be able to achieve best performance as they allow the MPI-IO
library to implement a number of important optimisations:

• Nominate a subset of MPI processes as writers, the number being selected automatically to match the file system
configuration.

• Aggregate data from multiple processes together before writing, ensuring a smaller number of larger IO trans-
actions;

• Ensure that there are no clashes between different writers so that IO transactions can take place in parallel across
all the OSTs.

The strategy is automatically selected by MPI-IO but can also be manipulated by setting MPI-IO hints or environ-
ment variables. Depending on the data layout and distribution a certain collective strategy might perform better
than others.

Figure 10. Data Access Operations

4.1.2. General Hints

• Application developers should aim to use the highest level of abstraction possible to allow the MPI-IO library
to implement I/O in the optimal way.

• Collective operations should be used as the non-collective operations limit the optimisation that the MPI-IO
library can perform. Collective operations often perform orders of magnitude better than non-collective opera-
tions for large amounts of I/O. This is not always the case, but should be tested for all read and write commands
where possible.

• Getting good performance out of MPI-IO also depends on configuring and using the parallel file system cor-
rectly, this is particularly important on Lustre file systems.

4.2. Manipulating Files in MPI
File manipulation in MPI-IO is similar to POSIX-IO:

Best Practice Guide - Parallel I/O

17

• Open the file: MPI_File_open

• Write/Read to/from the file: MPI_File_write or MPI_File_read

• Close the file: MPI_File_close

4.2.1. Opening a File

int MPI_File_open(MPI_Comm comm, const char *filename, int amode, MPI_Info
info, MPI_File *fh)

MPI_File_open opens the file identified by the file name filename on all processes in the comm communicator
group. It is a collective routine, all processes must provide the same value for amode, and all processes must
provide filenames that reference the same file. A process can open a file independently of other processes by using
the MPI_COMM_SELF communicator. The file handle returned, fh, can be subsequently used to access the file
until the file is closed using MPI_File_close(fh).

Initially, all processes view the file as a linear byte stream, and each process views data in its own native repre-
sentation.

The supported amode are:

• MPI_MODE_RDONLY read only,

• MPI_MODE_RDWR reading and writing,

• MPI_MODE_WRONLY write only

• MPI_MODE_CREATE create the file if it does not exist,

• MPI_MODE_EXCL error if creating file that already exists,

• MPI_MODE_DELETE_ON_CLOSE delete file on close,

• MPI_MODE_UNIQUE_OPEN file will not be concurrently opened elsewhere,

• MPI_MODE_SEQUENTIAL file will only be accessed sequentially,

• MPI_MODE_APPEND set initial position of all file pointers to end of file.

C users can use bit vector OR (|) and in Fortran addition "+" to combine these constants; or the bit vector IOR
intrinsic in Fortran 90.

info is an opaque object with a handle of type MPI_Info in C and Fortran with the mpi_f08 module, and INTEGER
in Fortran with the mpi module or the include file mpif.h. MPI_INFO_NULL can be used as a default.

Hints specified via info allow a user to provide information such as file access patterns and file system specifics
to direct optimisation. Providing hints may enable an implementation to deliver increased I/O performance or
minimise the use of system resources.

info is a parameter in MPI_FILE_OPEN, MPI_FILE_SET_VIEW,MPI_FILE_SET_INFO.

To create a new info object MPI_INFO_CREATE(info,ierror) is used and MPI_INFO_SET(info,
key, value, ierror) to add an entry to info.

4.3. File View
In MPI-IO it is possible to define a view for MPI process using MPI_File_set_view. A view is specified by a
triplet (displacement, etype, and filetype). The default view is a linear byte stream, represented by the triple (0,
MPI_BYTE, MPI_BYTE).

Best Practice Guide - Parallel I/O

18

MPI_FILE_SET_VIEW (fh, disp, etype, filetype, datarep, info)

A file view:

• changes the process’s view of the data in the file

• resets the individual file pointers and the shared file pointer to zero

• is a collective operation

• the values for datarep and the extents of etype in the file data representation must be identical on all
processes in the group

• the datatypes passed in etype and filetype must be committed

• datarep argument is a string that specifies the format in which data is written to a file: “native”, “internal”,
“external32”, or user-defined

• “external32” is a data representation that is supposed to be portable across architectures. However not all MPI
implementations support the "external32" representation, so in general MPI-IO files are not portable between
all combinations.

Below a simple example of a view is shown:

MPI_Aint lb, extent;
MPI_Datatype etype, filetype, contig;
MPI_Offset disp;

// Create the contig datatype composed by two integers
MPI_Type_contiguous(2, MPI_INT, &contig);
lb = 0; extent = 6 * sizeof(int);

// Create the filetype with lb as lower bound
// and extent from the contig datatype
MPI_Type_create_resized(contig, lb, extent, &filetype);
MPI_Type_commit(&filetype);

// Define the displacement
disp = 5 * sizeof(int);
etype = MPI_INT;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", \
MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, filetype, "native",
MPI_INFO_NULL);

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

4.4. ROMIO optimisation
One of the most common MPI-IO implementation is ROMIO, which is used in the major MPI distributions such
as MPICH, MVAPICH, PE IBM and Intel MPI.

Hints for Data Sieving:

• ind_rd_buffer_size controls the size (in bytes) of the intermediate buffer used when performing data
sieving during read operations.

Best Practice Guide - Parallel I/O

19

• ind_wr_buffer_size Controls the size (in bytes) of the intermediate buffer when performing data sieving
during write operations.

• romio_ds_read Determines when ROMIO will choose to perform data sieving for read. Valid values are
enable, disable, or automatic.

• romio_ds_write Determines when ROMIO will choose to perform data sieving for write. Valid values are
enable, disable, or automatic.

Hints for Collective Buffering (Two-Phase I/O):

• cb_buffer_size Controls the size (in bytes) of the intermediate buffer used in two-phase collective I/O.

• cb_nodes Controls the maximum number of aggregators to be used.

• romio_cb_read Controls when collective buffering is applied to collective read operations. Valid values
are enable, disable, and automatic.

• romio_cb_write Controls when collective buffering is applied to collective write operations.

• romio_no_indep_rw This hint controls when “deferred open” is used.

• cb_config_list Provides explicit control over aggregators (i.e., one process per node).

4.5. Setting Hints for MPI-IO
Hints for MPI-IO can be set by using:

• an "info" object, as in this example:

 integer info, ierr
 call MPI_Info_create(info, ierror)
 call MPI_Info_set(info, ’romio_cb_read’, ’disable’, ierr)
 call MPI_Info_set(info, ’romio_cb_write’, ’disable’, ierr)
 ...
 call MPI_File_open(comm, filename, amode, info, fh, ierror)

• the ROMIO_HINTS environment variable. Here the user must create a file with a list of hints to be set at
execution time:

 >cat $HOME/romio-hints
 romio_cb_read enable
 romio_cb_write enable

Before running the application, the ROMIO_HINTS variable is set as follows: export ROMIO_HINTS=
$HOME/romio-hints

4.6. MPI-IO General Considerations
• MPI-IO has many features that can help users achieve high performance. The different MPI-IO routines provide

flexibility as well as portability.

• The most important features are the ability to specify non-contiguous accesses, the collective I/O functions, and
the ability to pass hints to the MPI implementation.

• When accesses are non-contiguous, users must create derived datatypes, define file views, and should use the
collective I/O functions.

Best Practice Guide - Parallel I/O

20

• Use of MPI I/O is often limited to parallel file systems; do not expect to obtain good performance using it with
NFS.

Best Practice Guide - Parallel I/O

21

5. File Per Process

5.1. Introduction
Often maligned in HPC circles, the file-per-process model can be a useful approach to parallel I/O for many
applications if they can live within the constraints it introduces.

5.2. File Per Process vs. Shared File
When deciding on a parallel I/O strategy, it is important to be informed of the pros and cons of available approaches
in order to select one that best meets your requirements. File-per-process is often not given appropriate consider-
ation, with a single shared file assumed to be superior in all situations. However, this is not the case. The following
section details the relative advantages and drawbacks to the two opposite extremes patterns of file-per-process and
a single shared file, and seeks to justify why the lesser considered strategy should not be discarded so readily.

The simplicity of file-per-process is the most significant advantage over a shared file approach. With each process
creating its own file, all file accesses are made independently of one another so it is not necessary for the imple-
menter to introduce any synchronisation between I/O operations, sidestepping much of the complexity of parallel
programming. This advantage additionally extends beyond initial implementation, as easier to understand code is
also easier to maintain, leading to improved software sustainability.

However, it could be argued that file-per-process only delays introducing complexity, as, following process com-
pletion, the data is distributed over the various files and must be reconstituted or otherwise pre-processed before
analysis can begin. Alternatively, the analysis tools themselves may be modified to support input from multiple
files but this is a trade of application complexity for increased complexity in the tools. In addition there are nor-
mally regulations by each hosting site which only allow a limited number of individual files within one computing
project.

Figure 11. Recap of file per process (left) and single shared file (right)

In terms of performance, file-per-process is entirely capable of achieving reasonable speeds approaching the max-
imum attainable bandwidth of the underlying system (see the following Sample Performance Data section for a
demonstration of this) but is often bottlenecked by technological limits of the file system, in particular those relat-
ing to metadata operations. Metadata includes file permissions, creation date, name, owner – generally anything
relating to a file other than the data itself. The more files you have, the more requests you must make for this
information, and it can strain the metadata server(s) significantly. This can result in an enforced upper limit on the
scalability of the approach, as your application I/O ends up serialising on the metadata resources. This serialisation
is often observed by HPC service users when common commands such as ls run slowly or hang completely when
run on directories with large numbers of files.

The shared file strategy has the advantage in terms of disk storage footprint. Each file comes with its own overhead,
such as header information, which is only recorded once for a single file but must be recorded for each file in the
file-per-process model. However, in practice, users are rarely limited by disk space so this is seldom a concern.

To summarise, file-per-process pros:

Best Practice Guide - Parallel I/O

22

• Easier to implement

• More straightforward to maintain

• Can achieve performance on par with single shared file

and file-per-process cons:

• Adds complexity to data analysis

• Metadata operations limit scalability

• Has a larger disk storage footprint

5.3. Optimising File Per Process

Several of the drawbacks of file-per-process can be mitigated by the user. Use of data management approaches
can alleviate much of the strain from metadata operations in the approach. Breaking up the files into a set of
directories, for instance, can reduce the number of metadata queries made when copying, moving, reading or
otherwise accessing the files.

Archiving utilities such as tar and zip are designed with the purpose of converting collections of files into
a single file for later use and easier management. This is ideal for addressing the limitations of file-per-process
and comes with additional benefits such as optional compression and error checking using, for example, the CRC
values stored in zip files by default. These formats are ubiquitous in the computing world so come with the further
advantage that many standard tools and libraries for handling these files already exist and can be utilised without
much additional effort from the user.

File systems that support user tuning can be reconfigured to better support the file-per-process pattern. For exam-
ple, a Lustre space is best configured to a single stripe per file on the corresponding directory, to minimise the
overhead of communication with the OSTs:

 lfs setstripe -c 1 files_dir/

Refer to Chapter 2 for further details on parallel file system technology and options for tuning for large numbers
of smaller files.

5.4. Sample Performance Data

Experimental data is provided by the National Supercomputing Service of the UK, ARCHER[13] [14]. The ser-
vice is based around a Cray XC30 supercomputer with a Seagate Sonexion implementation of Lustre and results
published primarily focus on its fs3 file system consisting of 48 available OSTs and 12 OSSes. The file-per-
process (FPP) and single-shared-file (SSF) schemes are directly compared in terms of the maximum achievable
bandwidth of standard unformatted Fortran writes. Results are gathered from 1-512 fully-populated ARCHER
nodes, i.e. 24-12288 CPU cores at 24 processes per node, and the plot in Figure 12, “ARCHER sample FPP vs.
SSP results” produced.

Best Practice Guide - Parallel I/O

23

Figure 12. ARCHER sample FPP vs. SSP results

While SSF reaches a higher maximum bandwidth than FPP between 768-3072 processes, FPP is still comparable
at these core counts and even noticeably outperforms the shared file approach at a lower number of cores, 24-192.
Furthermore, FPP outperforms SSF at the maximum of 12288 cores where SSF performance drops off, suggesting
a bottleneck other than metadata performance.

FPP additionally achieves a much more consistent speed overall, with the bandwidth reached at 48 cores being
approximately what is measured at all points up to 12288 cores. For these reasons, FPP is the approach recom-
mended by ARCHER in most cases and not SSF, as may be expected.

Best Practice Guide - Parallel I/O

24

6. High-Level I/O Libraries

6.1. Introduction
Scientific applications work with structured data and desire more self-describing file formats. A high-level I/O
library is an API which helps to express scientific simulation data in a more natural way. Using high-level I/O
libraries it is possible represent multi-dimensional data, labels and tags, noncontiguous data and typed data. These
kind of libraries offers simplicity for visualisation and analysis, portable formats can run on one machine and
take output to another; and longevity where output will last and be accessible with library tools with no need to
remember a specific version number of the code. Many HPC applications make use of higher-level I/O libraries
such as the Hierarchical Data Format (HDF) and the Network Common Data Format (NetCDF). Parallel versions
of high-level libraries are built on top of MPI-IO and they can use MPI-IO optimisations.

6.2. NetCDF
NetCDF (Network Common Data Form) is a set of software libraries and self-describing, machine-independent
data formats that support the creation, access, and sharing of array-oriented scientific data sets (vectors, matrices
and higher dimensional arrays). The file format defined by netCDF allows scientists to exchange data and makes
the I/O independent of any particular machine architecture. The portability of its files is the most important fea-
ture in netCDF. It is commonly used in climatology, meteorology and oceanography applications (e.g., weather
forecasting, climate change) and GIS applications.

6.2.1. Architecture of NetCDF APIs and Libraries

Figure 14, “ Enhanced NetCDF Data Model” shows the layering architecture of netCDF C/C++/Fortran libraries
and applications.

Figure 13. Architecture of NetCDF APIs and Libraries

The software libraries provide read-write access to the netCDF format, encoding and decoding the necessary
arrays and metadata. The core library is written in C, and provides an API for C, C++, Fortran 77 and Fortran 90.
Additionally, a complete independent implementation is written in Java, which extends the core data model and
adds additional functionality. Interfaces to netCDF based on the C library are also available in other languages
including R, Perl, Python, Ruby, MATLAB, IDL and Octave.

Parallel I/O has been incorporated for netCDF from version 4, Unidata's netCDF supports parallel I/O either
through PnetCDF or HDF5. Through PnetCDF, netCDF-4 can access files in CDF formats in parallel. Similarly,
through HDF5, netCDF-4 can access files in HDF5 format (so called netCDF-4 format).

Best Practice Guide - Parallel I/O

25

6.2.1.1. The netCDF data model

A netCDF dataset contains dimensions, variables, and attributes, which all have both a name and an ID number
by which they are identified. These components can be used together to capture the meaning of data and relations
among data fields in an array-oriented dataset.

Figure 14. Enhanced NetCDF Data Model

• Dimension: An entity that can either describe a physical dimension of a dataset, such as time, latitude, etc., as
well as an index to sets of stations or model-runs.

• Variable: An entity that stores the bulk of the data. It represents an n-dimensional array of values of the same
type.

• Attribute: An entity to store data on the datasets contained in the file or the file itself. The latter are called
global attributes.

6.2.2. Parallel I/O with netCDF

The netCDF library supports parallel I/O based on MPI-IO+pnetcdf or MPI-IO+HDF5. Parallel I/O support must
be enabled at configure time when building these libraries:

• To build netCDF-4 with HDF5 parallel support: $ CC=mpicc CPPFLAGS=-I${H5DIR}/include LD-
FLAGS=-L${H5DIR}/lib ./configure --disable-shared --enable-parallel-tests
--prefix=${NCDIR} , where H5DIR must be a parallel HDF5 installation (--enable-parallel in
HDF5 configure).

• To build netCDF-4 with PnetCDF parallel support: $ CC=mpicc CPPFLAGS="-I${H5DIR}/include
-I${PNDIR}/include" LDFLAGS="-L${H5DIR}/lib -L${PNDIR}/lib" ./configure --
enable-pnetcdf --enable-parallel-tests --prefix=${NCDIR}

Parallel I/O support establishes a dependency on the MPI implementation. The pnetcdf library enables parallel I/
O operations on files in classic formats (CDF-1 and 2), and CDF-5 format since the release of NetCDF 4.4.0.

To support parallel I/O there are additional parameters and new functions:

• Fortran nf90_create() and nf90_open() have two additional optional arguments: an MPI communica-
tor comm, and an MPI_Info object info (may be MPI_INFO_NULL)

Best Practice Guide - Parallel I/O

26

• For switching between collective and independent access: nf90_var_par_access(ncid, varid, ac-
cess), where access may be NF90_INDEPENDENT or NF90_COLLECTIVE. The default value is inde-
pendent access. This applies for writes of variables while the file is open.

Figure 15, “netCDF Parallel Example: 2D array” gives a Fortran program for a 2D array with dimensions = 5 x
8 where each process writes a subset of 5 x (dimsf(2)/mpi_size). The main parameters are: count =
(5, 2) and start = (1, mpi_rank*count(2)+1)

Figure 15. netCDF Parallel Example: 2D array

6.3. HDF5

HDF (Hierarchical Data Format) is an I/O library that serves the same purposes as NetCDF and more. As NetCDF,
HDF Version 4 (HDF4) data models include annotated multidimensional arrays (called also scientific data sets),
as well as raster files and lists of records. HDF4 does not support parallel I/O and files are limited to 2GB. To
address these limitations, a new version was designed: HDF Version 5 (HDF5). HDF5 has no file size limitation
and is able to manage files as big as the largest allowed by the operating system. Unlike classic NetCDF, HDF5
supports more than one unlimited dimension in a data type. HDF5 provides support for C, Fortran, Java and C
++ programming languages.

The HDF5 library can be compiled to provide parallel support using the MPI library. An HDF5 file can be opened
in parallel from an MPI application by specifying a parallel 'file driver' with an MPI communicator and info
structure. This information is communicated to HDF5 through a 'property list,' a special HDF5 structure that is
used to modify the default behavior of the library.

6.3.1. HDF5 Design

HDF5 is designed at three levels:

• A data model: consists of abstract classes, such as files, datasets, groups, datatypes and dataspaces, that devel-
opers use to construct a model of their higher-level concepts.

• A software library: to provide applications with an object-oriented programming interface that is powerful,
flexible and high performance.

• A file format: provides portable, backward and forward compatible, and extensible instantiation of the HDF5
data model.

Best Practice Guide - Parallel I/O

27

6.3.2. HDF5 File Organization and Data Model

Figure 16. HDF5 Dataset Model

HDF5 files are organized in a hierarchical structure, with two primary structures: groups and datasets.

• HDF5 group: a grouping structure containing instances of zero or more groups or datasets, together with sup-
porting metadata.

• HDF5 dataset: a multidimensional array of data elements, together with supporting metadata.

As can be seen in Figure 16, “HDF5 Dataset Model”, a dataset relies on two parts: the data itself and the metadata.
The metadata covers the datatype, optional attributes, data properties and the dataspace which represents the data
dimensionality and the data layout. The file dataspace can be handled completely independently from the data
layout within the memory.

6.3.3. Selecting a Portion of a Dataspace

HDF5 allows reading or writing to a portion of a dataset by use of hyperslab selection. A hyperslab se-
lection can be a logically contiguous collection of points in a dataspace, or it can be a regular pattern of
points or blocks in a dataspace. A hyperslab can be selected with the function: H5Sselect_hyperslab/
h5sselect_hyperslab_f.

Hyperslabs are described by four parameters:

• start: (or offset): starting location

• stride: separation blocks to be selected

• count: number of blocks to be selected

• block: size of block to be selected from dataspace

The dimensions of these four parameters correspond to dimensions of the underlying dataspace. Figure 17, “Hy-
perslab example” shows a hyperslab example and values of four parameters to select a portion of a dataset.

Best Practice Guide - Parallel I/O

28

Figure 17. Hyperslab example

Creating a Hyperslab:

• In C: herr_t H5Sselect_hyperslab(hid_t space_id, H5S_seloper_t op, const
hsize_t *start, const hsize_t *stride, const hsize_t *count, const hsize_t
*block)

• In Fortran: H5SSELECT_HYPERSLAB_F(SPACE_ID, OPERATOR, START, COUNT, HDFERR,
STRIDE, BLOCK) INTEGER(HID_T), INTENT(IN) :: SPACE_ID INTEGER, INTENT(IN) ::
OP INTEGER(HSIZE_T), DIMENSION(*), INTENT(IN) :: START, COUNT INTE-
GER, INTENT(OUT) :: HDFERR INTEGER(HSIZE_T), DIMENSION(*), OPTIONAL,
INTENT(IN) :: STRIDE, BLOCK

The following operators are used to combine old and new selections:

• H5S_SELECT_SET[_F]: Replaces the existing selection with the parameters from this call. Overlapping
blocks are not supported with this operator.

• H5S_SELECT_OR[_F]: Adds the new selection to the existing selection.

• H5S_SELECT_AND[_F]: Retains only the overlapping portions of the new selection and the existing selec-
tion.

• H5S_SELECT_XOR[_F]: Retains only the elements that are members of the new selection or the existing
selection, excluding elements that are members of both selections.

• H5S_SELECT_NOTB[_F]: Retains only elements of the existing selection that are not in the new selection.

• H5S_SELECT_NOTA[_F]: Retains only elements of the new selection that are not in the existing selection.

6.3.4. Chunking in HDF5

Datasets in HDF5 not only provide a convenient, structured, and self-describing way to store data, but are also
designed to do so with good performance. In order to maximise performance, the HDF5 library provides ways
to specify how the data is stored on disk, how it is accessed, and how it should be held in memory. The way
in which the multidimensional dataset is mapped to the serial file is called the layout. The most obvious way to
accomplish this is to simply flatten the dataset in a way similar to how arrays are stored in memory, serialising
the entire dataset into a monolithic block on disk, which maps directly to a memory buffer the size of the dataset.
This is called a contiguous layout.

An alternative to the contiguous layout is the chunked layout. Whereas contiguous datasets are stored in a single
block in the file, chunked datasets are split into multiple chunks which are all stored separately in the file. The

Best Practice Guide - Parallel I/O

29

chunks can be stored in any order and any position within the HDF5 file. Chunks can then be read and written
individually, improving performance when operating on a subset of the dataset[24].

Figure 18, “Chunking Scheme”[25] shows how a file is stored using chunking in HDF5.

Figure 18. Chunking Scheme

6.3.5. Parallel HDF5

The parallel HDF5 (PHDF5) library is implemented upon the MPI-IO layer, meaning users can directly benefit
from MPI-IO optimisation techniques such collective buffering and data sieving. Figure 19, “Parallel HDF5 Lay-
ers” shows the different layers to implement parallel HDF5.

Figure 19. Parallel HDF5 Layers

PHDF5 has the following programming restrictions:

• PHDF5 opens a parallel file with a MPI communicator,

• Returns a file ID and future access to the file is done via the file ID,

• All processes must participate in collective PHDF5 APIs and

• Different files can be opened via different communicators.

Considerations for collective calls [26]:

Best Practice Guide - Parallel I/O

30

• All HDF5 APIs that modify structural metadata are collective

• File operations: H5Fcreate, H5Fopen, H5Fclose, etc

• Object creation: H5Dcreate, H5Dclose, etc

• Object structure modification (e.g., dataset extent modification): H5Dset_extent, etc

• Array data transfer can be collective or independent. Dataset operations: H5Dwrite, H5Dread

• Collectiveness is indicated by function parameters, not by function names as in MPI.

PHDF5 presents the following characteristics:

• After a file is opened by all the processes of a communicator:

• All parts of the file are accessible by all processes.

• All objects in the file are accessible by all processes.

• Multiple processes may write to the same data array (i.e. collective I/O).

• Each process may write to individual data array (i.e. independent I/O).

• API languages: C and F90, 2003 language interfaces.

• Programming model: HDF5 uses an access property list to control the file access mechanism. There-
fore, the general model to access HDF5 file in parallel must follow these steps: 1) set up MPI-IO file access
property list, 2) open file, 3) access data and 4) close file.

6.3.6. Parallel HDF5 Example

Figure 20, “ PHDF5 Example: 2D dataset” corresponds to an 5 x 8 array dataset dimsf = (/5,8/), where each
process will write a subset of the data 5 x (dimsf(2) / mpi_size). In this example, the main parameters
for the hyperslab are set as follows: offset = (/ 0, mpi_rank * count(2) /); count = (/
5, dimsf(2)/ mpi_size /); stride = (/ 1, 1 /)

Figure 20. PHDF5 Example: 2D dataset

Best Practice Guide - Parallel I/O

31

Figure 21, “ Fortran program: file, dataspace, dataset and hyperslab” is the code for the PHDF5 example that
shows the file open, dataspace and dataset definition and hyperslab selection.

Figure 21. Fortran program: file, dataspace, dataset and hyperslab

Figure 22, “ Fortran program: property list, write and close” continues from the previous figure, showing collective
operations, the writing of the data and finally the close step for all HDF5 elements.

Figure 22. Fortran program: property list, write and close

6.4. pNetCDF
Parallel netCDF (officially abbreviated PnetCDF) is a library for parallel I/O providing higher-level data structures
(e.g. multi-dimensional arrays of typed data). PnetCDF creates, writes, and reads the same file format as the
serial netCDF library, meaning PnetCDF can operate on existing datasets, and existing serial analysis tools can

Best Practice Guide - Parallel I/O

32

process PnetCDF-generated files. PnetCDF is built on top of MPI-IO, which guarantees portability across various
platforms and high performance. Originally PnetCDF was created as a first approach to provide parallel netCDF
capabilities on top of netCDF-3. However with netCDF-4 a separate approach was implemented on top of HDF5.
That's why two approaches are available today. However only PnetCDF is able to read netCDF-3 files in parallel
(netCDF-4 uses PnetCDF underneath if available).

In order for easy code migration from sequential netCDF to PnetCDF, PnetCDF APIs mimic the syntax of the
netCDF APIs with only a few changes to add parallel I/O concept. These changes are highlighted as follows:

• All parallel APIs are named after the originals with prefix of "ncmpi_" for C/C++, "nfmpi_" for Fortran 77,
and "nf90mpi_" for Fortran 90.

• An MPI communicator and an MPI_Info object are added to the argument list of the open/create APIs

• PnetCDF allows two I/O modes, collective and independent, which correspond to MPI collective and indepen-
dent I/O operations. Similar to the MPI naming convention, all collective APIs carry an extra suffix "_all". The
independent I/O mode is wrapped by the calls of ncmpi_begin_indep_data() and ncmpi_end_indep_data().

6.5. SIONLib
SIONlib is a scalable I/O library for parallel access to task-local files. The library allows mixing the good perfor-
mance of a task local approach together with a small amount of created files. Data stored within a SIONlib fileset
is a direct byte stream, no additional metadata information is stored by SIONlib. Due to the close connection to
task-local files a separate post-processing step might be necessary to create a global data view of multiple local
data views. The library provides different interfaces: parallel access using MPI, OpenMP, or their combination
and sequential access for post-processing utilities.

6.5.1. SIONLib file format

One of the strategies for SIONlib to increase I/O performance is preventing file system block contention, i.e.
different tasks trying to modify the same file system block at the same time. To avoid this, SIONlib needs additional
information from the user when opening a file. The chunksize supplied during the open call is communicated
globally and lets SIONlib calculate the ranges inside the file which belongs to each task. In case where there is
not enough space left for a write request in the current block, SIONlib skips all the file ranges that belong to other
tasks and has new chunksize bytes of space available[27].

Figure 23, “ SIONLib file layout”[27] shows file format and the different concepts used to its implementation.

Figure 23. SIONLib file layout

6.5.2. SIONLib API and utilities

The general API includes:

• Parallel interface: sion_paropen_mpi, sion_parclose_mpi.

• Serial interface: sion_open, sion_open_rank, sion_close, sion_get_locations.

• Common interface: sion_ensure_free_space, sion_feof, sion_bytes_avail_in_block,
sion_seek, sion_seek_fp, sion_fwrite, sion_fread.

Detailed API description can be found in [28].

Best Practice Guide - Parallel I/O

33

SIONLib also provides utilities to file manipulation[29]:

• siondump: Dump meta data information of a SIONlib file.

• sionsplit: Split one SIONlib file into separate files.

• siondefrag: De-fragment a SIONlib file.

• sioncat: Extract all data or data of one tasks.

• sionconfig: Print compiler and linker flags.

• partest: Benchmark using SIONlib.

6.6. Touching on Low-level I/O: POSIX, C and Fortran
File Manipulation
The POSIX OS standard, C standard library and Fortran provide different methods for manipulating files in parallel
applications. Although they are broadly discouraged for HPC applications due to the availability of the higher-level
libraries detailed in this chapter, they do see use regardless. In this section, a brief overview of POSIX, C and
Fortran file operations is given, as well as optimisation techniques that should be considered when I/O is performed
with these interfaces. Note that threading or other concurrency models for low-level I/O are not covered in this
section.

6.6.1. POSIX and the C Standard Library

In the C library, a stream is represented by a FILE* pointer. File closing is done with the fclose function.
Functions such as fputc, fputs, and fwrite can be used to write data to the stream, while fscanf, fgetc,
fgets, and fread read data. For lower-level I/O operations in POSIX operating systems such as Linux, a handle
called a file descriptor is used instead of a FILE* pointer. A file descriptor is an integer value that refers to a
particular instance of an open file in a single process. The function open creates a file descriptor and subsequent
read, write and close functions take this as an argument.

Opening a file:

• FILE *fopen(const char *path, const char *mode);

• FILE *fdopen(int fildes, const char *mode);

• int open(const char *pathname, int flags [, mode_t mode]);

The function fdopen() converts an already open file descriptor (fildes) to a stream. The flags arguments
to open refers to the access mode, for example:

• O_DIRECTORY, O_NOFOLLOW (enforce directory / not-a-link)

• O_SYNC, O_ASYNC (synchronous vs. asynchronous)

• O_LARGEFILE, O_DIRECT (large files / bypass cache)

• O_APPEND, O_TRUNCO

The mode argument for open sets file access permissions and for fopen refers to read/write/read-write and so on.

It is recommended to perform unformatted fwrite()/fread() calls rather than formatted I/O fprintf()/
fscanf(). For repositioning within the file use fseek().

6.6.1.1. O_DIRECT flag

Using the O_DIRECT flag when opening a file will bypass the buffer cache and send data directly to the stor-
age system. This can be useful in some special cases to avoid memory copies and improve multi-client consisten-

Best Practice Guide - Parallel I/O

34

cy/parallel access. When performing direct I/O, the request length, buffer alignment, and file offsets generally must
all be integer multiples of the underlying device's sector size. There is no block size requirement for O_DIRECT
on NFS, although this is not the case for local filesystems and IBM Spectrum Scale.

For example, Spectrum Scale may provide some performance benefits with direct I/O if:

• The file is accessed at random locations.

• There is no access locality.

In which case, direct transfer between the user buffer and the disk can only happen if all of the following conditions
are also true:

• The number of bytes transferred is a multiple of 512 bytes.

• The file offset is a multiple of 512 bytes.

• The user memory buffer address is aligned on a 512-byte boundary.

6.6.1.2. Buffering

C-standard I/O implements three types of user buffering, and provides developers with an interface for controlling
the type and size of the buffer. There are three types:

• Unbuffered: No user buffering is performed. Data is submitted directly to the kernel.

• Line-buffered: Buffering is performed on a per-line basis (default for e.g., stdout). With each newline character,
the buffer is submitted to the kernel.

• Block-buffered: Buffering is performed on a per-block basis. This is ideal for files. By default, all streams
associated with files are block-buffered. Standard I/O uses the term full buffering for block buffering.

Additionally, C-standard I/O provides an interface for controlling the type of buffering:

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

This must be done after opening a file but before any I/O operations. The buffering mode is controlled by macros:
_IONBF (Unbuffered), _IOLBF (Line-Buffered) or _IOFBF (Block-buffered). The default buffer size for block
buffering is BUFSIZ, defined in stdio.h. Function fflush() can be used to force block out early.

Example code snippet demonstrating changing the buffering type:

 #define BUF 100000000
 double data[SIZE];
 char* myvbuf;
 FILE* fp;
 fp=fopen(FILENAME, "w");
 myvbuf = (char *) malloc(BUF)
 setvbuf(fp, myvbuf,_IOFBF,BUF);
 fseek(fp, 0, SEEK_SET);
 // start of file
 fwrite(data, sizeof(double),SIZE, fp);
 // close file, then deallocate buffer

6.6.1.3. POSIX Hints

The POSIX standard allows certain hints to be given to the OS. This specifies the future intentions for how a
file will be manipulated to influence buffer cache behaviour and read-ahead. The actual effect of these hints is
implementation specific - even different versions of the Linux kernel may react dissimilarly.

Best Practice Guide - Parallel I/O

35

 #include <fcntl.h>
 int posix_fadvise (int fd, off_t offset, off_t len, int advice);

A call to posix_fadvise() provides the OS with the hints for file descriptor fd in the interval
[offset,offset+len). If len is 0, the advice will apply to the range [offset,length of file].
Common usage is to specify 0 for len and offset, applying the advice to the entire file.

Available options for advice are one of the following [2] :

• POSIX_FADV_NORMAL: The application has no specific advice to give on this range of the file. It should be
treated as normal. The kernel behaves as usual, performing a moderate amount of readahead.

• POSIX_FADV_RANDOM: The application intends to access the data in the specified range in a random (non-
sequential) order. The kernel disables readahead, reading only the minimal amount of data on each physical
read operation.

• POSIX_FADV_SEQUENTIAL: The application intends to access the data in the specified range sequentially,
from lower to higher addresses. The kernel performs aggressive readahead, doubling the size of the readahead
window.

• POSIX_FADV_WILLNEED: The application intends to access the data in the specified range in the near future
(asynchronous prefetch). The kernel initiates readahead to begin reading into memory the given pages.

• POSIX_FADV_NOREUSE: The application intends to access the data in the specified range in the near future,
but only once.

• POSIX_FADV_DONTNEED: The application does not intend to access the pages in the specified range in the
near future. The kernel evicts any cached data in the given range from the page cache.

6.6.2. Fortran Files

In fortran, a file is associated with a logical device which is in turn associated with a file by a unit specifier
(UNIT=). A unit is connected or linked to a file through the OPEN statement in standard Fortran. Filenames are
given with the FILE= specifier in the OPEN statement:

OPEN(UNIT=11, FILE="filename", options)

Options and considerations for making Fortran I/O more efficient:

• Specify the operation you intend with the ACTION keyword: read, write or both for ACTION='READ' /
'WRITE' / 'READWRITE'

• Perform direct access (ACCESS='DIRECT') with a large maximum record length (RECL=rl). If possible,
making rl a multiple of the disk block size. Note that data in direct-access files can be read or written to in any
order and that records are numbered sequentially, starting with record number 1. The units used for specifying
record length depend on the form of the data:

• Formatted files (FORM= 'FORMATTED'): Specify the record length in bytes.

• Unformatted files (FORM= 'UNFORMATTED'): Specify the record length in 4-byte units.

• Consider using unformatted files (FORM='UNFORMATTED') for the following reasons:

• Unformatted data avoids the translation process, so I/O tends to be faster.

• Unformatted data avoids the loss of precision in floating-point numbers when the output data will subse-
quently be used as input data.

• Unformatted data conserves file storage space (stored in binary form).

Best Practice Guide - Parallel I/O

36

• If you need sequential formatted access, remember to access data in large chunks.

6.6.2.1. I/O Formatting

Formatted I/O can be the list-directed (i.e. using the Fortran default formats):

write(unit,fmt=*)

or fmt can be given a format string representing a statically compiled or dynamically generated format:

write(unit,fmt='(es20.13)')

write(unit,fmt=iof)

For unformatted I/O, it is possible to use sequential:

write(unit)

or direct access

write(unit, rec=i)

As stated, unformatted I/O is recommended over formatted I/O due to the performance benefits.

6.6.2.2. Conversion of Fortran Unformatted Files

Although formatted data files are more easily ported to other systems, Intel Fortran can convert unformatted data
in several formats.

Unformatted output may not be readable by C or other Fortran processors (Fortran record markers) or may not
be transferable between different platforms due to differing byte order. If the data consists of only intrinsic types,
certain non-standard compiler extensions are available which may help in moving binary files between platforms.

By default, the Intel compiler uses little-endian format but it is possible to write unformatted sequential files in
big-endian format, as well as read files produced in big-endian format by using the little-endian-to-big-endian
conversion feature:

F_UFMTENDIAN=MODE | [MODE;] EXCEPTION

with the following options:

MODE = big | little

EXCEPTION = big:ULIST | little:ULIST | ULIST

ULIST = U | ULIST,U

U = decimal | decimal -decimal

Examples:

F_UFMTENDIAN=big; File format is big-endian for all units.

F_UFMTENDIAN=big:9,12 ;big-endian for units 9 and 12, little-endian for others.

F_UFMTENDIAN="big;little:8" ;big-endian for all except unit 8.

6.6.2.3. I/O Pattern Issues

To eliminate unnecessary overhead, write whole arrays or strings at once rather than individual elements in differ-
ent operations. Each item in an I/O list generates its own calling sequence. This processing overhead becomes most
significant in an implicit loop. When accessing whole arrays, use the array name (Fortran array syntax) instead of

Best Practice Guide - Parallel I/O

37

using an implicit loop. The following snippets give the code for each of these I/O approaches. Only the last option
is recommended with the others given as examples of what to avoid.

Implicit loop

write(...) ((a(i,j),i=1,m),j=1,n)

Array section

write(...) a(1:m,1:n)

Complete Array

write(...) a

Use the natural ascending storage order whenever possible. This is column-major order, with the leftmost subscript
varying fastest and striding by 1. If the whole array is not being written, natural storage order is the best order
possible.

6.6.2.4. Tuning Fortran Using the Intel Compiler

Buffering

In an Intel-compiled Fortran application, any records, read or written, are transferred between the user's program
buffers and one or more disk block I/O buffers. These buffers are established when the file is opened by the Intel
Fortran Run-Time Library. Unless very large records are being read or written, multiple logical records can reside
in the disk block I/O buffer when it is written to disk or read from disk, minimising physical disk I/O.

The OPEN statement BUFFERCOUNT keyword specifies the number of I/O buffers. The default for BUFFER-
COUNT is 1. Any experiments to improve I/O performance should increase the BUFFERCOUNT value and not the
BLOCKSIZE value, to increase the amount of data read by each disk I/O.

If the OPEN statement has BLOCKSIZE and BUFFERCOUNT specifiers, then the internal buffer size in bytes is
the product of these specifiers. If the open statement does not have these specifiers, then the default internal buffer
size is 8192 bytes.

• BLOCKSIZE=<bytes> specifier (rounded up to multiples of 512).

• BUFFERCOUNT=<count> specifier (default 1, at most 127 possible).

To enable buffered writes; that is, to allow the disk device to fill the internal buffer before the buffer is written
to disk, use one of the following:

• The OPEN statement BUFFERED specifier.

• The FORT_BUFFERED run-time environment variable.

Intercepting the Run-time's libc calls (Linux)

The Intel Fortran Run-time Library allows uses of the USEROPEN specifier in an OPEN statement to pass control
to a routine that directly opens a file. The called routine can use system calls or library routines to open the file
and establish special context that changes the effect of subsequent Intel Fortran I/O statements.

The USEROPEN specifier takes the following form:

USEROPEN = function-name

function-name is the name of an external function; it must be of type INTEGER(4) or (INTEGER*4).

The external function can be written in Fortran, C, or other languages.

For example, the following Intel Fortran code might be used to call the USEROPEN procedure UOPEN (associated
with linker uopen_):

Best Practice Guide - Parallel I/O

38

 EXTERNAL UOPEN
 INTEGER UOPEN
 .
 .
 .
 OPEN (UNIT=10, FILE='/usr/test/data', STATUS='NEW', USEROPEN=UOPEN)

Where uopen_ should be:

int uopen_ (char *file_name, int *open_flags, int *create_mode, int
*unit_num, int filenam_len)

An implementation done in C must call:

result = open(fname, *oflags, *cmode);

And can do other things such buffering and so on.

6.7. I/O Libraries Summary
• The netCDF classic data model is simple and flat composed by Dimensions, Variables and Attributes. The

netCDF enhanced data model adds primitive types, multiple unlimited dimensions, hierarchical groups and
user-defined data types.

• The HDF5 data model has even more features such as non-hierarchical groups, user-defined primitive data
types, References (pointers to objects and data regions in a file) and Attributes attached to user-defined types.

• HDF5 has a more complex structure therefore it is more powerful and flexible than NetCDF. However, this
also may have disadvantages because it more complex and possibly error-prone to develop against (difficult
call sequence). Simplification is possible by using the HDF5 “lite“ high level interface. H5LT makes usage
easier by providing a way to aggregate several API calls. Also image processing with H5IM provides a standard
storage scheme for data which can be interpreted as images, e.g. 2-dimensional raster data. From version 1.6
to 1.8, the API has undergone evolution. HDF5-1.10.x contains several important new features for Parallel I/O.
Performance issues for parallel I/O can be found in [30] that provides several techniques to improve performance
for the different elements of HDF5 and taking into account the file system.

• SIONLib optimises binary one-file-per-processes approach by usage of a shared container file using a custom
file format, as is more convenient where portability is not the main priority. Furthermore, SIONLib provides a
transparent mechanism to avoid file system block contention.

• Specialised I/O libraries may provide more a portable way of writing data and may reduce metadata load when
properly used.

• For parallel programs the output to separate files for each process can provide high throughput, but usually
needs post-processing.

• Binary files may need to use library/compiler support for conversion. If binary files are transferred between
different architectures (little vs.big-endian byte order) then the limitations may apply on file sizes and data types.

Best Practice Guide - Parallel I/O

39

7. I/O Performance Analysis

7.1. Introduction
Parallel I/O performance evaluation for HPC applications is a nontrivial task because it depends on the I/O soft-
ware stack, variety of application I/O patterns, hardware configuration and heterogeneity of the I/O system infra-
structure.

I/O profiling tools characterise the I/O performance of HPC applications by counting I/O-related events. This is
less intrusive than full tracing and is useful for identifying potential I/O bottlenecks in performance. However,
more information is required for a fully-detailed understanding of I/O. Currently, the most popular tool in the HPC
community is Darshan [15]. Darshan is especially designed for the HPC-IO field by providing small log files and
global counters for the MPI-IO and POSIX-IO.

Conversely, we have tracing tools such as TAU [20] and Vampir [21] , that save individual event records with
precise timestamps and per process, log the timing of each I/O function calls and their arguments, and construct
a complete timeline.

7.2. Darshan Tool

Figure 24. Darshan Overview

Darshan is a lightweight, scalable I/O characterisation tool that transparently captures I/O access pattern infor-
mation from production applications. It was developed by the Argonne Leadership Computing Facility (ANL).
Darshan provides I/O profile for C and Fortran calls including: POSIX and MPI-IO (and limited to HDF5 and
PnetCDF). Darshan does not provide information about the I/O activity along the runtime. It uses a LD_PRELOAD
mechanism to wrap the I/O calls.

Figure 24, “Darshan Overview” shows Darshan's two components: darshan-runtime and darshan-util. Dar-
shan-runtime must be installed in the HPC system where the application is executed. Darshan-util can be in an-
other machine. Using Darshan utilities and pdflatex it is possible to obtain plots with the main I/O metrics for a
parallel application.

7.3. Darshan Runtime
Starting with version 3.x, the Darshan runtime environment and log file format have been redesigned such that
new "instrumentation modules" can be added without breaking existing tools. Darshan can then manage these

Best Practice Guide - Parallel I/O

40

modules at runtime and create a valid Darshan log regardless of how many or what types of modules are used
[19]. Figure 25, “Darshan Runtime Enviroment” depicts the components of Darshan Runtime.

Figure 25. Darshan Runtime Enviroment

7.3.1. Using the Darshan Runtime

Darshan can trace MPI applications linked statically or dynamically. The instrumentation method to use depends
on whether the executables produced by the MPI compiler are statically or dynamically linked (for more detail
refer to [16]).

Currently, Darshan is a tool commonly provided in HPC centers through a module system. Site-specific docu-
mentation for facilities that deploy Darshan in production can be found in [17]. Although, each center provides
some specific steps to enable Darshan, there are some commonalities and relevant commands are often similar.
For example, at Leibniz Supercomputing Centre (LRZ), Darshan [18] is available on all its HPC systems and is
enabled by the following commands in the user submission:

1. module load darshan: prepare environment for both dynamically and statically linked applications.
Other HPC systems often provide two modules for Darshan, e.g. module load darshan-runtime for
I/O profiling and module load darshan-util for analyzing Darshan logs.

2. export LD_PRELOAD=`darshan-user.sh $FORTRAN_PROG`: load the appropiate library depend-
ing on the programming lenguage of the parallel application. For dynamically-linked executables, Darshan re-
lies on the LD_PRELOAD environment variable to insert instrumentation at run time. For Fortran applications
compiled with MPICH, users may have to take the additional step of adding libfmpich.so to the LD_PRELOAD
environment variable. At LRZ, this is checked by the $FORTRAN_PROG variable, so that the appropriate li-
brary is loaded.

3. export JOBID_LL=`darshan-JOBID.sh $LOADL_STEP_ID`; export
DARSHAN_JOBID=JOBID_LL: Darshan gives the log file a name based on the job identifier assigned by
the job management system, to facilitate correlating logs with a specific job. At LRZ, the DARSHAN_JOBID
environment variable is set with the Loadleveler identifier in SuperMUC. In a Linux Cluster with Slurm as the
job management system DARSHAN_JOBID is set to SLURM_JOB_ID.

4. export LOGPATH_DARSHAN_LRZ=`darshan-logpath.sh`: set up the folder to save the Dar-
shan logs. This option is available if darshan-runtine was built with --with-log-path-by-env. Oth-
erwise, the darshan-mk-log-dirs.pl utility is applied to specify the path at configure time to in-
clude log file subdirectories organised by year, month, and day. At LRZ by default log files are placed in
$SCRATCH/.darshan-log, but users can change the log path by setting LOGPATH_DARSHAN_LRZ to
a more convenient folder.

Once the application executes, a log file is generated in log path, e.g. LOGPATH_DARSHAN_LRZ. If the execution
finishes without errors, the user can analyze the *.darshan file by using darshan-util tools. The log file can also
be analysed on another system.

Best Practice Guide - Parallel I/O

41

7.4. Darshan Util
Darshan provides command line tools that enable the analysis of I/O performance metrics. Keys tools:

• darshan-job-summary.pl: creates a pdf with graphs useful for initial analysis.

• darshan-summary-per-file.sh: creates a separate pdf for each file opened by the application

• darshan-parser: dumps all information into ASCII (text) format.

 >darshan-parser --help
 Usage: darshan-parser [options] <filename>
 --all : all sub-options are enabled
 --base : darshan log field data [default]
 --file : total file counts
 --file-list : per-file summaries
 --file-list-detailed : per-file summaries with additional detail
 --perf : derived perf data
 --total : aggregated darshan field data

7.4.1. Darshan Plots: FLASH-IO Benchmark

FLASH-IO [36] is a block-structured adaptive mesh hydrodynamics code. The computational domain is divided
into blocks which are distributed across the processors. Typically a block contains 8 zones in each coordinate
direction (x,y,z) and a perimeter of guardcells (presently 4 zones deep) to hold information from the neighbors.
FLASH-IO will produce a checkpoint file (containing all variables in 8-byte precision) and two plotfiles (4 vari-
ables, 4-byte precision, one containing corner data, the other containing cell-centered data). The plotfiles are
smaller than the checkpoint file.

Figure 26. Job Information and Performance

Figure 26, “ Job Information and Performance” shows the ID, number of MPI processes and runtime of a FLASH-
IO job. The Darshan pdf file associated with this job will include executable name and date as a header, and the
binary location and commands used as footer.

Figure 27. Average I/O Cost and Operation Count

Best Practice Guide - Parallel I/O

42

Figure 27, “ Average I/O Cost and Operation Count” presents the average I/O per process. This is the initial metric
to consider when determining if an application has I/O problems. Usually, an I/O percentage greater than 10%
indicates that the application requires I/O performance improvements. Also, it is possible to observe whether that
percentage relates to data access (write/read) or metadata(open/close) operations. In this case, FLASH-IO is using
parallel HDF5 and is dominated by metadata performance (the most significant component of the MPI-IO bar).
Other listed metrics are the I/O operation counts, which indicate the MPI-IO operations are collective. These MPI-
IO operations are implemented by lower-level POSIX operations such as read, write, seek, etc., as indicated in
the figure. It is important to note that FLASH-IO only writes three files but the I/O library performs additional
read and seek operations.

Figure 28. Access Sizes at POSIX and MPI-IO level

Figure 28, “ Access Sizes at POSIX and MPI-IO level” shows a histogram of MPI-IO and POSIX reads/write
and their associated sizes. This information is useful for identifying small I/O operations. Reasons for small I/O
include poorly implemented I/O or, occasionally, incorrect optimisation attempts by an I/O library which changes
operation sizes and negatively affects the I/O pattern.

Figure 29. Common Access Sizes and File Count

Figure 29, “ Common Access Sizes and File Count” presents the most common sizes for MPI-IO and POSIX. This
information helps confirm whether collective operations are being performed or whether this has been disabled
by the I/O library. Usually, the MPI-IO implementation attempts to apply an appropriate optimisation technique
based on the I/O pattern. Further information in this figure mainly relates to access mode and file size.

Best Practice Guide - Parallel I/O

43

Figure 30. Timespan from first to last access on shared files

Darshan is also capable of producing a timespan of I/O activity, for example Figure 30, “ Timespan from first to
last access on shared files”. These plots are useful for observing the temporal I/O pattern. Information such as I/
O sequentiality or overlapping can help identify possible inefficiency in the data access operations.

Figure 31. Average I/O and Data Transfer

In Figure 31, “ Average I/O and Data Transfer”, the average I/O per process is given, categorised by I/O strategy
(shared or independent files). This information is important for perceiving possible problems at a large scale. In
this figure, it is possible to observe the impact of read and metadata operations on run time and I/O size. Read
operations within the I/O library could be an I/O bottleneck for a larger number of processes, optimisation at the
MPI-IO level could be applied to mitigate this impact.

Best Practice Guide - Parallel I/O

44

Figure 32. I/O Pattern

Figure 32, “ I/O Pattern” shows the I/O pattern for each file opened by the application. These plots should be
analysed per file, as the noise of other files is removed and the sequential or consecutive pattern is clearer and
easier to identify. Usually, a consecutive pattern is higher performance than an sequential pattern. In this case, the
three files present a sequential pattern.

Figure 33. Variance in shared files

Figure 33, “ Variance in shared files” presents the variance for I/O time and bytes for shared files. This is useful
for identifying possible mapping problems (I/O time) or I/O imbalance (bytes).

7.5. Vampir

The Vampir performance visualisation tool consists of a performance monitor (e.g., Score-P or VampirTrace) that
records performance data and a performance GUI, which is responsible for the graphical representation of the
data. Figure 34, “Vampir Architecture” depicts the components of the Vampir Tool.

Best Practice Guide - Parallel I/O

45

Figure 34. Vampir Architecture

To trace I/O events, VampirTrace is recommended as, if this is built with I/O tracing support, it intercepts calls
to I/O functions of the standard C library. Therefore, it is possible to capture the serial and parallel I/O done by
a parallel application.

The following functions are intercepted by VampirTrace:

 close creat creat64 dup
 dup2 fclose fcntl fdopen
 fgetc fgets flockfile fopen
 fopen64 fprintf fputc fputs
 fread fscanf fseek fseeko
 fseeko64 fsetpos fsetpos64 ftrylockfile
 funlockfile fwrite getc gets
 lockf lseek lseek64 open
 open64 pread pread64 putc
 puts pwrite pwrite64 read
 readv rewind unlink write writev

Tracing I/O events has to be activated for each tracing run by setting the environment variable VT_IOTRACE to
"yes". Setting the environment variable VT_IOTRACE_EXTENDED to "yes" enables the collection of additional
function arguments for some of the I/O function mentioned above. For example, this option additionally stores
offsets for pwrite and pread to the I/O event record. Enabling VT_IOTRACE_EXTENDED automatically enables
VT_IOTRACE[35].

7.5.1. Using Vampir

Users can instrument a parallel application by using VampirTrace:

• compile-time instrumentation:

• Fortran 77: vtf77 [-g] -c <further options> myprog.f

• Fortran 90 and higher: vtf90 [-g] -vt:f90 mpif90 -c <further options> myprog.f90

• C: vtcc [-g] -vt:cc mpicc -c <further options> myprog.c

• C++: vtcxx [-g] -c -vt:cxx mpiCC <further options> myprog.cpp

Best Practice Guide - Parallel I/O

46

• run-time instrumentation (vtrun): mpirun -np 16 vtrun ./a.out

The following environment variables must set before running the application with VampirTrace:

 export VT_PFORM_LDIR=/gpfs/scratch/project/user/vampir-tmp
 export VT_FILE_UNIQUE='yes'
 export VT_IOTRACE='yes'

After execution a .otf file as well as a number of *.events.z files are generated. The Vampir tool is then used for
visualisation and trace analysis:

• For small traces: vampir <filename>.otf

• For large traces: vampirserver start -n <tasks>

7.5.1.1. Vampir Examples: FLASH-IO and BT-IO

To demonstrate the I/O profiling information produced by Vampir, two benchmarks are detailed here. One
(FLASH-IO) was previously described in the Darshan section above.

Figure 35. FLASH-IO Processes Timeline

Best Practice Guide - Parallel I/O

47

Figure 35, “ FLASH-IO Processes Timeline” depicts the execution of FLASH-IO using Intel MPI over 32 process-
es and HDF5 for I/O. The dark green triangles represent I/O events, yellow bars give the time of I/O operations,
green bars give time of user operations, and the red bars show the time for MPI events. Here, all process are doing
I/O, meaning the collective buffering optimisation technique is not being performed.

Figure 36. FLASH-IO Call Tree

Best Practice Guide - Parallel I/O

48

Vampir provides several views for performance analysis. A call tree can be produced showing the MPI-IO oper-
ations and the corresponding POSIX operations, as demonstrated in Figure 36, “ FLASH-IO Call Tree”. Here, the
collective operation MPI_File_write_at_all is shown to be composed of POSIX write, read and lseek64
operations. This provides an explanation for the read and seek operations observed with Darshan. A similar analy-
sis can be done for the other MPI-IO operations.

Figure 37. FLASH-IO I/O Summary

A further example of Vampir profiling capability is shown in Figure 37, “ FLASH-IO I/O Summary ”. Here, the
aggregated I/O transaction size per file is given with Vampir providing a further set of metrics: Number of I/O
Operations, Aggregated I/O Transaction Size, Aggregated I/O Transaction Time, and values of I/O Transaction
Size, I/O Transaction Time, or I/O Bandwidth with respect to their selected value type. More detail about Vampir
I/O summaries can be find in [22]

The BT-IO benchmark [37] is part of the parallel benchmark suite NPB-MPI developed by the NASA Advanced
Supercomputing Division and is the second case we use to demonstrate the capabilities of Vampir. BT-IO presents
a block-tridiagonal partitioning pattern on a three-dimensional array across a square number of processes. Each
process is responsible for multiple Cartesian subsets of the entire data set, whose number increases with the square
root of the number of processors participating in the computation. In BT-IO, forty arrays are consecutively written
to a shared file by appending one after another. Each array must be written in a canonical, row-major format in
the file. The forty arrays are then read back for verification using the same data partitioning [38].

Best Practice Guide - Parallel I/O

49

Figure 38. BT-IO Processes Timeline

Here, BT-IO was executed under IBM MPI (IBM's Parallel Environment (PE)) on 64 processes, over 4 compute
nodes and using MPI for I/O. Figure 38, “ BT-IO Processes Timeline” shows the timeline for the first 32 processes.
It can be seen that only process 0 and 16 perform data access operations (yellow bars) as collective operations are
performed and collective buffering is enabled for BT-IO explicitly. The system where this trace was performed
has collective buffering configured for one I/O aggregator per compute node.

Best Practice Guide - Parallel I/O

50

Figure 39. BT-IO Call Tree

The BT-IO call tree is shown in Figure 39, “ BT-IO Call Tree”. Here, the MPI-IO operations use differ-
ent underlying POSIX operations than Intel MPI. As can be seen in the figure, the collective operation
MPI_File_write_at_all is composed of write and pwrite64 operations at the POSIX level.

Best Practice Guide - Parallel I/O

51

Figure 40. BT-IO I/O Summary

Finally, in Figure 40, “ BT-IO I/O Summary” the I/O summary is shown. BT-IO only writes and reads a single 6
GiB file but the summary presents two files. This is due to Vampir depicting the file at both the POSIX and MPI-
IO levels for the metric selected. In the case, the Average I/O Transaction Size is selected, showing the effect of
collective buffering techniques on operation size at the POSIX level (13.515 MiB).

7.5.1.2. Comparing traces using Vampir

Another useful view of the Vampir Tool is the comparison of traces. To demonstrate this, the IOR benchmark
is executed using MPI-IO for independent and collective operations for a strided pattern. IOR [23] is a synthetic
benchmark for testing the performance of parallel filesystems. The benchmark supports a variety of different APIs
to simulate I/O load. IOR can be used for testing performance of parallel file systems using various I/O libraries:
MPI-IO, POSIX-IO, HDF5 and PnetCDF.

The IOR parameters for this test were: MPI processes = 64, request size = 1 MiB, 16 MPI processes per compute
node, a MPI process per core, 1GiB of data per process.

and the strided pattern was configured as follows:

• Independent I/O: IOR-MPIIO-ibmmpi -a MPIIO -s 1024 -b 1m -t 1m

• Collective I/O by default: IOR-MPIIO-ibmmpi -a MPIIO -c -s 1024 -b 1m -t 1m

• Collective I/O with collective buffering enabled: IOR-MPIIO-ibmmpi -a MPIIO -s 1024 -b 1m -
t 1m, but setting export ROMIO_HINTS=romio-hints where romio_hints contains romio_cb_read
enable; romio_cb_write enable.

Best Practice Guide - Parallel I/O

52

Figure 41. IOR traces comparison

Figure 41, “ IOR traces comparison” shows the traces for the three cases. The first timeline corresponds to col-
lective operations with collective buffering enabled, the second to collective operations by default and the final
timeline to the independent I/O. Collective buffering is generally recommended for giving the best performance
non-contiguous patterns. However, performance depends on the configuration of the underlying system as well.
Here, the transfer size (1MiB) is less than the blocksize of the filesystem (8MiB), and the buffer size for collective
operations is 16MiB. Therefore, aggregated I/O performs well for this system. When selecting an optimisation
technique for your I/O pattern, the I/O configuration of the system itself must also be considered.

7.6. MPI-IO Reporting with Cray MPICH
The custom version of MPI provided by Cray (cray-mpich) available on XC-series clusters, as well as others
based around Cray hardware, has an additional feature that reports a variety of I/O statistics to aid with profiling
efforts. Setting the environment variable MPICH_MPIIO_STATS=1 before running a parallel application enables
the report:

 export MPICH_MPIIO_STATS=1

which gives output such as:

 +--+
 | MPIIO write access patterns for benchmark_files/mpiio.dat
 | independent writes = 0
 | collective writes = 24
 | independent writers = 0
 | aggregators = 24
 | stripe count = 48
 | stripe size = 1048576
 | system writes = 3072

Best Practice Guide - Parallel I/O

53

 | aggregators active = 0,0,0,24 (1, <= 12, > 12, 24)
 | total bytes for writes = 3221225472 = 3072 MiB = 3 GiB
 | ave system write size = 1048576
 | read-modify-write count = 0
 | read-modify-write bytes = 0
 | number of write gaps = 0
 | ave write gap size = NA
 | See "Optimizing MPI I/O on Cray XE Systems" S-0013-20 for explanations.
 +--+

for each MPI-IO operation performed in the job. This allows for confirmation that the application and MPI library
have been tuned effectively by, for example, exclusively using collective operations to optimise I/O. Refer to
Chapter 4 for further guidance on MPI-IO.

Additionally, the environment variable MPICH_MPIIO_HINTS_DISPLAY=1 is available on Cray systems to
print the MPI-IO hints used by open operations on each file accessed by an application. Setting:

 export MPICH_MPIIO_HINTS_DISPLAY=1

before running the same job as above produces:

 PE 0: MPIIO hints for benchmark_files/mpiio.dat:
 cb_buffer_size = 16777216
 romio_cb_read = automatic
 romio_cb_write = automatic
 cb_nodes = 24
 cb_align = 2
 romio_no_indep_rw = false
 romio_cb_pfr = disable
 romio_cb_fr_types = aar
 romio_cb_fr_alignment = 1
 romio_cb_ds_threshold = 0
 romio_cb_alltoall = automatic
 ind_rd_buffer_size = 4194304
 ind_wr_buffer_size = 524288
 romio_ds_read = disable
 romio_ds_write = disable
 striping_factor = 48
 striping_unit = 1048576
 romio_lustre_start_iodevice = 0
 direct_io = false
 aggregator_placement_stride = -1
 abort_on_rw_error = disable
 cb_config_list = *:*
 romio_filesystem_type = CRAY ADIO:

Refer to Chapter 4 for descriptions of these hints.

Best Practice Guide - Parallel I/O

54

Further documentation
Books
[1] Prabhat and Q. Koziol,High Performance Parallel I/O, 1st ed. Chapman and Hall/CRC, 2014.

[2] Linux System Programming: Talking Directly to the Kernel and C Library, 1st ed. O'Reilly Media, Inc., 2007.

Websites, forums, webinars
[3] PRACE Webpage, http://www.prace-ri.eu/ .

[4] BeeGFS Wiki: System Architecture, https://www.beegfs.io/wiki/SystemArchitecture .

[5] BeeGFS Wiki: Storage Pools, https://www.beegfs.io/wiki/StoragePools .

[6] BeeGFS Wiki: Striping Settings, https://www.beegfs.io/wiki/Striping .

[7] HDF5 Webpage, https://support.hdfgroup.org/HDF5/ .

[8] NetCDF Webpage, http://www.unidata.ucar.edu/software/netcdf/ .

[9] PnetCDF Webpage, http://cucis.ece.northwestern.edu/projects/PnetCDF/ .

[10] ADIOS Webpage, https://www.olcf.ornl.gov/center-projects/adios/ .

[11] SIONLib Webpage, http://www.fz-juelich.de/jsc/sionlib .

[12] ROMIO Webpage, http://www.mcs.anl.gov/projects/romio/ .

[13] ARCHER » Hardware, http://www.archer.ac.uk/about-archer/hardware/ .

[14] ARCHER » Best Practice Guide - Sample FPP/SSF Results, http://www.archer.ac.uk/documentation/best-
practice-guide/io.php#summary-of-performance-advice .

[15] Darshan Webpage, http://www.mcs.anl.gov/research/projects/darshan/ .

[16] Darshan-runtime installation and usage, https://www.mcs.anl.gov/research/projects/darshan/docs/dar-
shan3-runtime.html .

[17] Darshan Documentation, https://www.mcs.anl.gov/research/projects/darshan/documentation .

[18] Darshan at LRZ, https://doku.lrz.de/display/PUBLIC/Darshan .

[19] Modularized I/O characterization using Darshan 3.x, https://www.mcs.anl.gov/research/projects/dar-
shan/docs/darshan-modularization.html .

[20] TAU Webpage, https://www.cs.uoregon.edu/research/tau/home.php .

[21] Vampir Webpage, https://www.vampir.eu/ .

[22] Performance Data Visualization: I/O Summary, https://vampir.eu/tutorial/manu-
al/performance_data_visualization#sec-iosummary .

[23] HPC IO Benchmark Repository, https://github.com/hpc/ior .

[24] Chunking in HDF5, https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5 .

[25] HDF5 Advanced Topics, https://support.hdfgroup.org/HDF5/doc/Advanced/Chunk-
ing/Chunking_Tutorial_EOS13_2009.pdf .

http://www.prace-ri.eu/
https://www.beegfs.io/wiki/SystemArchitecture
https://www.beegfs.io/wiki/StoragePools
https://www.beegfs.io/wiki/Striping
https://support.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/
http://cucis.ece.northwestern.edu/projects/PnetCDF/
https://www.olcf.ornl.gov/center-projects/adios/
http://www.fz-juelich.de/jsc/sionlib
http://www.mcs.anl.gov/projects/romio/
http://www.archer.ac.uk/about-archer/hardware/
http://www.archer.ac.uk/documentation/best-practice-guide/io.php#summary-of-performance-advice
http://www.archer.ac.uk/documentation/best-practice-guide/io.php#summary-of-performance-advice
http://www.mcs.anl.gov/research/projects/darshan/
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan3-runtime.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan3-runtime.html
https://www.mcs.anl.gov/research/projects/darshan/documentation
https://doku.lrz.de/display/PUBLIC/Darshan
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-modularization.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-modularization.html
https://www.cs.uoregon.edu/research/tau/home.php
https://www.vampir.eu/
https://vampir.eu/tutorial/manual/performance_data_visualization#sec-iosummary
https://vampir.eu/tutorial/manual/performance_data_visualization#sec-iosummary
https://github.com/hpc/ior
https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5

Best Practice Guide - Parallel I/O

55

[26] A Brief Introduction to Parallel HDF5, https://www.alcf.anl.gov/files/Parallel_HDF5_1.pdf .

[27] SIONlib file format, https://apps.fz-juelich.de/jsc/sionlib/docu/fileformat_page.html .

[28] API overview, https://apps.fz-juelich.de/jsc/sionlib/docu/api_page.html .

[29] Utilities for managing of SIONlib files, https://apps.fz-juelich.de/jsc/sionlib/docu/util_page.html .

[30] Performance Issues, https://confluence.hdfgroup.org/display/knowledge/Performance+Issues .

Manuals, papers
[31] IBM Spectrum Scale Manual, https://www.ibm.com/support/knowledgecenter/STXKQY_4.2.3/

com.ibm.spectrum.scale.v4r23.doc/pdf/scale_ins.pdf .

[32] Lustre Manual, http://doc.lustre.org/lustre_manual.pdf .

[33] MPI: A Message-Passing Interface Standard Version 3.0, https://www.mpi-forum.org/docs/mpi-3.0/mpi30-
report.pdf .

[34] ThinkParQ BeeGFS Training - Typical Administrative Tasks, https://indico.mathrice.fr/event/5/ses-
sion/10/contribution/29/material/slides/0.pdf .

[35] VampirTrace 5.14.4 with extended accelerator support, https://tu-dresden.de/zih/forschung/ressourcen/
dateien/projekte/vampirtrace/accelerator/dateien/VampirTraceManual/VampirTrace-5.14.4-gpu2-
user-manual.pdf?lang=en .

[36] A case study for scientific I/O: improving the FLASH Astrophysics Code, https://iopscience.iop.org/arti-
cle/10.1088/1749-4699/5/1/015001/pdf .

[37] NAS Parallel Benchmarks I/O Version 2.4, https://www.nas.nasa.gov/assets/pdf/techre-
ports/2003/nas-03-002.pdf .

[38] Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on Un-
derlying Parallel File System Locking Protocols, http://users.eecs.northwestern.edu/~wkliao/PA-
PERS/fd_sc08_revised.pdf .

https://apps.fz-juelich.de/jsc/sionlib/docu/fileformat_page.html
https://apps.fz-juelich.de/jsc/sionlib/docu/api_page.html
https://apps.fz-juelich.de/jsc/sionlib/docu/util_page.html
https://confluence.hdfgroup.org/display/knowledge/Performance+Issues
http://doc.lustre.org/lustre_manual.pdf
https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/vampirtrace/accelerator/dateien/VampirTraceManual/VampirTrace-5.14.4-gpu2-user-manual.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/vampirtrace/accelerator/dateien/VampirTraceManual/VampirTrace-5.14.4-gpu2-user-manual.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/vampirtrace/accelerator/dateien/VampirTraceManual/VampirTrace-5.14.4-gpu2-user-manual.pdf?lang=en
https://iopscience.iop.org/article/10.1088/1749-4699/5/1/015001/pdf
https://iopscience.iop.org/article/10.1088/1749-4699/5/1/015001/pdf
http://users.eecs.northwestern.edu/~wkliao/PAPERS/fd_sc08_revised.pdf
http://users.eecs.northwestern.edu/~wkliao/PAPERS/fd_sc08_revised.pdf

	Best Practice Guide - Parallel I/O
	Table of Contents
	1. Introduction
	1.1. About this Document
	1.2. Guide Structure

	2. High Performance I/O Systems
	2.1. Introduction
	2.2. I/O Strategies in Parallel Applications
	2.2.1. Serial I/O
	2.2.2. Parallel I/O

	2.3. The I/O Software Stack
	2.3.1. Low-level: POSIX
	2.3.2. Middle-level: MPI-IO
	2.3.3. High level I/O software

	2.4. General Pointers for Efficient I/O

	3. Parallel File Systems
	3.1. Introduction
	3.2. Lustre
	3.2.1. Lustre File Layout (Striping)
	3.2.2. Choosing a stripe count
	3.2.3. Choosing a stripe_size

	3.3. IBM Spectrum Scale (formerly GPFS)
	3.3.1. Block size

	3.4. BeeGFS (formerly FhGFS)
	3.5. Object Storage

	4. MPI-IO
	4.1. Introduction
	4.1.1. MPI-IO data access operations
	4.1.2. General Hints

	4.2. Manipulating Files in MPI
	4.2.1. Opening a File

	4.3. File View
	4.4. ROMIO optimisation
	4.5. Setting Hints for MPI-IO
	4.6. MPI-IO General Considerations

	5. File Per Process
	5.1. Introduction
	5.2. File Per Process vs. Shared File
	5.3. Optimising File Per Process
	5.4. Sample Performance Data

	6. High-Level I/O Libraries
	6.1. Introduction
	6.2. NetCDF
	6.2.1. Architecture of NetCDF APIs and Libraries
	6.2.1.1. The netCDF data model

	6.2.2. Parallel I/O with netCDF

	6.3. HDF5
	6.3.1. HDF5 Design
	6.3.2. HDF5 File Organization and Data Model
	6.3.3. Selecting a Portion of a Dataspace
	6.3.4. Chunking in HDF5
	6.3.5. Parallel HDF5
	6.3.6. Parallel HDF5 Example

	6.4. pNetCDF
	6.5. SIONLib
	6.5.1. SIONLib file format
	6.5.2. SIONLib API and utilities

	6.6. Touching on Low-level I/O: POSIX, C and Fortran File Manipulation
	6.6.1. POSIX and the C Standard Library
	6.6.1.1. O_DIRECT flag
	6.6.1.2. Buffering
	6.6.1.3. POSIX Hints

	6.6.2. Fortran Files
	6.6.2.1. I/O Formatting
	6.6.2.2. Conversion of Fortran Unformatted Files
	6.6.2.3. I/O Pattern Issues
	6.6.2.4. Tuning Fortran Using the Intel Compiler

	6.7. I/O Libraries Summary

	7. I/O Performance Analysis
	7.1. Introduction
	7.2. Darshan Tool
	7.3. Darshan Runtime
	7.3.1. Using the Darshan Runtime

	7.4. Darshan Util
	7.4.1. Darshan Plots: FLASH-IO Benchmark

	7.5. Vampir
	7.5.1. Using Vampir
	7.5.1.1. Vampir Examples: FLASH-IO and BT-IO
	7.5.1.2. Comparing traces using Vampir

	7.6. MPI-IO Reporting with Cray MPICH

	Further documentation

