
Advanced Fortran Topics – Hands-On Training

1

Advanced Fortran Topics - Hands On Sessions

Inhalt
Introductory Comments .. 2

Exercises for Day 1 ... 3

Session 1 – Reverse communication interface .. 3

Session 1 – Operations on sparse matrices ... 3

Session 1 – Sparse matrices continued.. 3

Session 2 – Physical bodies .. 4

Session 2 – Implement the date class .. 4

Session 2 – Geometric objects ... 5

Session 2 – improving an interface class ... 5

Exercises for Day 2 ... 6

Session 3 – Collision of physical bodies ... 6

Session 3 – Using asynchronous I/O .. 6

Session 3 – User-defined derived type I/O for sparse matrices .. 6

Session 4 – Parameterized derived types .. 7

Session 4 – Trajectories of Physical Bodies.. 7

Session 4 – Integration example .. 7

Exercises for Day 3 ... 8

Session 5 (easy) – Calling GSL from Fortran .. 8

Session 5 (more difficult) – Using a POSIX call from Fortran ... 8

Session 5 – Dynamic dummy arguments ... 8

Session 5 – C library interface with function argument ... 9

General comments on coarray programming ... 9

Session 6 – Data distribution ... 10

Session 6 – Heat conduction parallelized .. 10

Exercises for Day 4 ... 12

Session 7 – parallelizing a ray tracer .. 12

Session 7 – parallel library call ... 12

Session 8 – Separate execution of even and odd images .. 12

Session 8 – Coindexing in teams and team-local allocation .. 13

Advanced Fortran Topics – Hands-On Training

2

Introductory Comments

• Before you start the first exercise, please read the appropriate chapter from the

organizational document to perform setup of the course environment

• There is no need to do all the exercises.

• You are bound to make mistakes. Therefore, writing test programs (comparing expected with

actual results) is a vitally important step in the development cycle. And one learns more from

the mistakes than from the successes.

• Source code including examples from the talk and solutions for the exercises will be provided

at the end of each day via the download URL:

https://doku.lrz.de/display/PUBLIC/PRACE+Course%3A+Advanced+Fortran+Topics

(You can use the wget command to perform downloads via UNIX command line by doing copy

and paste of an archive name URL).

https://doku.lrz.de/display/PUBLIC/PRACE+Course%3A+Advanced+Fortran+Topics

Advanced Fortran Topics – Hands-On Training

3

Exercises for Day 1

Session 1 – Reverse communication interface
Some knowledge of OpenMP is useful for doing this exercise.

The directory hands_on/skel/reverse_communication contains example code for the
integration routine that uses reverse communication, as discussed in the slides.

a. Why is that code (still) not thread-safe? You can check the fact by activating the OpenMP
clauses in the calling program and running with OMP_NUM_THREADS set to a value larger
than 1.

b. Re-design the code to be thread-safe without adding any OpenMP directives in the module
mod_integration. Hint: Introduce a derived type.

Session 1 – Operations on sparse matrices
The derived type sparse mentioned in the slides can be used to implement sparse matrices, and
thus a sparse matrix-vector multiplication. A sparse matrix is represented by a rank-1 array

TYPE(sparse), ALLOCATABLE :: sa(:)

which is allocated and subsequently has its (few) matrix elements set via repeated invocation of a
module procedure set_element() on each array element of sa (the latter is intended to
correspond to a matrix row in form of a linked list ordered by ascending index values). The folder
hands_on/skel/sparse contains files mod_sparse.f90 and test_sparse.f90 copies of
which you will need to suitably modify:

a. Add a module function that implements the multiplication of a sparse matrix by a real(dk)
vector and overload the multiplication operator.

b. Run the resulting program and check the results. Then, check for memory leaks by building
with debugging options and running the command through Valgrind:

valgrind --tool=memcheck --leak-check=yes --track-origins=yes \
 --show-reachable=yes ./test_my_sparse.exe

Where does the observed problem come from?
c. Consider further changes to your program to avoid the problem.

Two slightly different solutions are provided in the hands_on/solutions/sparse folder as

• mod_sparse_simple.f90 and test_sparse_simple.f90

• mod_sparse.f90 and test_sparse.f90

Note: the sparse implementation demonstrated here is horribly inefficient, because pointer
chasing causes loss of spatial locality. Much better-performing storage schemes for sparse
matrices exist, which you should use in productive environments.

Session 1 – Sparse matrices continued
In the slides, an overloaded structure constructor was shown for an object of type sparse. This
suggests a much more efficient way of storing the row of a sparse matrix. Create a new folder,
copy the module to it and improve the type definition. Apart from adding a constructor overload,

Advanced Fortran Topics – Hands-On Training

4

you will also need to modify the implementations of the module procedures, of course. Then
check that the main program still executes with the same results without any changes to it. Finally,
create a new main program that uses the overloaded constructor instead of setting elements
individually. The solution to this exercise will be contained in the folder
hands_on/solutions/sparse_crs.

Session 2 – Physical bodies
Starting from the type definition

TYPE :: body

 REAL(dk) :: mass

 REAL(dk) :: pos(3), vel(3)

END TYPE

please define two extensions of that type (in the same module that defines the above type) which
describe

• a body that has an electrical charge,

• a body that rotates.

Then write a procedure print_body that prints out all components of an object whose dynamic
type may be any of the three types described above.

In a main program, please declare an allocatable polymorphic variable of declared type body,
allocate it to be in turn any of the three types above, define reasonable values, and invoke
print_body on that object.

Suppose a physical body starts out being of TYPE(body) but later acquires a charge (for
example, by being struck by lightning). How can the previous values of the non-charge type
components be retained when the object changes its dynamic type?

Finally, declare an unlimited polymorphic entity in the main program and allocate it to be of one of
the above types. How can you invoke print_body on that object?

You can start out from the skeleton code given in hands_on/skel/polymorphic_body. The
solution will be available in hands_on/solutions/polymorphic_body.

Session 2 – Implement the date class
1. Fill in all necessary details needed for implementation of the date and datetime types

discussed in the lecture. Some subroutines which do the necessary computational stuff are
provided in hands_on/skel/datetime. Please start out by implementing the missing
subroutines inc_date and inc_datetime as well as overloading the structure
constructor for the above types.

2. Bind the procedures written in part 1 of this exercise as well as write_date to their
appropriate types and uncomment the statements in the test program that execute them,
to check that your code works correctly.

Advanced Fortran Topics – Hands-On Training

5

3. Suppose you have a type definition

TYPE :: person
 PRIVATE
 CHARACTER(LEN=nmx) :: name
 CLASS(date), POINTER :: birthday => null()
END TYPE
and functions that initialize objects of that type or return the name or birthday of a person.
How can you print out the birthday of a person without needing to copy an object? The
datetime skeleton also contains a file person.f90 that you can start out from.

The solution for this exercise is in the folder hands_on/solutions/datetime. Note: Because

many compilers mishandle the code intended for part 3., please check against the result produced

by the NAG compiler.

Session 2 – Geometric objects
A rectangle might be characterized by the type definition

TYPE :: rectangle
 PRIVATE
 REAL(dk) :: length = 0.0_dk
 REAL(dk) :: breadth = 0.0_dk
END TYPE
Implement a type-bound procedure which calculates the area of a rectangle, as well as an
initialization procedure and a procedure to perform a stretching of a rectangle along a chosen
direction. Since a square is a special kind of rectangle, one might consider the following type
definition:

TYPE, EXTENDS(rectangle) :: square
… ! fill in missing bits
END TYPE
How do you handle the inheritance behavior, especially that of the type-bound procedures?
Assume that a function adjust exists that takes an object of TYPE(rectangle) as an
argument and increases the size of the object if its area is too small. What happens if an entity of
TYPE(square) is used as an actual argument in an invocation of this function? Try to improve
on the type design.

Please consult the two Fortran codes in hands_on/solutions/shapes for the “bad” and
“good” versions of the design.

Session 2 – improving an interface class
The folder hands_on/skel/interface_class contains a runnable example for the interface

class discussed in the lecture. Unfortunately, the main program still contains a dependency on the

module that declares the type extension. What is the cause of the problem? Try to find a solution

such that the statement “use mod_file_handle” can be replaced by “use mod_handle”.

The solution will be available in hands_on/solutions/interface_class.

Advanced Fortran Topics – Hands-On Training

6

Exercises for Day 2

Session 3 – Collision of physical bodies
Write a type-bound procedure that calculates the front-on collision of physical bodies, starting

from the code written for the above exercise. The following assumptions may be made: For the

base type, the conservation of energy and momentum defines the result. In the center-of-mass

system that moves with velocity

�⃗� = (𝑚1𝑣1⃗⃗⃗⃗ + 𝑚2𝑣2⃗⃗⃗⃗) (𝑚1 + 𝑚2)⁄

the velocities 𝑤𝑗⃗⃗⃗⃗ ′ = 𝑣𝑗⃗⃗⃗ ′ − �⃗� after the collision can be obtained from the corresponding 𝑤𝑖⃗⃗⃗⃗ before

the collision by

𝑚1�⃗⃗� ′1 + 𝑚2�⃗⃗� ′2 = 0 = 𝑚1𝑤1⃗⃗ ⃗⃗ + 𝑚2𝑤2⃗⃗⃗⃗ ⃗ 𝑚1𝑤1
2 + 𝑚2𝑤2

2 = 𝑚1𝑤′1
2 + 𝑚2𝑤′2

2

For two spherical charged bodies that collide the charges after the collision are defined by

𝑞′1
𝑅1

=
𝑞′2
𝑅2

and you can assume that the electrostatic interaction is negligible. The radii R1, R2 of the objects
shall be supplied through the interface.

The solution will be available in hands_on/solutions/polymorphic_body.

Session 3 – Using asynchronous I/O
The directory hands_on/skel/aio contains source code for a ray tracer. This code performs I/O
of the complete picture array at the end of the calculation. The resulting file can be viewed with
the display command. Convert this program to use asynchronous I/O by putting the data
transfer statements inside the outer loop that processes the tiles in the picture. In particular, you
can reduce the needed amount of storage from size**2 to size*nbuf, where nbuf is the
number of I/O buffers available for asynchronous I/O. For which picture size do you observe a
performance advantage?

The solution will be available in hands_on/solutions/aio.

Note: For good I/O performance on the LRZ HPC systems it is recommended to change to the $SCRATCH directory and
execute the program there.

Session 3 – User-defined derived type I/O for sparse matrices
Starting from the solutions for the sparse matrix multiplication from session 2, add a generic
binding and module procedures that support formatted as well as list-directed output of objects of
type sparse. Modify the test program to exercise these features.

The solution for this exercise is contained in the folder hands_on/solutions/sparse (files
mod_sparse_io.f90 and test_sparse_io.f90).

Advanced Fortran Topics – Hands-On Training

7

Session 4 – Parameterized derived types
Take a look at the skeleton code you find inside hands_on/skel/pdt/.

1. As indicated, define an abstract parameterized derived type matT with kind parameter k and
len parameters m, n. Then, define a type extension with a rank-2 real array component mat. In
the main program, declare allocatable objects of the kind indicated in the skeleton main
program. Further, define an assignment that can handle different kind parameters for rmatT,
e.g. real32 and real64 and any len parameter. Also define a matrix multiplication that can
handle different kind parameters for rmatT, e.g. real32 and real64. Try to get the indicated
code fragments in the main program running.

2. Now add the private attribute to the parameterized type rmatT. What is required to get the
main program to compile and run again?

Session 4 – Trajectories of Physical Bodies
Define a type that – reusing code from the Session 4 exercise “Physical Bodies” - can describe the

trajectory of a particle of CLASS(body). This means that the physical state of the particle at some

number of points in time must be stored inside an entity of such a type.

1. What type components must be defined to fully describe such a trajectory? Write an

overloaded (generic) structure constructor for an entity of that type that defines an initial

condition for the trajectory.

2. Write a procedure that updates the trajectory by adding an additional time step, assuming

that mass or charge of the particle do not change. Deal with the storage limitation of an

entity of TYPE(trajectory) by writing data to disk if necessary, without changing

existing interfaces.

3. What do you need to do if an entity of TYPE(trajectory) goes out of scope or is

deallocated?

Please start out with the skeleton code in hands_on/skel/trajectory. The entries marked

FIXME indicate where missing bits need to be added; a test program that runs the code is also

supplied. Reference output is provided in a subdirectory.

Session 4 – Integration example
Fill in the details on implementing the integration example from today's lecture. Some code which

provides a simple default integrator is available in hands_on/skel/integration, as well as

code that indicates how Fortran GSL interface functions (which provide more refined capabilities)

should be used. Please note that the main program needs to change (read the FIXME entries

there), and the qdr.f90 module needs appropriate updates.

Advanced Fortran Topics – Hands-On Training

8

Exercises for Day 3

Session 5 (easy) – Calling GSL from Fortran
Write a program that calculates the value of the error function

erf(𝑥) ≔
2

√𝜋
 ∫ 𝑒−𝑡2

𝑥

0

𝑑𝑡

for values of the argument between 0.0 and 2.0. Use the implementation supplied by the GNU

scientific library and use the variant of the function that also calculates the error estimate.

Documentation is available at https://www.gnu.org/software/gsl/manual/ and the Makefile

provides the necessary variables ($GSL_LIB) to link against the library. A C implementation is

available in hands_on/skel/interop_gsl, and the solution for this exercise will be contained

in hands_on/solutions/interop_gsl

Note that a nearly complete Fortran interface to the library is available via

https://github.com/reinh-bader/fgsl/

Session 5 (more difficult) – Using a POSIX call from Fortran
The API call getpwnam() allows to extract information about a specific user name from the
authentication databases. Write a Fortran module and program that contains the necessary type
definition, BIND(C) interfaces and module procedures to produce and print out a user's HOME
directory. What must be taken care of in case a user name does not exist? Study the man page for
getpwnam() for information on its interface.

Skeleton code for the exercise is in hands_on/skel/interop_struct. A fully working main
program is available, but the module mod_passwd must be implemented.

The solution for this exercise will be found in hands_on/solutions/interop_struct.

Session 5 – Dynamic dummy arguments
In the lecture, we have seen how C-defined types with pointer components can be handled in
Fortran 2003. Now consider the reverse: How can the Fortran interface

SUBROUTINE generate_data(arr)

 REAL(c_float), ALLOCATABLE, INTENT(OUT) :: arr(:)

END SUBROUTINE

- which is non-interoperable (why?) - be used from C? Assume that the data for arr is generated
within the subroutine and that these data should be accessible within C. See
hands_on/skel/interop_deferred_shape for skeleton code.

With the Fortran 2018 extensions to C interoperability, it is permitted to directly use interfaces
such as the above, i.e. it is possible to add BIND(C) to the above interface. This removes the need
to introduce a “handle” derived type. Implement a C main program to do such a call after correctly
setting up a descriptor for the allocatable object.

The solution for this exercise will be found in
hands_on/solutions/interop_deferred_shape.

https://www.gnu.org/software/gsl/manual/
https://github.com/reinh-bader/fgsl/

Advanced Fortran Topics – Hands-On Training

9

Session 5 – C library interface with function argument
The folder hands_on/skel/interop_interface contains source files c_libcall.[c,h]
implementing a library call with prototype
float Sum_fun(float (*fun)(float x, void *params), void *params);

which takes a function argument to be provided by the client. Furthermore, the following files are
supplied:

• an example main program in C (cmain.exe) which you can build using the Makefile – you
will need to inspect this to see how the argument function is implemented.

• skeletons for a Fortran library module f_lib.f90 and a Fortran main program fmain.f90,
which will not successfully compile ...

Here’s what you are required to do:

1. Please add the missing functionality in the Fortran code using only Fortran 2003-style
interoperability features, so it performs the same function as the C code. What limitations
apply?

2. Using the additional features from Fortran 2018, extend the semantics of the interface so that
also non-interoperable arguments can be used from Fortran. Check that this works by calling
the function with a polymorphic actual argument.

The solutions will be provided in hands_on/solutions/interop_interface.

General comments on coarray programming
To compile and execute coarray programs, you need to have one of the following compilers installed on your

system:

• The Intel Fortran compiler, version 19.0 or higher (the most recent version is available via

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html)

• The gfortran compiler, version 9 or higher, together with the Opencoarrays package (see

http://www.opencoarrays.org/ for more information)

• The NAG Fortran compiler, version 7 or higher

If you work on the LRZ HPC systems, please consult the web page at

https://doku.lrz.de/display/PUBLIC/Coarray+Fortran+on+LRZ%27s+HPC+systems to inform yourself about how

parallel Fortran programs are compiled and started.

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
http://www.opencoarrays.org/
https://doku.lrz.de/display/PUBLIC/Coarray+Fortran+on+LRZ%27s+HPC+systems

Advanced Fortran Topics – Hands-On Training

10

Session 6 – Data distribution
Consider a triangular matrix:

a. Make a copy of the serial program hands_on/skel/triangle/triangular.f90 into your

working directory. The program reads in matrix size and a row index from the command line. It then

sets up

A(i, j) = i + j

and prints out the specified row. Parallelize this program in a manner that distributes data as evenly as

possible across images.

b. Implement the full matrix-vector multiplication for triangular matrices. Use the most efficient access

pattern for calculation of the scalar products. The coarray used to store one of the vectors should be

allocatable. Do not forget to implement the necessary communication to assure the complete result is

available on all images. Is it possible to use a collective function for this purpose?

The solutions for this problem will be available in the folder hands_on/solutions/triangle

Session 6 – Heat conduction parallelized
Starting out from the skeletons mod_heat.f90 and heat.f90 introduced on day 1, parallelize

this code using coarrays.

a. Introduce a one-dimensional domain decomposition along the y direction. One method to deal

with the boundary cell problem consists in assigning each image an additional column (“halo”

or “ghost” cells, colored grey in the figure below) at its boundaries to another domain which

receives data from the task that hosts that domain:

Advanced Fortran Topics – Hands-On Training

11

Only the halo cells need to be involved in communication; in this example, these form

contiguous arrays. For now, please only run a fixed (sufficiently large) number of iterations,

omitting the termination criterion.

b. Start with a small problem size to check whether correct results (the printout from multiple

tasks should be collected on image 1) are obtained.

c. When running with a problem size of 200 x 200, up to how many images does your code scale?

d. Add the necessary reduction call that enables consistent evaluation of the termination

condition. Note: Not all compilers support collectives yet.

The solutions for this problem will be available in the folder hands_on/solutions/heat_caf

(files mod_heat_static.f90 and heat_static.f90).

Advanced Fortran Topics – Hands-On Training

12

Exercises for Day 4

Session 7 – parallelizing a ray tracer
The subdirectory hands_on/skel/aio contains a serial ray-tracer code (the same we've seen

before in a different context), which computes a pretty picture. The central function is

calc_tile(), which computes one tile of the picture. The size of one tile and of the whole

picture is hardcoded at the start of the main program. Note that the code assumes that the

picture size is a multiple of the tile size. In the version given, the picture size is 4000 x 4000 and the

tile size is 200 x 200.

Parallelize the code. Several possible strategies

exist, but the variant we suggest uses events to

coordinate the I/O between images. No coarrays

beyond the event variable itself will be needed.

Make sure that your parallel code computes the

correct result (this is easy since you can always

display the picture). What speedup does your

code obtain going from 1 to the maximum

reasonable number of images? Also, compare

with the baseline performance from the serial

code.

The folder hands_on/solutions/ray will contain the solution for this exercise and further

variants of it.

Session 7 – parallel library call
For the matrix-vector multiply, rewrite the main program to use a library call with a coarray

dummy argument.

Session 8 – Separate execution of even and odd images
In a program unit, declare a coarray

INTEGER :: index[*]

index = this_image()

and then set up two teams constituted of the even and odd images, respectively. Print out all team-local values

of index from the first image of each team. Can you assure that the printout from the “odd” team is always

preceded by the printout from the “even” team?

The solution for this exercise is contained in hands_on/solutions/teams.

Advanced Fortran Topics – Hands-On Training

13

Session 8 – Coindexing in teams and team-local allocation

In a program unit, declare allocatable coarrays

INTEGER, ALLOCATABLE :: i_init(:)[:], i_team(:)[:]

Allocate i_init to an array of size 1, and initialize it with the value this_image(). Then, decompose the
initial team into subteams with three images each (except, possibly, the last one), and change execution to the
subteam context. On the first image of each team, print out the value

• on the last image of the “right neighbour” team

• on the last image of the initial team

Then, still inside the subteam context, allocate i_team to size 1 on subteam 1, size 2 on subteam 2 etc. Print

out the result of size(i_team) on image 1 of each subteam in order of the subteam identifiers. Hint: use
events to perform the necessary serialization. After leaving the subteam context, check the allocation status of

i_init and i_team.

