Best Practice Guide - Parallel 1/0

Sandra Mendez, LRZ, Germany
Sebastian Luhrs, FZJ, Germany
Dominic Sloan-Murphy (Editor), EPCC, United Kingdom
Andrew Turner (Editor), EPCC, United Kingdom

Volker Weinberg (Editor), LRZ, Germany
Version 2.0 by 07-02-2019

PRACE

Best Practice Guide - Parallel 1/0

Table of Contents

O [gL oo [0 1o o R PSP PP 4
1.1, ADOUL thiS DOCUMENTeiiitt ettt e ettt ettt ettt ettt e et e e et et e e e e et e e e e et e e e eatnnaeeene 4

1.2, GUIE SETUCLUIEeteeeete ettt ettt e e ettt e e et et e et e ettt e et e be e e e ee b e eeenbenaeaens 4

2. High PerformanCe [/O SYSLEIMSuuiiiii et et e e e 5
2% W [L oo (8o (o o R PP PTRPPPPT 5

2.2. 1/O Strategies in Parallel APPlICALIONSiiiiiiiiieiiii et e 5
221 S HO s 6

2.2.2. Parallel 11O ..o 6

2.3. The 1/O SOftWEIE SEBCKu ittt e e e e 8
2.3. 1 LOW-IEVELT POSIX ..ottt e e e eeaas 8

2.3.2. Middle-1eVel: MPI-TO ...t 8

2.3.3. High 1evel 1/O SOFtWAIEccouuieiiii et 9

2.4. General Pointers for EffiCient 1/O e 9

3. Parallel File SYSIEIMS ...t et 10
3% W [L oo (B et 1o o H PP PP TP TUPPPRTRUSPPPPN 10

32, LUSITE ettt et 10
3.2.1. Lustre File Layout (SHPING)ceeeruneeeenieeeite et e e e e e 11

3.2.2. ChOOSING 8 SIMPE COUNLiiitieeieti e ettt ettt e e et e et e e e e e e e ene s 11

3.2.3. ChOOSING @ SIMHPE SIZE ...ttt ettt ettt e ettt e e e e et e eeent e eees 12

3.3. IBM Spectrum Scale (fOrmerly GPFS)iiiiiiiiieiiiii e e 12
331 BIOCK SIZE ... e 13

3.4. BEeGFS (formerly FNGRFS) ...ttt 13

RO o)1= S (0= L= PP PPTOUPPPPPT 14

A IMIPL-TO e et e e e ettt bbb e e e et e et bbb e e aaaaeee 15
e g1 o [F ot (o P PP PP 15
4.1.1. MPI-10 data 8CCESS OPEIAIONScevuneiiiiieeeeeti e ettt e et e et et eeene s 16

A.1.2. GENETAl HINES ..ooeeeieei e e et et et e 16

4.2. Manipulating FileS in MPL e 16
421, 0Opening @ FlE ..o 17

A.3. FIE VIBIW ettt ettt 17

4.4, ROMIO OPLMISAIION ...eieiitieeeiti ettt e ettt ettt e et et e et e e e e e e ennans 18

4.5, Setting HiNtS fOr MPL-TO ...t 19

4.6. MPI-10 General CONSIAEIAIONSuieiiitiieeiiti et e et e e e et e e et e e e eata e eenes 19

B FHIE PEI PIOCESS ...ttt ettt ettt et r e s 21
o3 B [L oo (Bt 1o o RSP UPPPTTRUSPPPPN 21

5.2. File Per Process Vs, Shared Fileuuiiiiiiii e 21

5.3. OptimiSing FIlE Per PrOCESSuuiiiiii ettt e 22

5.4. Sample PerformanCe Daaoeieeiiieiiiii et 22

6. HIgN-LeVel 1/O LIBIariescceiieieei e et e s 24
LN W [L oo (B et 1o o R OO PPPTTUPPPTTRUSPPPPN 24

B.2. INEICDF ...ttt ettt 24
6.2.1. Architecture of NetCDF APIs and Librariescooviiiiiiiiiii e 24

6.2.2. Parallel /O With NEICDF ... 25

8.3, H DS .ttt 26
B.3.1. HDFS DESIGN ...ceetiieiiii ettt ettt ettt e e e 26

6.3.2. HDF5 File Organization and Data MOdE]ooeiiiiiiiiiiii e 27

6.3.3. Selecting a Portion Of & DataSPaceoeeeuruieeiii et 27

6.3.4. ChunKiNg iN HDFS .. .coiiiiiiii et et 28

B.3.5. Parallel HDFS ...t ettt 29

6.3.6. Parallel HDF5 EXAMPIE ...ttt 30

B.4. PINEICDF ... ittt ettt ettt et e s 31

B.5. STONLID ..t e et ees 32
6.5.1. SIONLID fil@ FOMMELevnieiiiie e 32

6.5.2. SIONLID API @0 ULITITIESceeeiiieeeei e 32

6.6. Touching on Low-level I/0: POSIX, C and Fortran File Manipulationcccviiieiiiinnenes 33

Best Practice Guide - Parallel 1/0

6.6.1. POSIX and the C Standard Librarycccoooiiiiiiiiiiii e, 33

B.6.2. FOIran FilESciie i 35

6.7. 1/O Libraries SUMIMEAIYcouueiiiieiii e e e e e e e e e et e e e et e e et e e eaneeeees 38

7. 11O PerformanCe ANAIYSIS ... e et e e e e e e e e aaa 39
25 O 1 11 oo 8 Tox ' o P 39

42 T 1 0 I o N 39

7.3. Darshan RUNIIMEciiiiii e e e e e e e e e e e et e e e et e e et e eean s 39
7.3.1. Using the Darshan RUNLIMEcc.uiiiiiiii e e e e e e e e e e eaaees 40

A - = 1= T U PP 41
7.4.1. Darshan Plots: FLASH-10 BENChMarkooovuiiiiiiiiii e 41

8T - 11 1 L P 44
835 T U= T oo IRV = 10 oL 45

7.6. MPI-10 Reporting with Cray MPICH ..o e e 52

0T aT= o[0Tl 4= 1 - 1o o 54

Best Practice Guide - Parallel 1/0

1. Introduction

1.1. About this Document

This best practice guide provides information about High Performance 1/0O systems, parallel 1/0 APIs and I/O
optimisation techniques. The guide presents a description of the storage architecture and the 1/0 software stack.

1.2. Guide Structure

The best practice guide is split into chapters covering specific topics. These chapters are described in more detail

below.
Introduction

High Performance 1/O Systems

Parallel File Systems

MPI-10

File per process

High-level paralel I/O libraries

Parallel 1/0 performance analysis

This chapter! Describes the guide and its structure.

Coversthebasic conceptsof parallel 1/0in HPC, including: general parallel
1/0O strategies (e.g. shared files, file per process), parallel file systems, the
parale /O software stack and potential performance bottlenecks.

Describes the major paralel file systems in use on HPC systems: Lustre
and Spectrum Scale/GPFS. An overview isgiven of BeeGFS, afile system
gaining popularity, and object storage, a data storage method which is not
based on files.

Brief introduction to MPI-10 with links to further, detailed information
aong with tips on how to get best performace out of the MPI-1O library on
parald file systems.

Describesthefile per processmodel for parallel 1/0 along with performance
considerations.

Coverstheuseof high-level libraries (HDF5, NetCDF, pNetCDF, SIONIib)
and considerations for getting best peformance.

Information on how to gather performance data on your use of 1/O. Covers
general advice along with the built-in options for MPI-1O and tools such
as Darshan and Vampir.

Best Practice Guide - Parallel 1/0

2. High Performance I/0O Systems

2.1. Introduction

Current HPC facilities are composed of thousands of compute nodes, high performance networking infrastructures,
and paralé /O environments capable of scaling to terabytes/second of 1/0O bandwidth while providing tens of
petabytes of capacity. In HPC systems, the I/O is a subsystem composed by software and hardware as can be
seenin Figure 1, “Typical High Performance 1/0O System” . The 1/O software stack includes the 1/0 libraries, file
system and some operating system utilities. The 1/0O hardware, also known as I/O infrastructure, is composed of
the storage network, storage nodes, 1/0O nodes and the I/O devices. In most cases the available I/O resources for
asingle application scale together with the amount of reserved compute resources. However their efficient usage
depend on the individual application implementation.

The performance of many research applications is limited by the 1/O system. Infrastructure under-utilisation or
performance bottlenecks can be related to the I/O software stack and its interaction with the application 1/0 pat-
terns. Efficient use of 1/0 on HPC systems requires an understanding of how parallel 1/0 functions work (in both
software and hardware) so that the correct decisions can be made to extract best performance.

Figure 1. Typical High Performance |/O System

Compute
Nodes]
Interconnection _
Network -~ ~ |OLibraries
Parallel: NetCDF, Serial:
HDF5, PnetCDF, efc.. NetCDF. HDF5
1o o MPI-IO CGNS, eftc..
Nodes
p POSIX
A
Storage T [Parallel File System (Client/Server) |
Network H
Storage [Parallel File System (Server) |
Nodes Storage Devices
Storage
Devices 1/0 Software Stack

1/0 Hardware

2.2. 1/0 Strategies in Parallel Applications

Parallel applications usually perform 1/0O in both serial and paralel. We briefly describe serial 1/0 below but the
remainder of this guide will concentrate on parallel 1/0.

Best Practice Guide - Parallel 1/0

2.2.1. Serial I/0

Figure 2. Typical serial 1/0O in parallel applications

Memory
PO P1 P2
B (T |- -
1

= — |
l

File logical view ’

In serial 1/0 (see Figure 2, “Typical serial 1/0 in parallel applications’), a single process accesses a single file.
Asall of the data must flow to a single process, the bandwidth is generally limited by the amount of data that can
be passed from the I/O system to asingle client (usually a single compute node) leading to low /O performance.
Serial 1/0 operations should be limited to small data volume access performed infrequently.

2.2.2. Parallel I/10

In essence, afile is simply a stream of bytes so a user may have to substantially rearrange their program data
before writing it to disk. For example, if aweather model has three main arrays storing air velocity, pressure and
temperature then it might make sense for all values for a particular grid point to be stored together in memory
within the application (e.g. for performance reasons). However, in the file it might be preferable for the velocities
for al gridpoints to be stored in sequence, then all the pressure values then the temperatures (e.g. to help in post-
processing). Theproblemin parallel isthat datarearrangement isalmost alwaysrequired if the parallel code should
produce the samefile as the serial one. For example, in ageneral domain decomposition parallel tasks do not own
a single contiguous chunk of the global data set. Even in asimple 2D decomposition, the local data comes from
many different locationsin the file, with each local row coming from a different place.

This rearrangement implies communication between tasks during the 1O phases, often in a new pattern that is not
used within the computational phases. There are a number of ways to simplify this communication pattern which
leads to four common 1/O strategies. Here we concentrate on the case of writing data: HPC codes typically write
much more data than they read, and also writing is a more complicated operation in parallel than reading.

File per process (Multiple files, The simplest approach isto avoid the data rearrangement completely, with

multiple writers) each task writing its data to a different file. In practice this does not avoid
theissue, but smply delaysit to alater time: subsequent post-processing or
analysisprogramswill amost certainly have to access multiplefilesto read
the datathey require. For very large core counts (>10,000) thisscheme starts
to run up against technological limits in paralel file systems (particularly
in metadata operations) and this limits the scaling of this approach at this
scale.

Figure 3. File per process approach to parallel /0

Memory
P1 P2 Pn
) (- L]
! I ! |

Pn
File logical view

P2
File logical view

PO
File logical view

P1
File logical view,

[

Best Practice Guide - Parallel 1/0

Singlefile, single writer

Single file, multiple writers

Singlefile, collective writers

This is the other extreme, where a single master task coordinates the data
rearrangement, e.g. receiving rows from many tasks and reconstructing the
global data set prior to writing it out. This pattern is also called Master 1/O.
Normally asingle process cannot benefit from thetotal available bandwidth
and such an access schemeis also limited by the memory capabilities of the
single master process. Larger chunks of data might be transferred step by
step which serialises the write process even more.

Here the data rearrangement is achieved by each task writing its data di-
rectly to the correct placein thefile, e.g each individual row iswrittento a
different location. Although this does not involve transfer of data between
tasks, thetaskswill still have to communicate to avoid their writes clashing
with each other if there are overlapps between the individual data chunks.

Figure 4. Single file, multiple writer s approach to parallel
/O

Memory
Pn

i -
\ /S /S
I . }

File logical view

This sits between the two approaches above, where either one or al of the
parallel tasks perform I/O; here weidentify a subset of tasksto perform the
1/0 operations. These I/0 tasks must communicate with the computational
tasksto receive and rearrange the data, and must coordinate with each other
to avoid 1/0O clashes.

Thistechnique can al so beimplemented using an 1/0 server approach where
asubset of the processesin the application are specialised to handle parallel
1/0O operations. Thisallowsthel/O to potentially proceed asynchronously to
the rest of the application and enable more efficient use of HPC resources.

Figureb. Singlefile, collective writersapproach to parallel
/O

‘File logical view

Note that, other than “multiple files, multiple writers’, all these methods should produce identical output to each
other on any number of processors. However, they may have very different performance characteristics. The
“multiple files, multiple writers’ scheme creates alocal process related data view (in comparision of the global

dataview for all other schemes).

Best Practice Guide - Parallel 1/0

2.3. The I/O Software Stack

Figure 6. Thel/O Softwar e Stack

| HPC Application |

. Parallel HDF5, Serial
High-Level /O | ||| NotCDF Parallel, | SIONLib || HDF5
Lol PnetCDF, ADIOS NetCDF
: !
&)
8 -
n 11O Midleware { MPI-IO (ROMIO)
QJ o
: |
S torieell© 1] PoSIXI0 and HPC 110 extensions
3 Library
S l l
=
IBM Spectrum Scale, Lustre,
Global Filesystem OrangeFS N£—|SOI:/IFES
(SSCRATCH and SWORK) =)
Storage
Infrastructure

The /O software stack provides users and administrators with application programming interfaces (APIs) that al-
low them to use the hardware in acommon way without worrying about the specific hardware technology. Parallel
I/Olibraries provide APIsthat enable parallel accessto asingle or severd files. Unlike the parallel versions, serial
I/O libraries (such as those that provide the basic file operations in high-level programming languages. C/C++,
Fortran, Python) do not usually offer specific APIsfor parallel access.

2.3.1. Low-level: POSIX

Thelowest level in the software stack we find isthe POSI X interface, which refersto file operations such as open,
close, read, write, stat and so on. POSIX HPC extensions were designed to improve performance of POSIX on
large-scale HPC environments where the requirement for performance usually outweighs consistency considera-
tions. For example, it often relaxes the rather strict POSIX consistency semantics[1] . In general most other APIs
are build on top of POSIX and POSIX approaches are often used in context of task local file access.

At the lowest level isthe file system software itself which manages access to the hardware resources and imple-
ments the functions required by the POSIX API. File systems have two key roles: i) Organising and maintaining
the file name space and; ii) storing contents of files and their attributes.

OnHPC facilities, we usually find networked file systems (NFS) and parallel file systems. Networked file systems
must solve two problems: 1) File servers coordinate sharing of their data by many clients and 2) Scale-out storage
systems coordinate actions of many servers. We will not consider NFS further in this document as they generally
only use limited levels of parallelism (in the form of RAID configurations), so do not have the ability to provide
high performance when using paralel 1/0 strategiesin HPC. Generally NFS is not used for reading/writing data
during large parallel calculations for this reason. Paralld file systems (usually) distribute single file data across
multiple servers and provide for concurrent access to single files by multiple tasks of aparallel application. They
have the potential to provide high levels of read/write bandwidth to single files by parallelising the access across
multiple 1/0 streams.

We look at parallel file systemsin the next chapter of this guide, Chapter 3.

2.3.2. Middle-level: MPI-IO

On HPC systems the middle level in the I/O software stack is dominated by MPI-1O. By using MPI-IO, it is
possible to apply optimisation techniques such as collective buffering and data sieving. ROMIO [12] is the most
common implementation of the MPI-10O standard and it is used in MPI distributions such as MPICH (which also
covers Cray MPT and HPE MTP), MVAPICH, IBM PE and Intel MPI.

Best Practice Guide - Parallel 1/0

MPI-10 isdiscussed in more detail in Chapter 4.

2.3.3. High level 1/O software

The highest level in 1/O software stack (See Figure 6, “ The 1/0O Software Stack”) presents the high-level libraries.
Theseare APIsthat help to express scientific simulation datain amore natural way such as multi-dimensional data,
labels and tags, non-contiguous data and typed data. Parallel versions sit on top of the MPI-10 layer and can use
MPI-10 optimisations. High-level libraries provide simplicity for visualisation and analysis; and portable formats.
HDF5 [7] and NetCDF [8] are the most popular high level libraries. Over the last years PnetCDF [9] and ADIOS
[10] have also been selected by HPC users to perform parallel 1/0. Another library that is gaining popularity is
SIONLib [11] , ascalable I/O library for parallel access to task-local files. The library not only supports writing
and reading binary datato or from several thousands of processorsinto asingle or asmall number of physical files
but also provides global open and close functions to access SIONIib file formatsin parallel.

These high-level libraries are described in more detail in Chapter 6.

All of thelibrariesand interfaces described aboveimplement parallel 1/0O using ashared file approach with multiple
processes writing to the same logical file (some approaches also allow to use multiple physical files, which are
treated together as one logical file). An alternative approach is to use the standard programming language 1/0
interfaces can be used to implement afile per process model of parallel 1/0 where every parallel processwritesits
own file. This approach has its own advantages and disadvantages and is described in more detail in Chapter 5.

2.4. General Pointers for Efficient I/O

A few "rules of thumb" are given below to consider when running or designing 1/O-intensive applications on HPC
systems.

» Avoid unnecessary /0. For example, switch off debug output for production runs.

e Perform I/O in few and large chunks. In parallel file systems, the chunk size should be a multiple of the block
size or stripe size.

 Prefer binary/unformatted 1/0 instead of formatted data.
» Avoid unnecessary/large-scal e open/close statements. Remember that metadata operations are latency bound.

» Use an appropriate file system. Paralel file systems may not scale well for metadata operations, but provide
high/scal able bandwidth. NFS-based file systems may show the reversed behaviour.

» Avoid explicit flushes of datato disk, except when needed for consistency reasons.

» Use specialised I/O libraries based on the 1/0 requirements of your applications. These provide more portable
way of writing data and may reduce metadata load when properly used.

» Convert to target / visualisation format in memory if possible.

* For parallel programs, afile-per-process strategy can provide high throughput, but usually needs a further post-
processing stage to collate the outputs.

Best Practice Guide - Parallel 1/0

3. Parallel File Systems

3.1. Introduction

Parallel file systems provide high-performance I/0O when multiple clients (a"client" usually meaning a compute
node, in this instance) share the same file system. The ability to scale capacity and performance is an important
characteristic of aparalld file systemimplementation. Stripingisthe basic mechanism used in parallel file systems
for improving performance, where file datais split up and written across multiple 1/0 servers. Primarily, striping
allows multiple servers, disks, network links to be leveraged during concurrent 1/O operations, thus increasing
available bandwidth. The most popular paralel file systemson HPC platformsare Lustreand IBM Spectrum Scale
(formerly GPFS) [1] and form the focus of this chapter. A brief overview isgiven of BeeGFS, afile system gaining
popularity, and object storage, a data storage method which is not based on files.

3.2. Lustre

Figure7. Lustrecluster at scale

Management Metadata Object Storage Object Storage
Servers (MGSs) Servers (MDSs) Servers (055s) Targets (OSTs)
MGT WDT
& Q©
Lustre MGS1 MES2 MDS1 MBS2 Lustre
Clients {active) (standby) (agtive) (standby) Routers Commodity Storage

0S5 &

0SS 6)
(Enterprise-Class Storage

= InfiniBand networi c - failover capability Arrays and SAN Fabric

= Ethernet network
0857

Lustreis aLinux file system implemented entirely in the kernel and provides a POSIX standards-compliant file
system interface. Its architecture is founded upon distributed object-based storage. This delegates block storage
management to its back-end servers and eliminates significant scaling and performance issues associated with the
consistent management of distributed block storage metadata.

Lustre file systems are typically optimised for high bandwidth: they work best with a small number of large,
contiguous 1/O requests rather than a large number of small ones (i.e. small numbers of large files rather than
large numbers of small files).

A Lustre file system consists of the following components:

» Metadata Servers (MDS) : The MDS makes metadata stored in one or more Metadata Targets (MDTS) avail-
ableto Lustre clients. Each MDS manages the names and directories in the Lustre file system(s) and provides
network reguest handling for one or morelocal MDTs. Operations such as opening and closing afile can require
dedicated access to the MDS and it can become a serial bottleneck in some circumstances.

10

Best Practice Guide - Parallel 1/0

» MetadataTargets(MDT) : For Lustre softwarerelease 2.3 and earlier, each file system hasone MDT; multiple
MDTs are supported on later versions. The MDT stores metadata (such as filenames, directories, permissions
and file layout) on storage attached to an MDS. An MDT on a shared storage target can be available to multiple
MDSs, athough only one can accessiit at atime. If an active MDS fails, a standby MDS can serve the MDT
and make it available to clients. Thisisreferred to as MDS failover.

» Object Storage Servers (OSS) : The OSS provides file 1/O service and network request handling for one or
more local Object Storage Targets (OSTs). Typicaly, an OSS serves between two and eight OSTs, upto 16 TB
each. A typical Lustre configuration consists of an MDT on a dedicated node, two or more OSTs on each OSS
node, and a client on each of alarge number of compute nodes.

e Object Storage Target (OST) : User filedatais stored in one or more objects, each object on aseparate OST in
alLustrefile system. Each OST can write dataat around 500 MB/s. Y ou can think of an OST as being equivalent
to adisk, although in practice it may comprise multiple disks, e.g. in aRAID array. An individual file can be
stored across multiple OSTs; this is called striping. The default is dependent on the particular system (1isa
common choice), although this can be changed by the user to optimize performance for a given workload.

» Lustreclients: Lustre clients are compute, visualisation or login nodes that are running Lustre client software,
alowing them to mount the Lustre file system. Good performance is achieved when multiple clients (usualy
compute nodes for HPC calculations) simultaneously access the file system.

3.2.1. Lustre File Layout (Striping)

Lustrefile systems have the ability to stripe data across multiple OSTsin around-robin fashion. Users can option-
ally configure for each file the number of stripes, stripe size, and OSTs that are used. Although these parameters
can be set on a per-file basis they are usually set on directory where your output files will be written so that all
output files inherit the same settings. The stripe_size indicates how much data to write to one OST before mov-
ing to the next OST. The stripe_count indicates how many OSTsto use. The default values for stripe_count and
stripe_size are system dependent but are often 1 and 1 MiB respectively.

Youcanusethel fs getstri pe command to seethelayout of aspecificfile:

> fs getstripe reads2.fastq
reads2. f ast g

I Mm stripe_count: 1

I mm stripe_size: 1048576

| Mm pattern: 1

I mm | ayout gen: O

I mm stripe_offset: 42

obdi dx objid objid group

42 37138823 0x236b187

0

Inthiscase, thefilereads2.fastq hasasingle stripe of size 1 MiB (1048576 bytes). To change the layout of specific
directory (or file) wecanusethel f s set st ri pe command. (Note that this command will not repartition the
data on existing files but will ensure that new files created within the directory use the updated settings.)

> fs setstripe -¢c -1 results_dir/

In the example, we set the stripe count to -1 (maximal striping) to make the largest potential bandwidth available
to new filesin this directory.

3.2.2. Choosing a stripe count

The stripe count sets the number of OSTs (Object Storage Targets) that Lustre stripes the file across. In theory,
the larger the number of stripes, the more parallel write performance is available. However, large stripe counts for
small files can be detrimental to performance as there is an overhead in using more stripes.

11

Best Practice Guide - Parallel 1/0

The stripe count has the largest potential impact on performance on Lustre files systems. The following advice
generaly applies:

» When using shared files you should use maximal striping (1 fs setstripe -c -1)togivethelargest
potential bandwidth for parallel access.

» Using multiple stripes with large numbers of files (for example in afile per process scheme with large core
counts) can have an adverse impact on the performance of Lustre file systems. Y ou will generally see the best
performance for large file counts with a stripe count of 1.

3.2.3. Choosing a stripe_size

The size of each stripe generally has less of an impact on performance than the stripe count but can become
important as the size of the file being written increases. We outline some considerations below but bear in mind
that the impact islinked to the 1/O pattern used in the application (and that stripe count is usually amore important
parameter anyway). Note:

 The stripe size should be a multiple of the page size

» The smallest recommended stripe sizeis 512 KB

» A good stripe size for sequential 1/0 using high-speed networksis between 1 MB and 4 MB
e Themaximum stripe sizeis4 GB

Further information can be found on [32]

3.3. IBM Spectrum Scale (formerly GPFS)

Figure 8. NSD Server Model

Network Shared Disk (NSD) Server Model

Application
Nodes

TCP/IP or Infinband Network

NSD
Servers

Picture Source, High Performance Parallel I/0 Book, Chapter 9.
Editors Prabhat, Quincey Koziol. October 2014.

IBM Spectrum Scale is a cluster file system that provides concurrent access to a single file system or set of file
systems from multiple nodes. The nodes can be SAN attached, network attached, a mixture of SAN attached
and network attached, or in a shared nothing cluster configuration. This enables high performance access to this
common set of datato support a scale-out solution or to provide a high availability platform.

Its main characteristics are:

 Scalability: It usesthe concept of wide striping that means distribute the data and metadata across all resources.
Large files are divided into equal-sized blocks and the consecutive blocks are placed on different disksin a
round-robin fashion.

12

Best Practice Guide - Parallel 1/0

» Caching: It is client-side, which is kept in a dedicated and pinned area of each node called the pagepool. The
cache is managed with both read-ahead techniques and write-behind techniques.

» Cache coherence and protocol: It uses the distributed locking to synchronize the access to data and metadata
on ashared disk.

» Metadata management: It uses inodes and indirect blocks to record file attributes and data block addresses.

At the user level, the GPFS main parameter to consider isthe block size. Parallel applications should use request
sizes (chunk size) that are multiples of the block size to obtain a high data transfer rate.

Unlike other parallel file systems such as Lustre, in GPFS, the user cannot change the block size or select the
number of data servers. A largefileisdistributed across al the disks that are part of GPFS storage.

Parallel applications that use MPI-10 should write/read in multiples of the block size and align the request sizeto
block size to avoid file lock contention that can seriously degrade I/O performance.

3.3.1. Block size

To display the amount of available disk space for each filesystem:

di 98het @ ogi n05: ~> df -Th

Fil esystem Type Size Used Avai l

Use% Mount ed on

/dev/fsl gpfs 12P 8. 8P 3.0P 75% /gpfs
/dev/fs2 gpfs

5.2P 3.8P 1.4P 73%/gss/scratch

The /O operation size should be a multiple of the block size. To display the properties of a GPFS, this command
can be used:

di 98het @ ogi n05: ~> Ml sfs fsl
flag val ue description

-f 262144
M ni mum fragment size in bytes

-B 8388608 Bl ock size

Further information can be found on [31]

3.4. BeeGFS (formerly FhGFS)

BeeGFS, also known as FhGFS prior to 2014, is afile system which has gained popularity in recent yearsin the
European HPC community. Attributed in part to its relative ease of deployment, it being free and open source
(in contrast to proprietary solutions like IBM Spectrum Scale), and its support of a wide range of Linux kernel
versions.

Comparable to Lustre in terms of system architecture, BeeGFS also consists of Management Server (MS), Meta-
data Server (MDS) and Object Storage Server (OSS) componentg[4] . It similarly uses the concept of file striping
for parallelism and provides tools to enable users to query and configure stripe parameters.

Thebeegf s- ct 1 utility enables clients to affect BeeGFS parameters. To query the existing stripe pattern for a
file, beegf s-ctl --getentryinfoisused 34]:

13

Best Practice Guide - Parallel 1/0

> beegfs-ctl --getentryinfo /mt/beegfs/testdir/test.txt

Path: /testdir/test

Mount : / mmt/ beegfs

Entryl D. 0-5429B29A- AFA6

Met adat a node: netaOl [ID: 1]

Stripe pattern details:
Type: RAIDO
Chunksi ze: 512K
Nunber of storage targets: desired: 4; actual: 4
Storage targets:
+ 102 @storage0l1 [ID: 1]
101 @storage0l1 [ID: 1]
201 @storage02 [ID: 2]
202 @storage02 [ID: 2]

+

+ + +

+ + +

Indicating thet est . t xt filehasfour stripes, each with asize of 512KB. Similarly, setting the stripe pattern can
be accomplished with beegf s-ct| --set pattern asfollows:

> beegfs-ctl --setpattern --chunksize=1m --nuntargets=4 /data/test

which sets the stripe count to four, each with asize of 1IMB, for all files created under the /dataltest directory. Note
that default installations of BeeGFS restrict the - - set pat t er n mode to superuser/root access only. Non-root
users may still set striping configurations but only if the site has explicitly allowed it by enabling the sysAl -
| owUser Set Pat t er n setting on the MDS[5].

More information on BeeGFS stripe settings and performance considerationsis at [6]

3.5. Object Storage

A relatively new data storage technique being driven by advances in cloud and internet-based services is object
storage. Thiseschewsthe directory hierarchy of atraditional file system in favour of acollection of data"objects",
each containing their own unique identifier. A comparison can be drawn between object storage and key-value
pairs, such as those implemented in Java Maps or Python dictionaries.

The primary advantage of object storage over atraditiona file system isimproved scalability. As traditional file
systems grow, they are often limited by the increasing complexity required to keep track of their hierarchical
structure. In contrast, the simple flat structure of object storage allows further capacity to be added without intro-
ducing further complexity. The drawback to the approach isit is suited more for long-term storage of large vol-
umes of unstructured data. Frequently changed data is generally not suited for object storage due to performance
limitations, which can have implications for HPC applications.

A functional consideration for application authors is that specialised methods must be used to interact with an
object store, rather than typical read/write file system calls. The APl used by Amazon's Simple Storage Service
(S3) has become a de facto standard in this area, with multiple storage vendors implementing it asthe interface to
their services and awide variety of tools supporting it. However, directly interfacing with cloud stores may not be
suitable for many HPC 1/O patterns, due to the performance limitations on transactional data. A possible workflow
for HPC use would be writing to a scratch space in a traditional file system before pushing the data to an object
store for future analysis or archiving. This does not require any change to the software or compute stage of atask
but does mean the user must still operate under the fundamental limitations of traditional file systems.

14

Best Practice Guide - Parallel 1/0

4. MPI-1O

4.1. Introduction

POSIX is a standard that maintains compatibility with the broadest base of applications while enabling high per-
formance. Parallel file systems used across HPC provide parallel access while retaining POSIX semantics. How-
ever, the portability and optimisation needed for parallel 1/0 cannot easily be achieved with the POSIX interface.
In order to face thisissue, the HPC community defined the MPI-1O interface. MPI-10 provides ahigh-level inter-
face supporting partitioning of file data among processes and a collective interface supporting complete transfers
of global data structures between process memories and files. An implementation of MPI-10 istypically layered
on top of aparalel file system that supports the notion of asingle and common file shared by multiple processes.
(Both of the common paralld file systems currently in use: Lustre and IBM Spectrum Scale, support this concept.)

MPI-10 was initially defined as part the MPI-2 (Message Passing Interface) Standard in 1997. MPI-10 provides
capabilitiesto exploit I/O performance improvements that can be gained via support for asynchronous1/0O, strided
accesses, and control over physical file layout on storage devices (disks). Instead of defining I/O access modes
to express the common patterns for accessing a shared file, the approach in the MPI-10 standard is to express the
data partitioning using derived datatypes. Figure 9, “MPI-10 File concepts’ depicts the logical view of aMPI-10
file and the accompanying table shows the main concepts defined for MPI-10 in the MPI-3 standard [33].

Figure9. MPI-I10 File concepts

etype []

filetype [T T T

tiling a file with the filetype:

| il "HENEE BEEEE BEEE BEEE BEXC
* f L//LJ

displacemenN accessible data

holes

Concept Definition

file An ordered collection of typed dataitems

etype The unit of data access and positioning. It can be any MPI predefined or derived datatype

filetype The basis for partitioning a file among processes and defines a template for accessing the file. A
filetype is either a single etype or a derived MPI datatype constructed from multiple instances of
the same etype.

view Defines the current set of data visible and accessible from an open file as an ordered set of etypes.

Each process has its own view of the file, defined by three quantities: a displacement, an etype,
and afiletype. The pattern described by a filetype is repeated, beginning at the displacement, to
define the view.

Offset Itisaposition in the file relative to the current view, expressed as a count of etypes. Holesin the
view' s filetype are skipped when calculating this position.

Displace- It is an absolute byte position relative to the beginning of a file. The displacement defines the
ment location where a view begins.

file size and| The size of an MPI file is measured in bytes from the beginning of thefile.
end of file

file pointer | A file pointer isan implicit offset maintained by MPI. “Individual file pointers’ are file pointers
that are local to each process that opened the file. A “shared file pointer” is afile pointer that is
shared by the group of processes that opened the file.

filehandle |A filehandleisan opaque object created by MPI_FILE _OPEN and freed by MPI_FILE _CL OSE.

15

Best Practice Guide - Parallel 1/0

4.1.1. MPI-IO data access operations

MPI-10 defines three orthogonal aspects to data access from processes to files: positioning, synchronism and
coordination. Positioning can be an explicit offset or implicit through the file pointer. Synchronism provides three
access maodes blocking, nonblocking and split collective. Coordination allows to the MPI processes to perform
noncollective or collective operations.

Collective operations are generaly required to be able to achieve best performance as they allow the MPI-10
library to implement a number of important optimisations:

Nominate asubset of MPI processes aswriters, the number being selected automatically to match thefile system
configuration.

Aggregate data from multiple processes together before writing, ensuring a smaller number of larger 10 trans-
actions;

Ensurethat there are no clashes between different writers so that 10 transactions can take placein parallel across
al the OSTs.

The strategy is automatically selected by MPI-10 but can a so be manipulated by setting MPI-10 hints or environ-
ment variables. Depending on the data layout and distribution a certain collective strategy might perform better
than others.

Figure 10. Data Access Oper ations

file pointers

MPI_FILE_WRITE

positioning synchronism coordination
noncollective | collective
explicit blocking MPI_FILE_READ_AT MPI_FILE_READ_AT _ALL
offsets MPI_FILE_WRITE_AT MPI_FILE_WRITE_AT _ALL
nonblocking & MPI_FILE_IREAD_AT MPI_FILE_READ_AT _ALL_BEGIN
split collective MPI_FILE_READ_AT_ALL_END
MPI_FILE_IWRITE_AT MPI_FILE_WRITE_AT_ALL_BEGIN
MPI_FILE_WRITE_AT _ALL_END
individual blocking MPI_FILE_READ MPI_FILE_READ_ALL

MPI_FILE_WRITE_ALL

nonblocking &
split collective

MPI_FILE_IREAD

MPI_FILE_IWRITE

MPI_FILE_READ_ALL_BEGIN
MPI_FILE_READ_ALL_END
MPI_FILE_WRITE_ALL_BEGIN
MPI_FILE_WRITE_ALL_END

shared
file pointer

blocking

MPI_FILE_READ_SHARED
MPI_FILE_WRITE_SHARED

MPI_FILE_READ_ORDERED
MPI_FILE_WRITE_ORDERED

nonblocking &
split collective

MPI_FILE_IREAD_SHARED

MPI_FILE_IWRITE_SHARED

MPI_FILE_READ_ORDERED_BEGIN
MPI_FILE_READ_ORDERED_END
MPI_FILE_WRITE_ORDERED_BEGIN
MPI_FILE_WRITE_ORDERED_END

4.1.2. General Hints

Application developers should aim to use the highest level of abstraction possible to allow the MPI-10 library
to implement /O in the optimal way.

Collective operations should be used as the non-collective operations limit the optimisation that the MPI-1O
library can perform. Collective operations often perform orders of magnitude better than non-collective opera-
tionsfor large amounts of I/O. Thisis not always the case, but should be tested for all read and write commands
where possible.

Getting good performance out of MPI-10 aso depends on configuring and using the parallel file system cor-
rectly, thisis particularly important on Lustre file systems.

4.2. Manipulating Files in MPI

File manipulation in MPI-10 is similar to POSIX-10:

16

Best Practice Guide - Parallel 1/0

e Openthefile MPI _Fil e_open
» Write/Read to/from thefile: MPI _File witeorMPl _File_read

e Closethefile: MPI _Fil e_cl ose

4.2.1. Opening a File

int MPI_File open(MPlI _Comm comm const char *filenanme, int anbde, MPI _Info
info, MPI _File *fh)

MPI_File open opensthefileidentified by the file name filename on all processesin the comm communicator
group. It is a collective routine, al processes must provide the same value for amode, and all processes must
provide filenamesthat reference the samefile. A process can open afileindependently of other processes by using
the MPI_COMM _SELF communicator. The file handle returned, fh, can be subsequently used to access thefile
until the fileis closed using MPI_File_close(fh).

Initially, all processes view the file as a linear byte stream, and each process views data in its own native repre-
sentation.

The supported amode are:

e IMPI _MODE RDONLY read only,

« MPI _MODE_RDWR reading and writing,

o MPI _MODE WARONLY write only

e MPI _MODE_CREATE create thefileif it does not exist,

* MPI _MODE_EXCL error if creating file that already exists,

e MPI _MODE DELETE ON _CLOSE deletefile on close,

* MPI _MODE_UNI QUE_OPENfilewill not be concurrently opened elsewhere,
e Pl _MODE_SEQUENTI AL filewill only be accessed sequentialy,

» VPl _MODE_APPEND set initial position of all file pointersto end of file.

C users can use hit vector OR (|) and in Fortran addition "+" to combine these constants; or the hit vector 10OR
intrinsic in Fortran 90.

infoisan opaque object with ahandle of type M Pl _Infoin C and Fortran with thempi_f08 module, and INTEGER
in Fortran with the mpi module or the include file mpif.h. MPl _I NFO_NULL can be used as a default.

Hints specified viainfo allow a user to provide information such as file access patterns and file system specifics
to direct optimisation. Providing hints may enable an implementation to deliver increased 1/0 performance or
minimise the use of system resources.

info is aparameter in MPI_FILE_OPEN, MPl_FILE_SET_VIEW,MPI_FILE_SET_INFO.

To create a new info object MPlI _I NFO_CREATE(i nfo, i error) isused and MPl _I NFO_SET(i nf o,
key, val ue, ierror) toaddanentrytoinfo.

4.3. File View

In MPI-IO it is possible to define a view for MPI process using MPI_File set view. A view is specified by a
triplet (displacement, etype, and filetype). The default view is a linear byte stream, represented by the triple (O,
MPI_BYTE, MPI_BYTE).

17

Best Practice Guide - Parallel 1/0

MPI _FILE SET VIEW (fh, disp, etype, filetype, datarep, info)
A fileview:

» changesthe process s view of the datain thefile

* resetstheindividual file pointers and the shared file pointer to zero

* isacollective operation

« the values for dat ar ep and the extents of et ype in the file data representation must be identical on all
processes in the group

 thedatatypespassedinet ype andfi | et ype must be committed

» dat ar ep argument is a string that specifies the format in which datais written to afile: “native’, “internal”,
“external 32", or user-defined

» “external32" is adata representation that is supposed to be portable across architectures. However not all MPI
implementations support the "external 32" representation, so in general MPI-10 files are not portable between
all combinations.

Below a simple example of aview is shown:

MPI _Aint |b, extent;
MPI _Dat at ype etype, filetype, contig;
MPI _Of fset disp;

/1 Create the contig datatype conposed by two integers
MPI _Type_contiguous(2, Ml _INT, &contig);
Ib = 0; extent = 6 * sizeof(int);

/] Create the filetype with | b as | ower bound

/1 and extent fromthe contig datatype

MPI _Type_create_resized(contig, |Ib, extent, &filetype);
MPI _Type_commit (&f il etype);

/1 Define the displacenment
disp =5 * sizeof(int);
etype = MPI _I NT;

MPI _Fil e_open(MPI _COW WORLD, "/pfs/datafile", \
MPI _MODE_CREATE | MPI_MODE _RDWR, MPI _| NFO NULL, &fh);

MPI _File_set_viewfh, disp, etype, filetype, "native",
MPI _| NFO_NULL) ;

MPl_File wite(fh, buf, 1000, MPI I NT, MPl_STATUS | GNORE):

4.4. ROMIO optimisation

One of the most common MPI-10 implementation is ROMIO, which is used in the major MPI distributions such
as MPICH, MVAPICH, PE IBM and Intel MPI.

Hints for Data Sieving:

e ind _rd buffer_size controlsthesize (in bytes) of the intermediate buffer used when performing data
sieving during read operations.

18

Best Practice Guide - Parallel 1/0

i nd_w _buf fer_size Controlsthe size (in bytes) of the intermediate buffer when performing datasieving
during write operations.

rom o_ds_read Determines when ROMIO will choose to perform data sieving for read. Valid values are
enable, disable, or automatic.

rom o_ds_w it e Determineswhen ROMIO will choose to perform data sieving for write. Valid values are
enable, disable, or automatic.

Hintsfor Collective Buffering (Two-Phase 1/0):

cb_buffer_size Controlsthesize (in bytes) of the intermediate buffer used in two-phase collective 1/0.
cb_nodes Controlsthe maximum number of aggregators to be used.

rom o_cb _read Controlswhen collective buffering is applied to collective read operations. Valid values
are enable, disable, and automatic.

rom o_cb_wite Controlswhen collective buffering is applied to collective write operations.
rom o_no_i ndep_rw Thishint controls when “deferred open” is used.

cb_config_list Providesexplicit control over aggregators (i.e., one process per node).

4.5. Setting Hints for MPI-10

Hints for MPI-10 can be set by using:

an "info" object, asin this example:

integer info, ierr

call MPI _Info create(info, ierror)

call MPI _Info_set(info, 'romo_cb read’, 'disable , ierr)
call MPI _Info_set(info, 'romo_cb wite, "disable , ierr)

call MPI_File_open(comm filename, amode, info, fh, ierror)

the ROMIO_HINTS environment variable. Here the user must create a file with a list of hints to be set at
execution time;

>cat $HOVE/ rom o-hints
rom o_cb read enabl e
romo cb wite enable

Before running the application, the ROMIO_HINTS variable is set as follows: export ROM O_HI NTS=
$HOME/ r omi o- hint s

4.6. MPI-IO General Considerations

MPI-10 has many featuresthat can help users achieve high performance. The different MPI-10 routines provide
flexibility aswell as portability.

The most important features are the ability to specify non-contiguous accesses, the collective I/O functions, and
the ability to pass hints to the MPI implementation.

When accesses are non-contiguous, users must create derived datatypes, define file views, and should use the
collective I/O functions.

19

Best Practice Guide - Parallel 1/0

e Useof MPI I/Oisoften limited to paralel file systems; do not expect to obtain good performance using it with
NFS.

20

Best Practice Guide - Parallel 1/0

5. File Per Process

5.1. Introduction

Often maligned in HPC circles, the file-per-process model can be a useful approach to parallel 1/0 for many
applications if they can live within the constraints it introduces.

5.2. File Per Process vs. Shared File

When deciding onaparallel 1/O strategy, it isimportant to beinformed of the prosand cons of available approaches
in order to select one that best meets your requirements. File-per-process is often not given appropriate consider-
ation, with asingle shared file assumed to be superior in all situations. However, thisis not the case. Thefollowing
section detail sthe rel ative advantages and drawbacks to the two opposite extremes patterns of file-per-process and
asingle shared file, and seeks to justify why the lesser considered strategy should not be discarded so readily.

The simplicity of file-per-processisthe most significant advantage over a shared file approach. With each process
creating its own file, all file accesses are made independently of one another so it is not necessary for the imple-
menter to introduce any synchronisation between 1/O operations, sidestepping much of the complexity of parallel
programming. This advantage additionally extends beyond initial implementation, as easier to understand codeis
also easier to maintain, leading to improved software sustainability.

However, it could be argued that file-per-process only delays introducing complexity, as, following process com-
pletion, the datais distributed over the various files and must be reconstituted or otherwise pre-processed before
analysis can begin. Alternatively, the analysis tools themselves may be modified to support input from multiple
files but thisis a trade of application complexity for increased complexity in the tools. In addition there are nor-
mally regulations by each hosting site which only allow alimited number of individual fileswithin one computing
project.

Figure 11. Recap of file per process (Ieft) and single shared file (right)

Memory Memory
P1 P2 Pn PO P1 P2 Pn
| T T 1 1 Z
! | ! ! ! \ / / /
PO P1 P2 Pn
File logical view| [File logical view| [File logical view File logical view
B O | .. T

File logical view

In terms of performance, file-per-processis entirely capable of achieving reasonable speeds approaching the max-
imum attainable bandwidth of the underlying system (see the following Sample Performance Data section for a
demonstration of this) but is often bottlenecked by technological limits of thefile system, in particular those rel at-
ing to metadata operations. Metadata includes file permissions, creation date, name, owner — generally anything
relating to a file other than the data itself. The more files you have, the more requests you must make for this
information, and it can strain the metadata server(s) significantly. This can result in an enforced upper limit on the
scalability of the approach, asyour application 1/0 ends up serialising on the metadataresources. This serialisation
isoften observed by HPC service users when common commands such as| s run slowly or hang completely when
run on directories with large numbers of files.

The shared file strategy hasthe advantagein terms of disk storage footprint. Each file comeswithitsown overhead,
such as header information, which is only recorded once for asingle file but must be recorded for each file in the
file-per-process model. However, in practice, users are rarely limited by disk space so thisis seldom a concern.

To summarise, file-per-process pros.

21

Best Practice Guide - Parallel 1/0

 Easier to implement

* More straightforward to maintain

 Can achieve performance on par with single shared file
and file-per-process cons;

« Adds complexity to dataanalysis

» Metadata operations limit scalability

e Hasalarger disk storage footprint

5.3. Optimising File Per Process

Severa of the drawbacks of file-per-process can be mitigated by the user. Use of data management approaches
can alleviate much of the strain from metadata operations in the approach. Breaking up the files into a set of
directories, for instance, can reduce the number of metadata queries made when copying, moving, reading or
otherwise accessing the files.

Archiving utilities such ast ar and zi p are designed with the purpose of converting collections of files into
asingle file for later use and easier management. Thisisideal for addressing the limitations of file-per-process
and comes with additional benefits such as optional compression and error checking using, for example, the CRC
values stored in zip files by default. These formats are ubiquitousin the computing world so come with the further
advantage that many standard tools and libraries for handling these files already exist and can be utilised without
much additional effort from the user.

File systems that support user tuning can be reconfigured to better support the file-per-process pattern. For exam-
ple, a Lustre space is best configured to a single stripe per file on the corresponding directory, to minimise the
overhead of communication with the OSTs:

Ifs setstripe -c 1 files_dir/

Refer to Chapter 2 for further details on parallel file system technology and options for tuning for large numbers
of smaller files.

5.4. Sample Performance Data

Experimental data is provided by the National Supercomputing Service of the UK, ARCHER[13] [14]. The ser-
vice is based around a Cray XC30 supercomputer with a Seagate Sonexion implementation of Lustre and results
published primarily focus on its f s3 file system consisting of 48 available OSTs and 12 OSSes. The file-per-
process (FPP) and single-shared-file (SSF) schemes are directly compared in terms of the maximum achievable
bandwidth of standard unformatted Fortran writes. Results are gathered from 1-512 fully-populated ARCHER
nodes, i.e. 24-12288 CPU cores at 24 processes per node, and the plot in Figure 12, “ARCHER sample FPP vs.
SSP results’ produced.

22

Best Practice Guide - Parallel 1/0

Figure 12. ARCHER sample FPP vs. SSP results

20000
® FPP:ci-s1m
A SSF:-c-1-54m

15000

10000

Max. Write Bandwidth / MiB/s

5000

24 43 9% 192 334 768 1536 072 G144 12288
Writers

While SSF reaches a higher maximum bandwidth than FPP between 768-3072 processes, FPPis still comparable
at these core counts and even noticeably outperforms the shared file approach at alower number of cores, 24-192.
Furthermore, FPP outperforms SSF at the maximum of 12288 cores where SSF performance drops off, suggesting
a bottleneck other than metadata performance.

FPP additionally achieves a much more consistent speed overal, with the bandwidth reached at 48 cores being
approximately what is measured at all points up to 12288 cores. For these reasons, FPP is the approach recom-
mended by ARCHER in most cases and not SSF, as may be expected.

23

Best Practice Guide - Parallel 1/0

6. High-Level I/O Libraries

6.1. Introduction

Scientific applications work with structured data and desire more self-describing file formats. A high-level 1/0
library is an APl which helps to express scientific simulation data in a more natural way. Using high-level 1/0
librariesit is possible represent multi-dimensional data, 1abels and tags, noncontiguous data and typed data. These
kind of libraries offers simplicity for visualisation and analysis, portable formats can run on one machine and
take output to another; and longevity where output will last and be accessible with library tools with no need to
remember a specific version number of the code. Many HPC applications make use of higher-level 1/0O libraries
such asthe Hierarchical Data Format (HDF) and the Network Common Data Format (NetCDF). Parallel versions
of high-level libraries are built on top of MPI-10 and they can use MPI-10 optimisations.

6.2. NetCDF

NetCDF (Network Common Data Form) is a set of software libraries and self-describing, machine-independent
data formats that support the creation, access, and sharing of array-oriented scientific data sets (vectors, matrices
and higher dimensiona arrays). The file format defined by netCDF allows scientists to exchange data and makes
the I/O independent of any particular machine architecture. The portability of its files is the most important fea-
ture in netCDF. It is commonly used in climatology, meteorology and oceanography applications (e.g., weather
forecasting, climate change) and GIS applications.

6.2.1. Architecture of NetCDF APIs and Libraries

Figure 14, “ Enhanced NetCDF Data Model” shows the layering architecture of netCDF C/C++/Fortran libraries
and applications.

Figure 13. Architecture of NetCDF APIsand Libraries

‘ncdump‘ l C apps ‘ ‘ F90 apps ‘ ‘ perl apps ‘ ‘ C++ apps ‘ ‘ python, ... apps l

ncgen ‘ F77 apps ‘
Y
Y Imﬂ v vy v y

‘old perl API]

vy y | Fr7API |vz2 APi|old Cr+ API|| Ct+ API | python, ... APIs
libdispatch (C API)
libsrc (classic) ‘ libsrc4 (netCDF-4) ‘ libdap2
pnerr:df‘ HD5 | HD4 ‘ oc (DAP2 C library)

-

remote data
(netCDF, GRIB, ...

b | zlib [sziib| # ‘ libcurl
\)
netCDF classic netCDF-4 j HDF5 HDF4 SD

| User || Unidata|

3" party |

The software libraries provide read-write access to the netCDF format, encoding and decoding the necessary
arrays and metadata. The core library iswrittenin C, and provides an API for C, C++, Fortran 77 and Fortran 90.
Additionally, a complete independent implementation is written in Java, which extends the core data model and
adds additional functionality. Interfaces to netCDF based on the C library are aso available in other languages
including R, Perl, Python, Ruby, MATLAB, IDL and Octave.

Parallel 1/0 has been incorporated for netCDF from version 4, Unidata's netCDF supports parallel 1/O either
through PnetCDF or HDF5. Through PnetCDF, netCDF-4 can access filesin CDF formatsin parallel. Similarly,
through HDF5, netCDF-4 can access filesin HDF5 format (so called netCDF-4 format).

24

Best Practice Guide - Parallel 1/0

6.2.1.1. The netCDF data model

A netCDF dataset contains dimensions, variables, and attributes, which all have both a name and an ID number
by which they are identified. These components can be used together to capture the meaning of data and relations
among datafieldsin an array-oriented dataset.

Figure 14. Enhanced NetCDF Data Model

Variables and attributes have one of

File rwelve primitive data types or one of
location: Filename Jfour user-defined types.
e

P 1

»r— UserDefinedType PrimitiveType

name: String . — o
typename: String byte
. short
- 5 Enum int
= Dimension - e
Attribute = int64
String name: String . float
name:
. length: int paque double
pe: Dase e i i unsigned byte
values: 1D array isUnlimited())

| Compound | unsigned short
& unsigned int

i unsigned int64

Variable ;

T VariableLength string

name: String

shape: Dimension]]

type: DataType
array: read(), ...

A file has a top-level unnamed group. Each group may contain one or more
named subgroups, user-defined types, variables, dimensions, and attributes.
Variables also have attributes. Variables may share dimensions, indicating a
common grid. One or more dimensions may be of unlimited length.

» Dimension: An entity that can either describe a physical dimension of a dataset, such as time, latitude, etc., as
well as an index to sets of stations or model-runs.

» Variable: An entity that stores the bulk of the data. It represents an n-dimensional array of values of the same
type.

 Attribute: An entity to store data on the datasets contained in the file or the file itself. The latter are called
global attributes.

6.2.2. Parallel I/O with netCDF

The netCDF library supports parallel 1/0 based on MPI-10+pnetcdf or MPI-IO+HDF5. Parallel 1/O support must
be enabled at configure time when building these libraries:

 Tobuild netCDF-4 with HDF5 parallel support: $ CC=npi cc CPPFLAGS=- 1 ${H5DI R}/ i ncl ude LD
FLAGS=-L${H5DIR}/lib ./configure --disable-shared --enable-parallel-tests
--prefix=${NCDI R} , where H5DIR must be a parallel HDF5 installation (- - enabl e- paral | el in
HDF5 configure).

» To build netCDF-4 with PnetCDF parallel support: $ CC=npi cc CPPFLAGS="-1 ${H5DI R}/ i ncl ude
-1 ${PNDI R}/ i ncl ude" LDFLAGS="-L${H5DIR}/lib -LS{PNDIR}/Ilib" ./configure --
enabl e-pnet cdf --enabl e-parallel-tests --prefix=${NCD R}

Parallel 1/0 support establishes a dependency on the MPI implementation. The pnetcdf library enables parallel I/
O operations on filesin classic formats (CDF-1 and 2), and CDF-5 format since the release of NetCDF 4.4.0.

To support parallel 1/0 there are additional parameters and new functions:

e Fortrannf 90_creat e() andnf 90 _open() havetwo additional optional arguments. an MPI communica-
tor conm and an MPl _| nf o objecti nf o (may be MPI _| NFO_NULL)

25

Best Practice Guide - Parallel 1/0

« For switching between collective and independent access: nf 90 _var _par _access(ncid, varid, ac-
cess), whereaccess may be NFOO_| NDEPENDENT or NF9O _COLLECTI VE. The default value is inde-
pendent access. This applies for writes of variables while the fileis open.

Figure 15, “netCDF Parallel Example: 2D array” gives a Fortran program for a 2D array with dimensions = 5 x

8 where each processwritesasubset of 5 x (di nsf (2)/ npi _si ze) . The main parameters are; count =
(5 2) andstart = (1, npi_rank*count(2)+1)

Figure 15. netCDF Parallel Example: 2D array

call check(nf90_create (FILE_NAME, & Create the netCDF file:
IOR(NF90_NETCDF4, NF9O_MPIIO), ncid, & NC_PNETCD or
comm = MPI_COMM_WORLD, info = MPI_INFO_NULL)) NC_NETCDF4 NC_MPIIO
|

call check(nf90_def_dim(ncid,"x", row_x,x_dimid)) Define the dimensions
call check(nf90_def_dim(ncid,"y", col_y, & T .
v dimid)) ¢ SRR i 2 The dimids array is used to
:iimids = (/ y_dimid,x_dimid /) pass the IDs of_ the dimen-

- - sions of the variables

call check(nf90_def_ var(ncid, "data", & |

NF90_INT, dimids, varid)) Define the variable

call check(nf90_enddef (ncid)) End define mode. Done
defining metadata. Pro-
count = (/ row_x, col_y/mpi_size /) cesses will write their meta-
start = (/ 1, (my_rank * count(2))+1/) data to disk.
call check(nf90_put_var(ncid, varid, & |
data_out, start = start, count=count)) Write data to the file.
|
call check(nf90_close(ncid)) Cllose the file

6.3. HDF5

HDF (Hierarchical DataFormat) isan /O library that serves the same purposes as NetCDF and more. As NetCDF,
HDF Version 4 (HDF4) data models include annotated multidimensional arrays (called also scientific data sets),
as well as raster files and lists of records. HDF4 does not support parallel 1/0 and files are limited to 2GB. To
address these limitations, a new version was designed: HDF Version 5 (HDF5). HDF5 has no file size limitation
and is able to manage files as hig as the largest allowed by the operating system. Unlike classic NetCDF, HDF5
supports more than one unlimited dimension in a data type. HDF5 provides support for C, Fortran, Java and C
++ programming languages.

The HDF5 library can be compiled to provide parallel support using the MPI library. An HDF5 file can be opened
in paralel from an MPI application by specifying a parallel file driver' with an MPI communicator and info

structure. This information is communicated to HDF5 through a 'property list,' a special HDF5 structure that is
used to modify the default behavior of the library.

6.3.1. HDF5 Design

HDF5 isdesigned at three levels:

» A datamodel: consists of abstract classes, such asfiles, datasets, groups, datatypes and dataspaces, that devel-
opers use to construct amodel of their higher-level concepts.

» A software library: to provide applications with an object-oriented programming interface that is powerful,
flexible and high performance.

A file format: provides portable, backward and forward compatible, and extensible instantiation of the HDF5
data model.

26

Best Practice Guide - Parallel 1/0

6.3.2. HDF5 File Organization and Data Model

Figure 16. HDF5 Dataset M odel

Dataspace
Rank Dimensions

Pressure = 987

Source: http://press3.mcs.anl.gov/computingschool/files/2014/01/QKHDF5-Intro-v2.pdf

HDF5 files are organized in a hierarchical structure, with two primary structures: groups and datasets.

« HDF5 group: a grouping structure containing instances of zero or more groups or datasets, together with sup-
porting metadata.

« HDF5 dataset: a multidimensiona array of data elements, together with supporting metadata.
Ascan beseenin Figure 16, “HDF5 Dataset Model”, adataset relies on two parts: the dataitself and the metadata.
The metadata covers the datatype, optional attributes, data properties and the dataspace which represents the data

dimensionality and the data layout. The file dataspace can be handled completely independently from the data
layout within the memory.

6.3.3. Selecting a Portion of a Dataspace

HDF5 alows reading or writing to a portion of a dataset by use of hyperdab selection. A hypersiab se-
lection can be a logically contiguous collection of points in a dataspace, or it can be a regular pattern of
points or blocks in a dataspace. A hyperdab can be selected with the function: H5Ssel ect _hyper sl ab/
h5ssel ect _hypersl ab_f.

Hyperdabs are described by four parameters:

 start: (or offset): starting location

« stride: separation blocks to be selected

« count: number of blocks to be selected

« block: size of block to be selected from dataspace

The dimensions of these four parameters correspond to dimensions of the underlying dataspace. Figure 17, “Hy-
perslab example” shows a hyperslab example and values of four parameters to select a portion of a dataset.

27

Best Practice Guide - Parallel 1/0

Figure 17. Hyperdab example

block[1]=2
start[1]=1
start[0]=0 counT1]=4 ks <
o 1]
1[0,12] S)
0™ =573 S
s <
w
E —
(=2 stride[1]=3
c
s |
o
[$]

(8,0 [8,12]

Creating a Hyperdab:

e InC: herr_t H5Ssel ect_hyperslab(hid t space id, H5S seloper_t op, const
hsize t *start, const hsize t *stride, const hsize t *count, const hsize t
*bl ock)

« In Fortran: HSSSELECT HYPERSLAB_F(SPACE_I D, OPERATOR, START, COUNT, HDFERR
STRI DE, BLOCK) | NTEGER(HI D_T), INTENT(IN) :: SPACE_I DI NTEGER, |NTENT(IN) ::
OP INTEGER(HSI ZE_T), DIMENSION(*), INTENT(IN) :: START, COUNT | NTE-
GER, INTENT(OUT) :: HDFERR | NTEGER(HSIZE_T), DI MENSION(*), OPTI ONAL,
INTENT(IN) :: STRIDE, BLOCK

The following operators are used to combine old and new selections:

 H5S SELECT_SET[_F] : Replaces the existing selection with the parameters from this call. Overlapping
blocks are not supported with this operator.

« H5S SELECT_OR[_F] : Addsthe new selection to the existing selection.

« H5S SELECT_AND[_F] : Retains only the overlapping portions of the new selection and the existing selec-
tion.

e H5S SELECT XOR[_F]: Retains only the elements that are members of the new selection or the existing
selection, excluding elements that are members of both selections.

« H5S SELECT _NOTB[_F] : Retains only elements of the existing selection that are not in the new selection.

 H5S SELECT_NOTA[_F] : Retains only elements of the new selection that are not in the existing selection.

6.3.4. Chunking in HDF5

Datasets in HDF5 not only provide a convenient, structured, and self-describing way to store data, but are also
designed to do so with good performance. In order to maximise performance, the HDF5 library provides ways
to specify how the data is stored on disk, how it is accessed, and how it should be held in memory. The way
in which the multidimensional dataset is mapped to the serial file is called the layout. The most obvious way to
accomplish thisis to simply flatten the dataset in a way similar to how arrays are stored in memory, serialising
the entire dataset into a monolithic block on disk, which maps directly to amemory buffer the size of the dataset.
Thisis called a contiguous layout.

An dternative to the contiguous layout is the chunked layout. Whereas contiguous datasets are stored in asingle
block in the file, chunked datasets are split into multiple chunks which are all stored separately in the file. The

28

Best Practice Guide - Parallel 1/0

chunks can be stored in any order and any position within the HDF5 file. Chunks can then be read and written
individually, improving performance when operating on a subset of the dataset[24].

Figure 18, “Chunking Scheme”[25] shows how afileis stored using chunking in HDF5.

Figure 18. Chunking Scheme

Metadata cache Dataset data
Dataset header A B C 1D
e L/H
Dataspace
siiicn Churk
Application memory
|
File header —b(i:nhduenxk N A C L D o B

6.3.5. Parallel HDF5

The parallel HDF5 (PHDF5) library is implemented upon the MPI-10 layer, meaning users can directly benefit
from MPI-10 optimisation techniques such collective buffering and data sieving. Figure 19, “Parallel HDF5 Lay-
ers’ shows the different layers to implement parallel HDF5.

Figure 19. Parallel HDF5 Layers

I

Compute node — Compute node — Compute node

HDF5 Library

MPI Library

i " Switch network + /O servers S
Jo0oogoooggod

Disk architecture and layout of data on disk

PHDFS5 has the following programming restrictions:

» PHDF5 opens aparallé filewith aMPI communicator,

* ReturnsafileD and future accessto thefileis done viathefile ID,
* All processes must participate in collective PHDF5 APIs and

« Different files can be opened via different communicators.

Considerations for collective calls [26]:

29

Best Practice Guide - Parallel 1/0

» All HDF5 APIs that modify structural metadata are collective

* Fileoperations: H5Fcr eat e, H5Fopen, H5Fcl ose, etc

» Object creation: H5Dcr eat e, H5Dcl ose, etc

« Object structure modification (e.g., dataset extent modification): HSDset _extent, etc
 Array datatransfer can be collective or independent. Dataset operations. H5Dwr i t e, H5Dr ead
» Collectivenessisindicated by function parameters, not by function namesasin MPI.
PHDF5 presents the following characteristics:
» After afileisopened by all the processes of a communicator:

 All parts of thefile are accessible by all processes.

« All objectsin thefile are accessible by all processes.

« Multiple processes may write to the same data array (i.e. collective |/O).

» Each process may writeto individual data array (i.e. independent 1/0).
» API languages: C and F90, 2003 language interfaces.

» Programming model: HDF5 usesanaccess property |i st tocontrol thefile access mechanism. There-
fore, the general model to access HDFS5 file in parallel must follow these steps: 1) set up MPI-10 file access
property list, 2) open file, 3) access data and 4) closefile.

6.3.6. Parallel HDF5 Example

Figure 20, “ PHDF5 Example: 2D dataset” correspondsto an5x 8 array dataset di msf = (/ 5, 8/) ,whereeach
process will write asubset of thedata5 x (di nsf (2) / npi _si ze).Inthisexample, the main parameters
for the hyperdlab are set asfollows: of fset = (/ 0, npi_rank * count(2) /); count = (/
5, dimsf(2)/ npi_size /); stride = (/ 1, 17/)

Figure 20. PHDF5 Example: 2D dataset

Memory View
pO pl p2 p3

\ File Logical View y

30

Best Practice Guide - Parallel 1/0

Figure 21, “ Fortran program: file, dataspace, dataset and hyperdab” is the code for the PHDF5 example that
shows the file open, dataspace and dataset definition and hyperslab selection.

Figure 21. Fortran program: file, dataspace, dataset and hypersab

CALL hSpcreate_f (HSP_FILE_ACCESS_F, plist_id, error) Setup file access property list
CALL hbpset_fapl_mpio_f(plist_id, comm, info, error) with parallel /O access
I

CALL h&fcreate_f(filename, HS5F_ACC_TRUNC_F, & Create the file collectively

file_id, error, access_prp = plist_id) |

CALL hS5pclose_f(plist_id, error) Create the data space for the
dataset

CALL hbscreate_simple_f(rank, dimsf, filespace, error)

CALL h5dcreate_f(file_id, dsetname, & Create the dataset Wlth de_
H5T_NATIVE_INTEGER, filespace, dset_id, error) fault properties

CALL hbsclose_f(filespace, error) |

count(1) = d%msf(l} o Each process defines dataset in
count(2) = dimsf(2)/mpi_size memory and writes it to the
offset(1) = 0 hyperslab in the file.
offset(2) = mpi_rank * count(2)

CALL hbscreate_simple_f(rank, count, memspace, error)

CALL hbdget_space_f(dset_id, filespace, error) Select hyperslab in the file
CALL hbsselect_hyperslab_f(filespace, &
H5S SELECT SET_F,& offset, count, error) |

Figure 22, “ Fortran program: property list, writeand close” continuesfrom the previousfigure, showing collective
operations, the writing of the data and finally the close step for all HDF5 elements.

Figure22. Fortran program: property list, write and close

ALLOCATE (data(count(1),count(2))) !nitialize data buffer with triv-
data = mpi_rank + 10 ial c|iata

CALL hbpcreate_f (HSP_DATASET _XFER_F, plist_id, & Create property list for collec-
error) tive dataset write

CALL hbSpset_dxpl_mpio_f(plist_id, &
H5FD_MPIO_COLLECTIVE_F, error)

CALL h5dwrite f(dset_id, H5T NATIVE_INTEGER, data,g 'Vite the dataset collectively
dimsfi, error, file_space_id = filespace, &
mem_space_id = memspace, xfer_prp = plist_id)

DEALLOCATE (data) Deallocate data buffer
|

CALL hbsclose_f(filespace, error) Close dataspaces

CALL hbsclose_f (memspace, error) |

CALL hSdclose_f(dset_id, error) ﬁ;f:’se Ar3E SRR U [
CALL hbSpclose_f(plist_id, error) |

Close the file

CALL hbfclose_f(file_id, error) |

6.4. pNetCDF

Parallel netCDF (officially abbreviated PnetCDF) isalibrary for parallel 1/0 providing higher-level datastructures
(e.g. multi-dimensional arrays of typed data). PnetCDF creates, writes, and reads the same file format as the
serial netCDF library, meaning PnetCDF can operate on existing datasets, and existing serial analysis tools can

31

Best Practice Guide - Parallel 1/0

process PnetCDF-generated files. PnetCDF is built on top of MPI-10, which guarantees portability across various
platforms and high performance. Originally PnetCDF was created as a first approach to provide parallel netCDF
capabilities on top of netCDF-3. However with netCDF-4 a separate approach was implemented on top of HDF5.
That's why two approaches are available today. However only PnetCDF is able to read netCDF-3 filesin parallel
(netCDF-4 uses PnetCDF underneath if available).

In order for easy code migration from sequential netCDF to PnetCDF, PnetCDF APIs mimic the syntax of the
netCDF APIswith only afew changes to add paralel 1/0 concept. These changes are highlighted as follows:

» All parallel APIs are named after the originals with prefix of "ncmpi_" for C/C++, "nfmpi_" for Fortran 77,
and "nf90mpi_" for Fortran 90.

e An MPI communicator and an MPI_Info object are added to the argument list of the open/create APIs

» PnetCDF alowstwo I/0O modes, collective and independent, which correspond to MPI collective and indepen-
dent 1/0O operations. Similar to the MPI naming convention, all collective APIs carry an extrasuffix "_all". The
independent 1/O mode is wrapped by the calls of ncmpi_begin_indep_data() and ncmpi_end indep_data().

6.5. SIONLib

SIONlibisascaable /O library for parallel accessto task-local files. The library allows mixing the good perfor-
mance of atask local approach together with a small amount of created files. Data stored within a SIONIib fileset
is adirect byte stream, no additional metadata information is stored by SIONIib. Due to the close connection to
task-local files a separate post-processing step might be necessary to create a global data view of multiple local
data views. The library provides different interfaces: parallel access using MPI, OpenMP, or their combination
and sequential access for post-processing utilities.

6.5.1. SIONLIib file format

One of the strategies for SIONIib to increase I/O performance is preventing file system block contention, i.e.
different taskstrying to modify the samefile system block at the sametime. To avoid this, SIONIib needsadditional
information from the user when opening a file. The chunksize supplied during the open call is communicated
globally and lets SIONIib calculate the ranges inside the file which belongs to each task. In case where there is
not enough space left for awrite request in the current block, SIONIib skips all the file ranges that belong to other
tasks and has new chunksize bytes of space available[27].

Figure 23, “ SIONL.ib file layout”[27] shows file format and the different concepts used to its implementation.

Figure 23. SIONLIib file layout

FS Block 1]FS Block 2|FS Block 3|FS Block 4] FS Block 5|FS Block c“:-lFS Block 7 FS Block N
Block O Block 1

Chunk O
Chunk 1
Chunk 0
Chunk 1
Chunk 2
Chunk 3
Chunk 2
Chunk 3
Chunk 2
Chunk 3

o
&
o
=
=
2

Metablock 1
Chunk 0
Chunlk 1

6.5.2. SIONLib APl and utilities

The general API includes:
e Pardld interface: si on_par open_npi, sion_parcl ose_npi.
e Serid interface: si on_open, sion_open_rank, sion_close, sion_get |ocations.

e Commoninterface: si on_ensure_free_space, sion_feof, sion_bytes avail _in_bl ock,
sion_seek, sion_seek fp, sion fwite, sion_fread.

Detailed API description can be found in [28].

32

Best Practice Guide - Parallel 1/0

SIONL.ib also provides utilities to file manipulation[29]:

* si ondunp: Dump meta datainformation of a SIONIib file.
» sionsplit: Split one SIONIib file into separate files.

» si ondef r ag: De-fragment a SIONIibfile.

* si oncat : Extract all data or data of one tasks.

» si onconfi g: Print compiler and linker flags.

» partest: Benchmark using SIONIib.

6.6. Touching on Low-level I/O: POSIX, C and Fortran
File Manipulation

ThePOSIX OSstandard, C standard library and Fortran provide different methodsfor manipulating filesin parallel
applications. Although they are broadly discouraged for HPC applicationsdueto the avail ability of the higher-level
libraries detailed in this chapter, they do see use regardless. In this section, a brief overview of POSIX, C and
Fortranfile operationsisgiven, aswell as optimisation techniquesthat should be considered when I/Ois performed
with these interfaces. Note that threading or other concurrency models for low-level 1/O are not covered in this
section.

6.6.1. POSIX and the C Standard Library

In the C library, a stream is represented by a FILE* pointer. File closing is done with the f cl ose function.
Functionssuch asf put ¢, f put s, andf wr i t e can be used to write datato the stream, whilef scanf , f get c,
f get s,andf r ead read data. For lower-level 1/0 operationsin POSI X operating systems such asLinux, ahandle
called a file descriptor is used instead of a FILE* pointer. A file descriptor is an integer value that refers to a
particular instance of an open filein asingle process. The function open creates a file descriptor and subsequent
read,wit e andcl ose functions take this as an argument.

Opening afile:

e FILE *fopen(const char *path, const char *nobde);

* FILE *fdopen(int fildes, const char *nopde);

e int open(const char *pathname, int flags [, node_t node]);

Thefunction f dopen() converts an already open file descriptor (f i | des) to astream. Thef | ags arguments
to open refersto the access mode, for example:

* O DI RECTORY, O NOFOLLOW(enforcedirectory / not-a-link)

* O_SYNC, O_ASYNC (synchronous vs. asynchronous)

* O_LARGEFI LE, O _DI RECT (largefiles/ bypass cache)

« O_APPEND, O TRUNCO

Thenode argument for open setsfileaccesspermissionsandfor f open refersto read/write/read-writeand so on.

It isrecommended to perform unformatted f wri t e() / fread() callsrather than formatted I/Of pri ntf ()/
f scanf () . For repositioning within thefile usef seek() .

6.6.1.1. O_DIRECT flag

Using the O_DIRECT flag when opening a file will bypass the buffer cache and send data directly to the stor-
age system. This can be useful in some specia casesto avoid memory copies and improve multi-client consisten-

33

Best Practice Guide - Parallel 1/0

cy/paralel access. When performing direct 1/0, therequest length, buffer alignment, and file offsets generally must
all be integer multiples of the underlying device's sector size. There is no block size requirement for O DIRECT
on NFS, although thisis not the case for local filesystems and IBM Spectrum Scale.

For example, Spectrum Scale may provide some performance benefits with direct 1/0O if:
» Thefileisaccessed at random locations.
» Thereisno accesslocality.

Inwhich case, direct transfer between the user buffer and the disk can only happenif all of thefollowing conditions
are asotrue:

» The number of bytestransferred is a multiple of 512 bytes.
e Thefile offset isamultiple of 512 bytes.

» Theuser memory buffer addressis aligned on a 512-byte boundary.

6.6.1.2. Buffering

C-standard 1/0 implements three types of user buffering, and provides devel opers with an interface for controlling
the type and size of the buffer. There are three types:

» Unbuffered: No user buffering is performed. Datais submitted directly to the kernel.

» Line-buffered: Buffering is performed on a per-line basis (default for e.g., stdout). With each newline character,
the buffer is submitted to the kernel.

 Block-buffered: Buffering is performed on a per-block basis. This is idea for files. By default, all streams
associated with files are block-buffered. Standard 1/O uses the term full buffering for block buffering.

Additionally, C-standard 1/0O provides an interface for controlling the type of buffering:
int setvbuf (FILE *stream char *buf, int nobde, size_t size);

This must be done after opening afile but before any 1/0O operations. The buffering mode is controlled by macros:
_| ONBF (Unbuffered), | OLBF (Line-Buffered) or _1 OFBF (Block-buffered). The default buffer size for block
buffering is BUFSI Z, defined in st di 0. h. Functionf f | ush() can be used to force block out early.

Example code snippet demonstrating changing the buffering type:

#defi ne BUF 100000000

doubl e dat a[SI ZF] ;

char* nyvbuf;

FI LE* fp;

f p=f open(FI LENAME, "w');

nyvbuf = (char *) nall oc(BUF)

set vbuf (fp, myvbuf, | OFBF, BUF);
fseek(fp, 0, SEEK SET);

/] start of file

fwite(data, sizeof(double), SIZE, fp);
/1 close file, then deallocate buffer

6.6.1.3. POSIX Hints

The POSIX standard allows certain hints to be given to the OS. This specifies the future intentions for how a
file will be manipulated to influence buffer cache behaviour and read-ahead. The actual effect of these hintsis
implementation specific - even different versions of the Linux kernel may react dissimilarly.

34

Best Practice Guide - Parallel 1/0

#i ncl ude <fcntl. h>
int posix_fadvise (int fd, off_t offset, off_t len, int advice);

A cdl to posix_fadvise() provides the OS with the hints for file descriptor fd in the interva
[of fset, of fset +l en). If lenis O, the advice will apply to therange[of f set,l ength of file].
Common usage is to specify 0 for len and offset, applying the advice to the entirefile.

Available options for advi ce are one of the following [2] :

» PCSI X _FADV_NORMAL: The application has no specific advice to give on this range of the file. It should be
treated as normal. The kernel behaves as usual, performing a moderate amount of readahead.

» POSI X_FADV_RANDOM The application intends to access the data in the specified range in a random (non-
sequential) order. The kernel disables readahead, reading only the minimal amount of data on each physical
read operation.

» PCSI X_FADV_SEQUENTI AL: The application intends to access the data in the specified range sequentially,
from lower to higher addresses. The kernel performs aggressive readahead, doubling the size of the readahead
window.

e PCSI X _FADV_W LLNEED: The application intends to access the datain the specified range in the near future
(asynchronous prefetch). The kernel initiates readahead to begin reading into memory the given pages.

» PCSI X _FADV_NOREUSE: The application intends to access the data in the specified range in the near future,
but only once.

* POSI X_FADV_DONTNEED: The application does not intend to access the pages in the specified range in the
near future. The kernel evicts any cached data in the given range from the page cache.

6.6.2. Fortran Files

In fortran, afile is associated with a logical device which is in turn associated with a file by a unit specifier
(UNIT=). A unit is connected or linked to afile through the OPEN statement in standard Fortran. Filenames are
given with the FIL E= specifier in the OPEN statement:

OPEN(UNI T=11, FILE="fil ename", options)
Options and considerations for making Fortran 1/0O more efficient:

« Specify the operation you intend with the ACTION keyword: read, write or both for ACTI ON=' READ /
"VWRITE / ' READVWRI TE'

» Perform direct access (ACCESS=" DI RECT") with a large maximum record length (RECL=r |). If possible,
making r I amultiple of the disk block size. Note that datain direct-accessfiles can be read or written to in any
order and that records are numbered sequentialy, starting with record number 1. The units used for specifying
record length depend on the form of the data:

» Formatted files (FORM= ' FORMATTED): Specify the record length in bytes.

¢ Unformatted files (FORM= ' UNFORMATTED'): Specify the record length in 4-byte units.
» Consider using unformatted files (FORM=' UNFORMATTED) for the following reasons:

» Unformatted data avoids the translation process, so |/O tends to be faster.

« Unformatted data avoids the loss of precision in floating-point numbers when the output data will subse-
quently be used as input data.

» Unformatted data conserves file storage space (stored in binary form).

35

Best Practice Guide - Parallel 1/0

« If you need sequentia formatted access, remember to access datain large chunks.

6.6.2.1. /0O Formatting

Formatted 1/O can be the list-directed (i.e. using the Fortran default formats):

wite(unit, fmnt=*)

or f mt can be given aformat string representing a statically compiled or dynamically generated format:
wite(unit,fnm="(es20.13)")

write(unit, fnt=iof)

For unformatted 1/O, it is possible to use sequential:

wite(unit)

or direct access

wite(unit, rec=i)

As stated, unformatted 1/0 is recommended over formatted 1/0 due to the performance benefits.
6.6.2.2. Conversion of Fortran Unformatted Files

Although formatted data files are more easily ported to other systems, Intel Fortran can convert unformatted data
in severa formats.

Unformatted output may not be readable by C or other Fortran processors (Fortran record markers) or may not
be transferable between different platforms due to differing byte order. If the data consists of only intrinsic types,
certain non-standard compiler extensions are avail able which may help in moving binary files between platforms.

By default, the Intel compiler uses little-endian format but it is possible to write unformatted sequential filesin
big-endian format, as well as read files produced in big-endian format by using the little-endian-to-big-endian
conversion feature:

F_UFMTENDI ANEMODE | [MODE;] EXCEPTI ON

with the following options:

MODE = big | little

EXCEPTION = big: ULIST | little: ULIST | ULIST

ULIST = U | ULIST, U

U = decimal | deci mal -decimal

Examples:

F_UFMTENDI AN=bi g; Fileformat isbig-endian for al units.

F_UFMTENDI AN=bi g: 9, 12 ;big-endian for units 9 and 12, little-endian for others.

F_UFMTENDI AN="bi g; little: 8" ;big-endian for all except unit 8.
6.6.2.3. I/0 Pattern Issues
To eliminate unnecessary overhead, write whole arrays or strings at once rather than individual elementsin differ-

ent operations. Eachiteminan I/O list generatesits own calling sequence. This processing overhead becomes most
significant in an implicit loop. When accessing whole arrays, use the array name (Fortran array syntax) instead of

36

Best Practice Guide - Parallel 1/0

using an implicit loop. The following snippets give the code for each of these |/O approaches. Only the last option
is recommended with the others given as examples of what to avoid.

Implicit loop

wite(...) ((a(i,j),i=1,m,j=1,n)
Array section

wite(...) a(l:m1:n)

Complete Array

wite(...) a

Usethe natural ascending storage order whenever possible. Thisis column-major order, with the leftmost subscript
varying fastest and striding by 1. If the whole array is not being written, natural storage order is the best order
possible.

6.6.2.4. Tuning Fortran Using the Intel Compiler
Buffering

In an Intel-compiled Fortran application, any records, read or written, are transferred between the user's program
buffers and one or more disk block /O buffers. These buffers are established when the file is opened by the Intel
Fortran Run-Time Library. Unless very large records are being read or written, multiple logical records can reside
in the disk block 1/0 buffer when it iswritten to disk or read from disk, minimising physical disk I/0.

The OPEN statement BUFFERCOUNT keyword specifies the number of 1/0 buffers. The default for BUFFER-
CQUNT is 1. Any experiments to improve 1/O performance should increase the BUFFERCOUNT value and not the
BLOCKSI ZE value, to increase the amount of data read by each disk 1/O.

If the OPEN statement has BLOCKSI ZE and BUFFERCOUNT specifiers, then the internal buffer sizein bytesis
the product of these specifiers. If the open statement does not have these specifiers, then the default internal buffer
sizeis 8192 hytes.

* BLOCKSI ZE=<bhyt es> specifier (rounded up to multiples of 512).
» BUFFERCOUNT=<count > specifier (default 1, at most 127 possible).

To enable buffered writes; that is, to alow the disk device to fill the internal buffer before the buffer is written
to disk, use one of the following:

» The OPEN statement BUFFERED specifier.
» The FORT_BUFFERED run-time environment variable.
I nter cepting the Run-time's libc calls (Linux)

The Intel Fortran Run-time Library allows uses of the USEROPEN specifier in an OPEN statement to pass control
to aroutine that directly opens a file. The called routine can use system calls or library routines to open the file
and establish special context that changes the effect of subsequent Intel Fortran 1/0O statements.

The USEROPEN specifier takes the following form:

USEROPEN = functi on- nane

function-name is the name of an external function; it must be of type INTEGER(4) or (INTEGER*4).
The external function can be written in Fortran, C, or other languages.

For example, the following Intel Fortran code might be used to call the USEROPEN procedure UOPEN (associated
with linker uopen):

37

Best Practice Guide - Parallel 1/0

EXTERNAL UGOPEN
| NTEGER UCPEN

OPEN (UNI T=10, FILE="/usr/test/data', STATUS=' NEW,k USEROPEN=UCPEN)

Where uopen_ should be:

I
*

nt uopen_ (char *file_name, int *open_flags, int *create_node, int
unit_num int filenamlen)

An implementation done in C must call:

r

esult = open(fnane, *oflags, *cnode);

And can do other things such buffering and so on.

6.7. 1/0 Libraries Summary

The netCDF classic data model is simple and flat composed by Dimensions, Variables and Attributes. The
netCDF enhanced data model adds primitive types, multiple unlimited dimensions, hierarchical groups and
user-defined data types.

The HDF5 data model has even more features such as non-hierarchical groups, user-defined primitive data
types, References (pointers to objects and data regions in afile) and Attributes attached to user-defined types.

HDF5 has a more complex structure therefore it is more powerful and flexible than NetCDF. However, this
also may have disadvantages because it more complex and possibly error-prone to develop against (difficult
call sequence). Simplification is possible by using the HDF5 “lite* high level interface. HSLT makes usage
easier by providing away to aggregate several API calls. Also image processing with H5IM provides astandard
storage scheme for data which can be interpreted as images, e.g. 2-dimensional raster data. From version 1.6
to 1.8, the API has undergone evolution. HDF5-1.10.x contains several important new features for Parallel /0.
Performanceissuesfor parallel 1/0 canbefoundin[30] that provides several techniquesto improve performance
for the different elements of HDF5 and taking into account the file system.

SIONL.ib optimises binary one-file-per-processes approach by usage of a shared container file using a custom
file format, as is more convenient where portability isnot the main priority. Furthermore, SIONLib provides a
transparent mechanism to avoid file system block contention.

Specialised I/0 libraries may provide more a portable way of writing data and may reduce metadata load when
properly used.

For paralel programs the output to separate files for each process can provide high throughput, but usually
needs post-processing.

Binary files may need to use library/compiler support for conversion. If binary files are transferred between
different architectures (little vs.big-endian byte order) then the limitations may apply on file sizesand datatypes.

38

Best Practice Guide - Parallel 1/0

7. 1/0 Performance Analysis

7.1. Introduction

Parallel 1/0 performance evaluation for HPC applications is a nontrivia task because it depends on the /O soft-
ware stack, variety of application I/O patterns, hardware configuration and heterogeneity of the 1/O system infra-
structure.

1/0 profiling tools characterise the 1/0 performance of HPC applications by counting 1/O-related events. Thisis
less intrusive than full tracing and is useful for identifying potential 1/0 bottlenecks in performance. However,
moreinformation isrequired for afully-detailed understanding of 1/O. Currently, the most popular tool inthe HPC
community is Darshan [15]. Darshan is especially designed for the HPC-10 field by providing small log files and
global counters for the MPI-10 and POSIX-IO.

Conversely, we have tracing tools such as TAU [20] and Vampir [21] , that save individual event records with

precise timestamps and per process, log the timing of each 1/0 function calls and their arguments, and construct
acomplete timeline.

7.2. Darshan Tool

Figure 24. Darshan Overview

Dynamic library preloading:

[]
Running ibdarshan.so

Application MPI

Collecting 1/0 characterization
MPI-]O and POSIX-10

System where it intends to System where it intends
instrument MPI applications to analyze log files
Darshan runtime P
(instrumentation Darshan util
tool)
|

v

I/O counters
I/0 time percentage
Access pattern

Log
files

Darshan is a lightweight, scalable I/O characterisation tool that transparently captures I/O access pattern infor-
mation from production applications. It was developed by the Argonne Leadership Computing Facility (ANL).
Darshan provides 1/0 profile for C and Fortran calls including: POSIX and MPI-10 (and limited to HDF5 and
PnetCDF). Darshan does not provideinformation about the /O activity along theruntime. It usesaLD_PRELOAD
mechanism to wrap the I/O calls.

Figure 24, “Darshan Overview” shows Darshan's two components: darshan-runtime and darshan-util. Dar-
shan-runtime must be installed in the HPC system where the application is executed. Darshan-util can be in an-
other machine. Using Darshan utilities and pdflatex it is possible to obtain plots with the main I/O metrics for a
parallel application.

7.3. Darshan Runtime

Starting with version 3.x, the Darshan runtime environment and log file format have been redesigned such that
new "instrumentation modules' can be added without breaking existing tools. Darshan can then manage these

39

Best Practice Guide - Parallel 1/0

modules at runtime and create a valid Darshan log regardless of how many or what types of modules are used
[19]. Figure 25, “ Darshan Runtime Enviroment” depicts the components of Darshan Runtime.

Figure 25. Darshan Runtime Enviroment

Darshan-linked
Application

MPI_Init
MPI_Finalize

Darshan library
/ darshan-core —’ Darshan I/O

Characterization
Log

Darshan POSIX
module

darshan-common

System libraries

libc

7.3.1. Using the Darshan Runtime

Darshan can trace MPI applications linked statically or dynamically. The instrumentation method to use depends
on whether the executables produced by the MPI compiler are statically or dynamically linked (for more detail
refer to [16]).

Currently, Darshan is a tool commonly provided in HPC centers through a module system. Site-specific docu-
mentation for facilities that deploy Darshan in production can be found in [17]. Although, each center provides
some specific steps to enable Darshan, there are some commonalities and relevant commands are often similar.
For example, at Leibniz Supercomputing Centre (LRZ), Darshan [18] is available on al its HPC systems and is
enabled by the following commands in the user submission:

1.

nodul e | oad darshan: prepare environment for both dynamically and statically linked applications.
Other HPC systems often provide two modules for Darshan, e.g. nodul e | oad dar shan-runti e for
I/O profiling and nodul e | oad darshan-util for analyzing Darshan logs.

. export LD PRELOAD="darshan-user.sh $FORTRAN _PROG :load the appropiate library depend-

ing on the programming lenguage of the parallel application. For dynamically-linked executables, Darshan re-
lieson the LD_PRELQOAD environment variable to insert instrumentation at run time. For Fortran applications
compiled with MPICH, users may have to take the additional step of adding libfmpich.sotothe LD _PRELQAD
environment variable. At LRZ, thisis checked by the SFORTRAN_PROG variable, so that the appropriate li-
brary isloaded.

. export JOBI D LL="dar shan-JOBI D. sh $LOADL_STEP I D ; export

DARSHAN _JOBI D=JOBI D_LL: Darshan gives the log file a name based on the job identifier assigned by
the job management system, to facilitate correlating logs with a specific job. At LRZ, the DARSHAN_JOBI D
environment variable is set with the Loadleveler identifier in SuperMUC. In aLinux Cluster with Slurm asthe
job management system DARSHAN JOBI Dissetto SLURM JOB_| D.

. export LOGPATH DARSHAN LRzZ="darshan-I| ogpath. sh™: set up the folder to save the Dar-

shan logs. This option is available if darshan-runtine was built with - - wi t h- | 0og- pat h- by- env. Oth-
erwise, the dar shan- nk-1 og-dirs. pl utility is applied to specify the path at configure time to in-
clude log file subdirectories organised by year, month, and day. At LRZ by default log files are placed in
$SCRATCH . dar shan- | og, but users can change the log path by setting LOGPATH_DARSHAN LRZ to
amore convenient folder.

Once the application executes, alog fileisgenerated inlog path, e.g. LOGPATH _DARSHAN LRZ. If the execution
finishes without errors, the user can analyze the *.darshan file by using darshan-util tools. The log file can also
be analysed on another system.

40

Best Practice Guide - Parallel 1/0

7.4. Darshan Util

Darshan provides command line tools that enable the analysis of 1/0 performance metrics. Keystools:
e darshan-j ob- sunmary. pl : creates a pdf with graphs useful for initial analysis.
» dar shan- summary- per-fil e. sh: creates a separate pdf for each file opened by the application

» dar shan- par ser : dumpsall information into ASCII (text) format.

>dar shan- parser --help
Usage: darshan-parser [options] <filenane>

--all : all sub-options are enabl ed

--base : darshan log field data [defaul t]

--file : total file counts

--file-list : per-file summaries

--file-list-detailed : per-file summaries with additional detail
--perf : derived perf data

--total : aggregated darshan field data

7.4.1. Darshan Plots: FLASH-IO Benchmark

FLASH-10 [36] is a block-structured adaptive mesh hydrodynamics code. The computational domain is divided
into blocks which are distributed across the processors. Typically a block contains 8 zones in each coordinate
direction (x,y,z) and a perimeter of guardcells (presently 4 zones deep) to hold information from the neighbors.
FLASH-10 will produce a checkpoint file (containing al variables in 8-byte precision) and two plotfiles (4 vari-
ables, 4-byte precision, one containing corner data, the other containing cell-centered data). The plotfiles are
smaller than the checkpoint file.

Figure 26. Job Information and Perfor mance

jobid: 1689071 | uid: 3366230 | nprocs: 1024 | runtime: 206 seconds

I/0 performance estimate (at the MPI-10 layer): transferred 584657.2 MiB at 3570.53 MiB/s
Figure 26, “ Job Information and Performance” showsthe ID, number of MPI processes and runtime of a FLASH-
1O job. The Darshan pdf file associated with this job will include executable name and date as a header, and the
binary location and commands used as footer.

Figure27. Averagel/O Cost and Operation Count

Average I/O cost per process I/O Operation Counts
100 70000 -
80 60000 -
° L
£ F 50000 L m
c
2 60 g
= g 40000 -
o o
g a0l = 30000 |
g 320000
[1] [=] L
& o0t =
wy
& 10000 |
0 I H O
AO % 0r — = — S g
% “o
-10000 L L L L | 1 |
Read oo Read Write Open Stat Seek Mmap Fsync
Write o
Metadata === POSIX oo MPI-10 Coll. m==m=
Other (including application compute) === MPI-1O Indep. oo

41

Best Practice Guide - Parallel 1/0

Figure 27, " Average |/O Cost and Operation Count” presentsthe average |/O per process. Thisistheinitial metric
to consider when determining if an application has 1/0 problems. Usually, an I/O percentage greater than 10%
indicates that the application requires 1/0O performance improvements. Also, it is possible to observe whether that
percentage rel ates to data access (write/read) or metadata(open/close) operations. In thiscase, FLASH-10isusing
parallel HDF5 and is dominated by metadata performance (the most significant component of the MPI-10 bar).
Other listed metrics are the 1/O operation counts, which indicate the MPI-10 operations are collective. These MPI -
IO operations are implemented by lower-level POSIX operations such as read, write, seek, etc., as indicated in
the figure. It is important to note that FLASH-1O only writes three files but the I/O library performs additional
read and seek operations.

Figure 28. Access Sizesat POSIX and MPI-10 level

POSIX Access Sizes MPI-IO Access Sizes :!:

35000 - 35000 -

30000 - 30000 |-
@ =
825000 - Q 25000 |-
o o
= 20000 |- = 20000 |
] =
2 15000 - 2 15000 -
€ €
3 10000 - I 2 10000 -
(&) Q

0 1 Il 1 u 1 1 1 1 1

2, %, % % ‘% % %G, % % &’o%’o’oo%%’o,;,%’e
7, G G T, i, Y %S @ 7, T, T ey Ty, 7, O,
IJf—Qf’Qaf_’f:)g'!f %'oo"’v@ ”%‘?f’%,fq,‘f %’%z_‘f@

Read oomsm Write mmmm Read oo Write mmmm

Figure 28, “ Access Sizes at POSIX and MPI-10 level” shows a histogram of MPI-10 and POSIX reads/write
and their associated sizes. This information is useful for identifying small 1/0 operations. Reasons for small 1/0
include poorly implemented /O or, occasionally, incorrect optimisation attempts by an 1/0 library which changes
operation sizes and negatively affects the 1/O pattern.

Figure29. Common Access Sizes and File Count

Most Common Access Sizes
(POSIX or MPI-IO)
‘ access size | count
20971520 | 8208
21495808 | 8184

File Count Summary
(estimated by POSIX I/0 access offsets)
type | number of files | avg. size | max size

POSIX total opened 3 191G 487G
21233664 | 8184 ben

read-only files 0 0 0
984 | 2639 . .

write-only files 3 191G 487G
20971520 | 8208 o

21495808 | 8184 read/write files 0 0 0

MPI-IO created files 3 191G 487G

1 21233664 | 8184

10485760 | 1368

iNOTE: MPI-IO accesses are given in
terms of aggregate datatype size.

Figure 29, “ Common Access Sizesand File Count” presentsthe most common sizesfor MPI-1O and POSIX. This
information helps confirm whether collective operations are being performed or whether this has been disabled
by the I/O library. Usually, the MPI-1O implementation attempts to apply an appropriate optimisation technique
based on the I/O pattern. Further information in this figure mainly relates to access mode and file size.

42

Best Practice Guide - Parallel 1/0

Figure 30. Timespan from first to last access on shared files

Timespan from first to last access on files shared by all processes (POSIX and STDIO)

read s—
Write m—

All processes
I
I

.
00:00:00 00:00:30 00:01:00 00:01:30 00:02:00 00:02:30 00:03:00
hours:minutes:seconds

Darshan is also capable of producing atimespan of 1/0 activity, for example Figure 30, “ Timespan from first to
last access on shared files’. These plots are useful for observing the temporal 1/O pattern. Information such as I/
O sequentiality or overlapping can help identify possible inefficiency in the data access operations.

Figure3l. Averagel/O and Data Transfer

Average 1/0 per process (POSIX and STDIO)

Cumulative time spent in Amount of I/O (MB)

I/0 functions (seconds)
Independent reads 0 0
Independent writes 0 0
Independent metadata 0 N/A
Shared reads 3.32754123144531 0.013781301677227
Shared writes 36.5967756923828 570.940493404865
Shared metadata 1.63780214160156 N/A

Data Transfer Per Filesystem (POSIX and STDIO)
Write | Read
MiB | Ratio | MiB | Ratio
/gss/scratch | 584643.06525 | 1.00000 | 14.11205 | 1.00000

File System

In Figure 31, “ Average I/O and Data Transfer”, the average /O per processis given, categorised by 1/0 strategy
(shared or independent files). This information is important for perceiving possible problems at alarge scale. In
this figure, it is possible to observe the impact of read and metadata operations on run time and /O size. Read
operations within the 1/0 library could be an 1/O bottleneck for alarger number of processes, optimisation at the
MPI-10 level could be applied to mitigate this impact.

43

Best Practice Guide - Parallel 1/0

Figure 32. 1/0O Pattern

POSIX I/O Pattern
60000 -

50000 |
40000 |
30000 |

20000 |

Ops (Total, All Procs)

10000 ~

0 l.

Read Write

Total s Consecutive ===
Sequential o

sequential: An I/0 op issued at an offset greater than where the previous I/0 op ended.
consecutive: An I/0 op issued at the offset immediately following the end of the previous /0 op.

Figure 32, “ 1/O Pattern” shows the 1/O pattern for each file opened by the application. These plots should be
analysed per file, as the noise of other files is removed and the sequential or consecutive pattern is clearer and

easier to identify. Usually, a consecutive pattern is higher performance than an sequential pattern. In this case, the
three files present a sequential pattern.

Figure 33. Variancein shared files

Variance in Shared Files (POSIX and STDIO)

File Processes Fastest \ Slowest o

Suffix Rank | Time | Bytes | Rank | Time | Bytes | Time | Bytes
...df5_chk_0000 1024 145 | 3.595872 | 487M 175 | 64.058370 | 487M | 9.19 | 5.14e+06
...plt_cnt_0000 1024 73 | 0.342752 41M 827 | 13.076260 42M | 2.56 | 4.28e+05
...plt_crn_0000 1024 4 | 0.583471 45M | 1006 | 11.148950 45M | 1.77 4.7e+05

Figure 33, “ Variance in shared files’ presents the variance for I/O time and bytes for shared files. Thisis useful
for identifying possible mapping problems (1/0 time) or I/O imbalance (bytes).

7.5. Vampir

The Vampir performance visualisation tool consists of aperformance monitor (e.g., Score-P or VampirTrace) that
records performance data and a performance GUI, which is responsible for the graphical representation of the
data. Figure 34, “Vampir Architecture” depicts the components of the Vampir Tool.

Best Practice Guide - Parallel 1/0

Figure 34. Vampir Architecture

(", \ 1.0 ms ._.T
R
. -- - . -;_B Vampir 7
Multi-Core | Vampir Trace 4" | . .,.
Program | Trace File N
.-'- / (OTF) : —
N 4
v

r‘ ~—— m VampirServer
r. r. r. r- Trace [—P

r '- 'I .I = r_.\r—.\r_.‘r—. r—.Lr_.
(g el g -

r u ”E:,J; g%ep ; Bundle
r.'-'-'-'--r-.

meeE—

To trace 1/0O events, VampirTrace is recommended as, if thisis built with 1/O tracing support, it intercepts cals
to 1/O functions of the standard C library. Therefore, it is possible to capture the seria and parallel 1/0 done by
aparallel application.

The following functions are intercepted by VampirTrace:

cl ose creat creat64 dup

dup2 fclose fcntl fdopen

fgetc fgets flockfile fopen
fopen64 fprintf fputc fputs
fread fscanf fseek fseeko

f seeko64 fsetpos fsetpos64 ftryl ockfile
funl ockfile fwite getc gets

| ockf | seek | seek64 open

open64 pread pread64 putc

puts pwite pwite64 read

readv rewind unlink wite witev

Tracing 1/0O events has to be activated for each tracing run by setting the environment variable VT_IOTRACE to
"yes'. Setting the environment variable VT_IOTRACE_EXTENDED to "yes" enablesthe collection of additional
function arguments for some of the 1/0 function mentioned above. For example, this option additionally stores
offsetsfor pwrite and pread to the 1/O event record. Enabling VT_IOTRACE_EXTENDED automatically enables
VT_IOTRACE[35].

7.5.1. Using Vampir

Users can instrument a parallel application by using VampirTrace:

» compile-time instrumentation:
e Fortran77:vtf77 [-g] -c <further options> nyprog.f
» Fortran 90 and higher: vt f 90 [-g] -vt:f90 npif90 -c <further options> nyprog.f90
e Civtcc [-g] -vt:cc nmpicc -c <further options> nyprog.c

e C++:vtexx [-g] -c -vt:cxx npi CC <further options> nmyprog.cpp

45

Best Practice Guide - Parallel 1/0

* run-timeinstrumentation (vtrun): mpi run -np 16 vtrun ./a. out
The following environment variables must set before running the application with VampirTrace:
export VT_PFORM LDl R=/ gpfs/scratch/ project/user/vanpir-tnp

export VT_FILE UNI QUE='yes'
export VT_I OTRACE=' yes'

After execution a .otf file as well as a number of *.events.z files are generated. The Vampir tool is then used for
visuaisation and trace analysis:

e Forsmal traces. vanpir <fil enane>. otf

» Forlargetraces: vanpi rserver start -n <tasks>

7.5.1.1. Vampir Examples: FLASH-1O and BT-10

To demonstrate the 1/0 profiling information produced by Vampir, two benchmarks are detailed here. One
(FLASH-10) was previously described in the Darshan section above.

Figure 35. FLASH-IO Processes Timeline

Qs 25 s 50s 75 s 100 s T

Process 0
Process 1 |"'" e
Process 2 i |"It| “_ 9 esis ey ill
Process 3 i " |"" e Lb L
Process 4 i " |""' S ’ Ll
ProcessS . |"" iy - b LR
Process 6 ' . ||“" L L i
Process 7 |"I‘I ._ " iy
Process 8 i |T" "_ Ld LR
Process 2 i " |'|'f' L " = lisi g
Process 10§ . |I“" € 4 il
Process 11 | . |'|'f| R & L {iLEl
Process 12 " |"'.' g - b i
Process 13 i |I“" S b L
Process 14 . |'|" - 4 b dab
Process 15 . |""' € " ‘"‘I_"

g o =2 " Eteertiniit 1] o
Process 16
Process 17 " |'”f' "__1_ S Sy s I__"t
Process 18 : |'|||‘|.“1' gal _s_"—l__"t
Process 19 | : |'Ill"ll"_"l' gad {p _"—l__"t
Process 20 : |'”"-_T cad i l__"t
Process] g = ==t ==
Process 22 . |'”f' ‘_1_ S Sy s s __"t
Process 23 ' |'|||‘| l‘_'l' : '__""—'l'lf
Process 24 H |l”rl ' _1- - i ___--—l_-lllt :
Process 25 ; |l”~l f _1- i ___---l_-lllt :
Process 26 |'”‘I ._1- : :
Process 27 | - |'”" =< T
Process 28 4 |'I|‘|'l'_'|' gal
Process 29 g = = o
Process 30 |"|~I L5 T
Process 31 " |'”f'._1_ ga

4]

46

Best Practice Guide - Parallel 1/0

Figure 35, “ FLASH-10 Processes Timeline” depictsthe execution of FLASH-10 using Intel MPI over 32 process-
es and HDF5 for 1/0. The dark green triangles represent 1/O events, yellow bars give the time of 1/0O operations,
green bars give time of user operations, and the red bars show the time for MPI events. Here, all process are doing

I/0, meaning the collective buffering optimisation technique is not being performed.

Figure36. FLASH-1O Call Tree

Call Tree - /home/hpc/pr2...impi_2017.otf * - Vampir

All Processes

Functions
v [user
write
M MPI_Type vector
M MPI_Type_size
™ MPI_Type_free
M MPI_Type_contiguous
™ MPIL_Type_commit
™ WP Initialized
b [MPI_Init
M MPI_Get_elements
b B MPI_Finalize
MP| File write at_all

« Min Inclusive Time

187186 s
Q0952 us
F3280 ps
16649 us
164 527 us
106878 us
388571 us
934835 ns
0621 s
59198 us
728862 us

Max Inclusive Time

187 367 s
Q0952 us
106 306 s
27146 ps
124 703 s
158743 s
538782 us
1224 us
0802 s
74055 s
0744 s

Write
read
[seeked
w [MPI_File_write_at
write
Iseeksd
M MPI_File_set_view
™ MPI_File_set_size
« [MPI_File_open
read
apengd
open
close
w [MPI_File_get size
[seekid
« [MPI_File_close
unlink
close
M MPI_Comm_size
[mPI_Comm_rank
k[MPI_Comm_free
b [MPI_Comm_dup
™ MPI_Bcast
™ MPI1_Barrier
M MPIL_Allreduce
™ MPIL_Allgather

Callers

M user (1)

Callees

Find Function:

32471 s
85911 =
187 620 s
0552 s
0526 s
1785 us
24584 s
13632 s
1703 s
885245 ns
0324 s
12201 ps
2533 us
1129 ms
44 414 s
10438 ms
24991 us
10132 ms
2067 us
541734 us
147 540 ps
3178 ms
19346 Ls
2202 s
30752 ms
372874 us

Previous

62042 5
26517 =
242785 us
1222 s
1209 s
14976 us
44707 =
67236 s
1703 s
885 245 ns
1355 s
38187 us
4593 s
1129 ms
44 414 ps
0749 s
45798 us
0748 =
3768 s
633580 us
261102 s
3275 ms
1157 ms
55807 s
0205 s
24102 ms

M ext

47

Best Practice Guide - Parallel 1/0

Vampir provides several views for performance analysis. A call tree can be produced showing the MPI-10 oper-
ations and the corresponding POSI X operations, as demonstrated in Figure 36, “ FLASH-IO Call Tree”. Here, the
collective operation MPI _Fil e write_at _al | isshown to be composed of POSIX write, read and |seek64
operations. This provides an explanation for the read and seek operations observed with Darshan. A similar analy-
sis can be done for the other MPI-10O operations.

Figure37. FLASH-I1O I/O Summary

- A I/O Summary - fhome/hpc/p.. pi_2017.otf * - Vampir @

All Processes, Aggregated WO Transaction Size per File Mame

30 GIB 20 GIB 10 GiB (4] =]
Sum
flash_io_test hdf=_chk_ 0000
flash_io_test hdfs_chk_ 0000
1.388 GIB g flash_io_test hdfS plt_crn_0000
1.388 GiB = flash_io_test_hdfs_plt_crn_0000
1265 GIiB . flash_io_test hd=_plt ent 0000
1265 GiB l flash_io_test hdfs_plt_cnt 0000

A further example of Vampir profiling capability is shown in Figure 37, “ FLASH-1O 1/O Summary ". Here, the
aggregated 1/0 transaction size per file is given with Vampir providing a further set of metrics: Number of 1/0
Operations, Aggregated I/O Transaction Size, Aggregated 1/0O Transaction Time, and values of 1/0O Transaction
Size, I/O Transaction Time, or 1/O Bandwidth with respect to their selected value type. More detail about Vampir
[/O summaries can be find in [22]

The BT-10 benchmark [37] is part of the parallel benchmark suite NPB-MPI developed by the NASA Advanced
Supercomputing Division and isthe second case we use to demonstrate the capabilities of Vampir. BT-10 presents
a block-tridiagonal partitioning pattern on a three-dimensional array across a square number of processes. Each
processis responsible for multiple Cartesian subsets of the entire data set, whose number increases with the square
root of the number of processors participating in the computation. In BT-10, forty arrays are consecutively written
to a shared file by appending one after another. Each array must be written in a canonical, row-major format in
thefile. The forty arrays are then read back for verification using the same data partitioning [38].

48

Best Practice Guide - Parallel 1/0

Figure 38. BT-10O Processes Timeline

Process 0
Process 1
Process 2
Process 3
Process 4
ProcessS
Process @
Process 7
Process 8
Process 3
Process 10
Process 11
Process 12
Process 13
Process 14
Process 15
Process 16
Process 17
Process 18
Process 19
Process 20
Process 21
Process 22
Process 23
Process 24
Process 25
Process 26
Process 27
Process 28
Process 29
Process 30
Process 31

Here, BT-10 was executed under IBM MPI (IBM's Parallel Environment (PE)) on 64 processes, over 4 compute
nodesand using MPI for I/O. Figure 38, “ BT-10 Processes Timeling” showsthetimelinefor thefirst 32 processes.
It can be seen that only process 0 and 16 perform data access operations (yellow bars) as collective operations are
performed and collective buffering is enabled for BT-10 explicitly. The system where this trace was performed
has collective buffering configured for one 1/O aggregator per compute node.

49

Best Practice Guide - Parallel 1/0

Figure39. BT-IO Call Tree

Call Tree - fhome/hpc/pr28fa/dioe....C.64.mpi_io_full.otf * - Vampir

All Processes

Functions & Min Inclusive Time Max Inclusive Time

[user 41127 5 1134 s

Write 2196 ms 2196 ms

opengd 46 093 s 46 033 ps

[MPI_Waitall 72718 ms 0813s

b [MP1Wait 1053s S078s

[MPI_Type_struct 4276 us 6.830 us

[WMPI_Type_size 30891 us 129.101 us

™ MP1_Type_extent 436 14€ ns 1.402 ps

[WPI_Type_contiguous 5906 us 14974 us

™ MP1_Type_commit 73504 ms 7987 ms

[MPI_Reduce £.948 us 39834 us

» B MPI_Isend 74087 ms 0338s

b [MPI_Irecy 25993 ms 98600 ms

¥ [MPI_Init 0480 s 0694 s

b MP1 Finalize 317255 ps 322515 us
MP1 File write at all

write 4634 ms 0108 s

pwriteGd 0642 s 6322 s

[MPI_File_set_view 701648 us JE3.975 us

« [MPI_File_read_at all 23855 2526 s

Write 136523 us 2136 ms

preadéd 1219s 1486 s

« [MPI_File_open 18278 ms 86 264 ms

Write 34421 us 51.305 us

read 801911 ns 8015911 ns

opengd 119.432 us 9631 ms

close 8920 us 8920 us

« [MPI_File_delete 164072 ps 164 072 us

unlink 4180 us 4180 us

« [MPI_File_close 152635 ps £8 285 ms

close 102658 us 28,193 ms

M WPI_Comm_split 78386 us 126.176 Us

M MP1_Comm_size 270381 ns 7E9.988 ns

[MPI_Comm_rank 87691 ns 219.987 ns

[WP1_Comm_dup 81801 ps 4189 ms

[MPI_Brast 34137 us 4717 ms

[WPI_Barrier 2251 ms 11123 ms

b [MPI_Allreduce 14 546 ms 0154 s

Callers Callees

B user(l)

Find Function: Previous Mext

The BT-10 call tree is shown in Figure 39, “ BT-IO Cal Tree". Here, the MPI-IO operations use differ-
ent underlying POSIX operations than Intel MPI. As can be seen in the figure, the collective operation
MPI _File_wite_at_all iscomposed of write and pwrite64 operations at the POSIX level.

50

Best Practice Guide - Parallel 1/0

Figure40. BT-1O I/O Summary

I/0 Summary - fhome/...l.otf * - Vampir

All Processes, Average /0 Transaction Size per File Name
10 MiB = MIB (] 5]
Btio full.aut

S15MIB

Finaly, in Figure 40, “ BT-10 I/O Summary” the I/O summary is shown. BT-10 only writes and reads asingle 6
GiB file but the summary presentstwo files. Thisis due to Vampir depicting the file at both the POSIX and MPI-
|0 levels for the metric selected. In the case, the Average 1/0O Transaction Size is selected, showing the effect of
collective buffering techniques on operation size at the POSIX level (13.515 MiB).

7.5.1.2. Comparing traces using Vampir

Another useful view of the Vampir Tool is the comparison of traces. To demonstrate this, the IOR benchmark
is executed using MPI-10 for independent and collective operations for a strided pattern. IOR [23] is a synthetic
benchmark for testing the performance of parallel filesystems. The benchmark supportsavariety of different APIs
to simulate 1/0 load. IOR can be used for testing performance of paralel file systems using various 1/O libraries:
MPI-10, POSIX-10, HDF5 and PnetCDF-.

The IOR parameters for thistest were: MPI processes = 64, request size =1 MiB, 16 MPI processes per compute
node, a MPI process per core, 1GiB of data per process.

and the strided pattern was configured as follows:

* Independent 1/O: 1 OR-MPI 1 O-i bnmpi -a MPI1O -s 1024 -b Im -t 1m

» Collectivel/O by default: | OR-MPI 1 O-i bmmpi -a MPIIO -¢c -s 1024 -b Im-t 1m

* Collective I/O with collective buffering enabled: | OR-MPI 1 O-i brmpi -a MPI1 O -s 1024 -b 1m -

t 1mbutsettingexport ROM O_HI NTS=r oni o- hi nt s whereromio_hintscontainsr omi o_cb_r ead
enable; romi o _cb wite enable.

51

Best Practice Guide - Parallel 1/0

Figure4l. 10OR traces comparison

RERINTIORIMEI@IEmm pifath — 627235 & 5|
e e T O R O v
|ﬁ|d&d-‘lE}R—MPHE}:|I.Jr‘1Mpl ﬂtf. . - — 5.2 7235 . . ‘* s |

Timeline Function Summary Funiction Summary Funiction Summary
0s 10s 20s 0s 40 s 50s B0 s All Processes, Accumulated Ex. . All Processes. Accumulat . All Processes. Accumulat.
: : : : : 20005 0s 1,000 5 0s 0s
Process 0 E MPI MPI 24179765 |LIBC-IO
Process 1 15768835 (Ll 0 | 568395 | LIBC-O 636 64 5 [MPI
Process 2 <15 |Ap .on <15 |App.ion <15 |App. ion
Frocess 3 <15 [VT_API <15 [VT_API <15 [VT_API
Process 4 : | | H
Process S
Process 6 Call Tree
Process 7 All Processes
E:gz:::g Function Min Inclusive Time Max Inclusive Time |~
: = [user 22944 s 2304
H [MPI_File_write_at_all 134215 13428
Process 0 - B MPI_File_read_at_all 89135 8920
Process 1 L1} B MPI_Init 03895 0486
— B MPI File_get_size 0149 5 0.15%
— | . MPI_File_open 34716 ms 37.116
Process 4 -
Process 5 (e
1 All Processes
Process 6
Process 7 L I I I lﬁﬂ - Function Min Inclusive Time Max Inclusive Time H
Process 8 = S [user E2610s £2723
Process 9 i T pEin @ B MPI_File_write_at_all 467755 46815
. : [MPI_File_read_at_all 15350 s 15.352
e e : e a5 B MPI_Init 03915 0505
Pcen B o e o ﬁ B MR Banier 7566 ms 43867
SR S R . <A B VPLFile_cpen 271 me Eeps
Process 2 ST R EEGED e o |
Processs B—lee R e e o o ' — [Iv)
Litatd . o PP RResades p ol al Tree
S Y R« Al Processes
Process5S et S
Process 6 Loiteine = izt = - N Function Min Inclusive Time Max Inclusive Time =
Process? fwistip | 5 UPDEEMERedl 5 5 S 473835 47867
Process 8 owiiailig e e [ViE Fiiewiite, 3t 19408 5 28039
SR T .. A I MPIFile_teadat 117135 183801
focess : : ; B MPI_Barfier 7,040 ms 8637
i H H [P PIFile _nnen 5 793 m ALl

Figure 41, “ 10R traces comparison” shows the traces for the three cases. The first timeline corresponds to col-
lective operations with collective buffering enabled, the second to collective operations by default and the final
timeline to the independent 1/O. Collective buffering is generally recommended for giving the best performance
non-contiguous patterns. However, performance depends on the configuration of the underlying system as well.
Here, thetransfer size (1MiB) isless than the blocksize of the filesystem (8MiB), and the buffer size for collective
operations is 16MiB. Therefore, aggregated 1/O performs well for this system. When selecting an optimisation
technique for your /O pattern, the 1/O configuration of the system itself must also be considered.

7.6. MPI-10 Reporting with Cray MPICH

The custom version of MPI provided by Cray (cr ay- npi ch) available on X C-series clusters, as well as others
based around Cray hardware, has an additional feature that reports a variety of 1/0 statistics to aid with profiling
efforts. Setting the environment variable MPI CH_MPI | O_STATS=1 beforerunning aparallel application enables
the report:

export MPI CH_MPI | O_STATS=1

which gives output such as:

o e m e a— o - +
| MPI1Owite access patterns for benchmark_fil es/ npiio. dat
| i ndependent writes =0

| collective wites = 24

| i ndependent writers =0

| aggregators = 24

| stripe count = 48

| stripe size = 1048576

| systemwites = 3072

52

Best Practice Guide - Parallel 1/0

aggregators active
total bytes for wites

0,0,0,24 (1, <= 12, > 12, 24)
3221225472 = 3072 MB = 3 G B

| =

| =

| ave systemwite size = 1048576
| read-nodi fy-wite count = 0

| read-nodify-wite bytes =0

| nunber of wite gaps =0

| ave wite gap size = NA

|

See "Optimzing MPl 1/0O on Cray XE Systens"” S-0013-20 for explanations.

for each MPI-10 operation performed in the job. This allowsfor confirmation that the application and MPI library
have been tuned effectively by, for example, exclusively using collective operations to optimise 1/0. Refer to
Chapter 4 for further guidance on MPI-10.

Additionally, the environment variable MPI CH_MPI | O_HI NTS_DI SPLAY=1 is available on Cray systems to
print the MPI-10 hints used by open operations on each file accessed by an application. Setting:
export MPI CH_MPI 1 O H NTS_DI SPLAY=1

before running the same job as above produces:

PE 0: MPI1O hints for benchmark files/npiio.dat:

cb_buffer_size = 16777216
rom o_cb_read = automatic
romo_chb_wite = automatic
cb_nodes =24
cb_align =2

rom o_no_i ndep_rw = fal se

rom o_cb_pfr = disabl e
romo_cb_fr_types = aar

rom o_cb_fr_alignment =1

rom o_cb_ds_threshol d =0

rom o_cb_alltoall = automatic
i nd_rd_buffer_size = 4194304

i nd_wr_buffer_size = 524288
rom o_ds_read = disabl e
romo_ds_wite = disabl e
striping_factor = 48
striping_unit = 1048576

romo_lustre_start_iodevice = 0

direct_io = fal se
aggregator_placenment _stride = -1
abort_on_rw_error = disabl e
cb_config_list = x %

rom o_fil esystemtype = CRAY ADI O

Refer to Chapter 4 for descriptions of these hints.

53

Best Practice Guide - Parallel 1/0

Further documentation

Books

[1] Prabhat and Q. Koziol,High Performance Parallel 1/0, 1st ed. Chapman and Hall/CRC, 2014.

[2] Linux System Programming: Talking Directly to the Kernel and C Library, 1st ed. O'Reilly Media, Inc., 2007.

Websites, forums, webinars

[3] PRACE Webpage, http://mww.prace-ri.eu/ .

[4] BeeGFSWiki: System Architecture, https://mww.beegfs.io/wiki/SystemAr chitecture .
[5] BeeGFSWiki: Sorage Pools, https://www.beegfs.io/wiki/SoragePools .

[6] BeeGFSWIiki: Sriping Settings, https://www.beegfs.io/wiki/Sriping .

[7] HDF5 Webpage, https://support.hdfgroup.org/HDF5/ .

[8] NetCDF Webpage, http://mmw.unidata.ucar .edu/softwar e/netcdf/ .

[9] PnetCDF Webpage, http://cucis.ece.northwestern.edu/projects/PnetCDF/ .
[10] ADIOS Webpage, https://mmwv.ol cf.ornl.gov/center-projects/adios/ .

[11] S ONLib Webpage, http://mww.fz-juelich.de/jsc/sionlib .

[12] ROMIO Webpage, http://www.mcs.anl.gov/projects/romio/ .

[13] ARCHER » Hardware, http://mww.archer.ac.uk/about-archer/hardware/ .

[14] ARCHER » Best Practice Guide - Sample FPP/SSF Results, http://www.ar cher.ac.uk/documentati on/best-
practice-guide/io.php#summary-of-performance-advice .

[15] Darshan Webpage, http://www.mcs.anl.gov/research/projects/darshan/ .

[16] Darshan-runtime installation and usage, https://www.mcs.anl.gov/research/projects/darshan/docs/dar-
shan3-runtime.html .

[17] Darshan Documentation, https.//www.mcs.anl.gov/resear ch/projects/dar shan/documentation .
[18] Darshan at LRZ, https://doku.lrz.de/display/PUBLIC/Darshan .

[19] Modularized 1/O characterization using Darshan 3.x, https://www.mcs.anl.gov/resear ch/projects/dar-
shan/docs/dar shan-modularization.html .

[20] TAU Webpage, https://www.cs.uoregon.edu/resear ch/tau/home.php .
[21] Vampir Webpage, https://www.vampir.eu/ .

[22] Performance Data Visualization: /O Summary, https: //vampir .eu/tutorial/manu-
al/performance_data_visualization#sec-iosummary .

[23] HPC 10 Benchmark Repository, https://github.com/hpc/ior .
[24] Chunking in HDF5, https://portal .hdfgroup.org/display/HDF5/Chunking+in+ HDF5 .

[25] HDF5 Advanced Topics, https: //support.hdfgroup.org/HDF5/doc/Advanced/Chunk-
ing/Chunking_Tutorial EOS13 2009.pdf .

http://www.prace-ri.eu/
https://www.beegfs.io/wiki/SystemArchitecture
https://www.beegfs.io/wiki/StoragePools
https://www.beegfs.io/wiki/Striping
https://support.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/
http://cucis.ece.northwestern.edu/projects/PnetCDF/
https://www.olcf.ornl.gov/center-projects/adios/
http://www.fz-juelich.de/jsc/sionlib
http://www.mcs.anl.gov/projects/romio/
http://www.archer.ac.uk/about-archer/hardware/
http://www.archer.ac.uk/documentation/best-practice-guide/io.php#summary-of-performance-advice
http://www.archer.ac.uk/documentation/best-practice-guide/io.php#summary-of-performance-advice
http://www.mcs.anl.gov/research/projects/darshan/
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan3-runtime.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan3-runtime.html
https://www.mcs.anl.gov/research/projects/darshan/documentation
https://doku.lrz.de/display/PUBLIC/Darshan
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-modularization.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-modularization.html
https://www.cs.uoregon.edu/research/tau/home.php
https://www.vampir.eu/
https://vampir.eu/tutorial/manual/performance_data_visualization#sec-iosummary
https://vampir.eu/tutorial/manual/performance_data_visualization#sec-iosummary
https://github.com/hpc/ior
https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5

Best Practice Guide - Parallel 1/0

[26] A Brief Introduction to Parallel HDF5, https://www.alcf.anl.gov/files/Parallel HDF5 1.pdf .
[27] SONIib file format, https://apps.fz-juelich.deljsc/sionlib/docu/fileformat_page.html .

[28] API overview, https://apps.fz-juelich.defjsc/sionlib/docu/api_page.html .

[29] Utilitiesfor managing of SONIib files, https://apps.fz-juelich.de/jsc/sionlib/docu/util_page.html .

[30] Performance Issues, https://confluence.hdfgroup.or g/display/knowledge/Performance+ I ssues .

Manuals, papers

[31] IBM Spectrum Scale Manual, https://mww.ibm.convsupport/knowledgecenter/STXKQY 4.2.3/
com.ibm.spectrum.scale.v4r 23.doc/pdf/scale_ins.pdf .

[32] Lustre Manual, http://doc.lustre.org/lustre_manual .pdf .

[33] MPI: A Message-Passing Interface Sandard Version 3.0, https://www.mpi-forum.org/docs/mpi-3.0/mpi 30-
report.pdf .

[34] ThinkParQ BeeGFS Training - Typical Administrative Tasks, https://indico.mathrice.fr/event/5/ses-
sion/10/contribution/29/material/dides/O.pdf .

[35] VampirTrace 5.14.4 with extended accelerator support, https://tu-dresden.de/zih/for schung/ressourcen/
dateien/projekte/vampirtrace/accel erator/datei en/Vampir TraceManual/Vampir Trace-5.14.4-gpu2-
user-manual .pdf?lang=en .

[36] A case study for scientific I/O: improving the FLASH Astrophysics Code, https://iopscience.iop.org/arti-
cle/10.1088/1749-4699/5/1/015001/pdf .

[37] NAS Parallel Benchmarks /O Version 24, https.//www.nas.nasa.gov/assets/pdf/techre-
ports/2003/nas-03-002.pdf .

[38] Dynamically Adapting File Domain Partitioning Methods for Collective 1/0 Based on Un-
derlying Parallel File System Locking Protocols, http://users.eecs.northwester n.edu/~wkliao/PA-
PERS/fd_sc08 revised.pdf .

55

https://apps.fz-juelich.de/jsc/sionlib/docu/fileformat_page.html
https://apps.fz-juelich.de/jsc/sionlib/docu/api_page.html
https://apps.fz-juelich.de/jsc/sionlib/docu/util_page.html
https://confluence.hdfgroup.org/display/knowledge/Performance+Issues
http://doc.lustre.org/lustre_manual.pdf
https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/vampirtrace/accelerator/dateien/VampirTraceManual/VampirTrace-5.14.4-gpu2-user-manual.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/vampirtrace/accelerator/dateien/VampirTraceManual/VampirTrace-5.14.4-gpu2-user-manual.pdf?lang=en
https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/vampirtrace/accelerator/dateien/VampirTraceManual/VampirTrace-5.14.4-gpu2-user-manual.pdf?lang=en
https://iopscience.iop.org/article/10.1088/1749-4699/5/1/015001/pdf
https://iopscience.iop.org/article/10.1088/1749-4699/5/1/015001/pdf
http://users.eecs.northwestern.edu/~wkliao/PAPERS/fd_sc08_revised.pdf
http://users.eecs.northwestern.edu/~wkliao/PAPERS/fd_sc08_revised.pdf

	Best Practice Guide - Parallel I/O
	Table of Contents
	1. Introduction
	1.1. About this Document
	1.2. Guide Structure

	2. High Performance I/O Systems
	2.1. Introduction
	2.2. I/O Strategies in Parallel Applications
	2.2.1. Serial I/O
	2.2.2. Parallel I/O

	2.3. The I/O Software Stack
	2.3.1. Low-level: POSIX
	2.3.2. Middle-level: MPI-IO
	2.3.3. High level I/O software

	2.4. General Pointers for Efficient I/O

	3. Parallel File Systems
	3.1. Introduction
	3.2. Lustre
	3.2.1. Lustre File Layout (Striping)
	3.2.2. Choosing a stripe count
	3.2.3. Choosing a stripe_size

	3.3. IBM Spectrum Scale (formerly GPFS)
	3.3.1. Block size

	3.4. BeeGFS (formerly FhGFS)
	3.5. Object Storage

	4. MPI-IO
	4.1. Introduction
	4.1.1. MPI-IO data access operations
	4.1.2. General Hints

	4.2. Manipulating Files in MPI
	4.2.1. Opening a File

	4.3. File View
	4.4. ROMIO optimisation
	4.5. Setting Hints for MPI-IO
	4.6. MPI-IO General Considerations

	5. File Per Process
	5.1. Introduction
	5.2. File Per Process vs. Shared File
	5.3. Optimising File Per Process
	5.4. Sample Performance Data

	6. High-Level I/O Libraries
	6.1. Introduction
	6.2. NetCDF
	6.2.1. Architecture of NetCDF APIs and Libraries
	6.2.1.1. The netCDF data model

	6.2.2. Parallel I/O with netCDF

	6.3. HDF5
	6.3.1. HDF5 Design
	6.3.2. HDF5 File Organization and Data Model
	6.3.3. Selecting a Portion of a Dataspace
	6.3.4. Chunking in HDF5
	6.3.5. Parallel HDF5
	6.3.6. Parallel HDF5 Example

	6.4. pNetCDF
	6.5. SIONLib
	6.5.1. SIONLib file format
	6.5.2. SIONLib API and utilities

	6.6. Touching on Low-level I/O: POSIX, C and Fortran File Manipulation
	6.6.1. POSIX and the C Standard Library
	6.6.1.1. O_DIRECT flag
	6.6.1.2. Buffering
	6.6.1.3. POSIX Hints

	6.6.2. Fortran Files
	6.6.2.1. I/O Formatting
	6.6.2.2. Conversion of Fortran Unformatted Files
	6.6.2.3. I/O Pattern Issues
	6.6.2.4. Tuning Fortran Using the Intel Compiler

	6.7. I/O Libraries Summary

	7. I/O Performance Analysis
	7.1. Introduction
	7.2. Darshan Tool
	7.3. Darshan Runtime
	7.3.1. Using the Darshan Runtime

	7.4. Darshan Util
	7.4.1. Darshan Plots: FLASH-IO Benchmark

	7.5. Vampir
	7.5.1. Using Vampir
	7.5.1.1. Vampir Examples: FLASH-IO and BT-IO
	7.5.1.2. Comparing traces using Vampir

	7.6. MPI-IO Reporting with Cray MPICH

	Further documentation

