
Coarray Fortran

A Partitioned Global Address Space

Language

Author: Reinhold Bader

Fortran and Parallelism

Design target:

SPMD: "single program multiple data"

Design considerations:

add only a few new rules to the language

Standardization effort:

Baseline features in Fortran 2008
(ISO/IEC 1539-1:2010, published in October 2010)

Further parallel features in Fortran 2018
(ISO/IEC 1539-1:2018, published in November 2018)

© 2009-22 LRZ Advanced Fortran Topics 2

Permit Fortran programs to run in SPMD mode natively

smallest changes required to convert Fortran

into a robust and efficient parallel language

Feature Overview

Fortran 2008

SPMD execution

Partitioned memory data model ("coarrays")

One-sided communication ("coindexing")

Synchronization against data races

Memory management for coarrays

Fortran 2018

Collective subroutines

One-sided synchronization ("events")

Composable parallelism ("teams")

Atomic subroutines

Continue execution after image failure (optional)

© 2009-22 LRZ Advanced Fortran Topics 3

Current compiler support

Compiler Version Extent of support

NAG (nagfor) 7.0 Shared Memory only, most features

GCC (gfortran) 10.2 Distributed Memory (uses MPI), partial support

Cray (ftn) 10 Distributed Memory, all features (Cray systems)

Intel (ifort) 2021 Distributed Memory (uses MPI), all features

SPMD execution model

Concept of image:

image count:
between 1 and number of

images

Replicate program a fixed

number of times

set number of replicates at

compile time or at execution

time (processor dependent

method)

asynchronous execution –

loose coupling (unless

program-controlled

synchronization occurs)

Separate set of entities on

each image

program-controlled exchange

of data

usually necessitates

synchronization

© 2009-22 LRZ Advanced Fortran Topics 4

1

2

3

4
execution

sequence

Simplest possible program

Uses intrinsic functions for image management

num_images()

The form without arguments returns the number of images (set by

environment) – returns a default-kind integer

this_image()

generic intrinsic. The form without arguments returns a number between

1 and num_images() – returns a default-kind integer

© 2009-22 LRZ Advanced Fortran Topics 5

PROGRAM hello
IMPLICIT none
WRITE(*, '(''Hello from image '',i0, '' of '',i0)') &

this_image(), num_images()
END PROGRAM

file: parallel_hello.f90

Compiling and running the program (NAG)

Compilation

note: compiling with -coarray=single
permits executing with a single image only

Execution

with 4 images
Output

© 2009-22 LRZ Advanced Fortran Topics 6

Hello from image 2 of 4
Hello from image 1 of 4
Hello from image 3 of 4
Hello from image 4 of 4

non-repeatably unsorted output

if multiple images are used

nagfor -f2018 -coarray [-num_images=2] -o parallel_hello.exe parallel_hello.f90

export NAGFORTRAN_NUM_IMAGES=4

./parallel_hello.exe

optional: compile-time image count

overrides compile-time setting

Compiling and running the program (Intel)

Compilation

note: compiling with -coarray=single
permits executing with a single image only

compiling with -coarray=distributed
permits execution with multiple nodes (config file required)

Execution

with 4 images

Output

© 2009-22 LRZ Advanced Fortran Topics 7

Hello from image 2 of 4
Hello from image 1 of 4
Hello from image 3 of 4
Hello from image 4 of 4

non-repeatably unsorted output

if multiple images are used

ifort -coarray [-coarray-num_images=2] -o parallel_hello.exe parallel_hello.f90

export FOR_COARRAY_NUM_IMAGES=4

./parallel_hello.exe

optional: compile-time image count

overrides compile-time setting

Compiling and running the program (GCC)

Compilation: Use Opencoarrays wrapper for gfortran

note: compiling with additional -fcoarray=single option

limits execution to with a single image only

See also http://www.opencoarrays.org/

Execution

with 4 images

Output

© 2009-22 LRZ Advanced Fortran Topics 8

Hello from image 2 of 4
Hello from image 1 of 4
Hello from image 3 of 4
Hello from image 4 of 4

non-repeatably unsorted output

if multiple images are used

caf -o parallel_hello.exe parallel_hello.f90

cafrun -n 4 ./parallel_hello.exe

http://www.opencoarrays.org/

A more elaborate example: Matrix-Vector Multiplication

Basic building block for many algorithms

independent collection of scalar products

© 2009-22 LRZ Advanced Fortran Topics 9

i

n

j

jij bvM =
=1

Serial Matrix-Vector code

functions matval() and vecval() calculate matrix elements and input

vectors

© 2009-22 LRZ Advanced Fortran Topics 10

INTEGER, PARAMETER :: N = …
INTEGER :: icol, irow
REAL :: Mat(N, N), V(N)
REAL :: B(N) ! result

DO icol=1,N
DO irow=1,N
Mat(irow,icol) = matval(irow,icol)

END DO
V(icol) = vecval(icol)

END DO

CALL sgemv(‘n‘,N,N,1.0,Mat,N,V,1,0.0,B,1)

: ! Use result

BLAS routine does

calculation

Prepare input data

Nearly-trivial parallelism: Data decomposition

Block row distribution:

calculate only a block of B on

each image (but that

completely)

the shading indicates the

assignment of data to images

blue: data are replicated on all

images

© 2009-22 LRZ Advanced Fortran Topics 11

B
lo

ck
 s

iz
e

M
B

Further alternatives:

cyclic, block-cyclic

column, row and column

Memory requirement:

(n2 + n) / <no. of images> + n

words per image/thread

load balanced (same compu-

tational load on each task)

Assumption: MB == N / (no. of images)

dynamic allocation is more flexible

if mod(N, no. of images) > 0,

conditioning is required

on image 1

on image 2

on image 3

Memory model part 1: Image-local entities

Modified declarations

Semantics for PGAS replicated execution

each image has its local (or private) copy of any declared

object

private objects are only accessible to the image which „owns“

them
(extrapolated from conventional “serial” language semantics, and consistent

with executing in serial mode i.e. only one image)

© 2009-22 LRZ Advanced Fortran Topics 12

REAL :: Mat(MB, N), V(N)
REAL :: B(MB)

Mat Mat Mat Matlocal entities

per-image address

Image 1 2 3 4

„private“: as in OpenMP, but here is the default

Work sharing of initialization and M*v processing

"Fragmented data" model

need to calculate global row index from local iteration variable (or vice

versa)

degenerates into serial version of code for 1 image

© 2009-22 LRZ Advanced Fortran Topics 13

DO icol=1,N
DO i=1,MB
irow = (this_image() - 1) * MB + i
Mat(i,icol) = matval(irow,icol)

END DO
V(icol) = vecval(icol)
END DO

CALL sgemv(‘n‘,MB,N,1.0,Mat,MB,V,1,0.0,B,1)

i is image-local index;

need to calculate global index irow

each image:

works on its own, private

instances of Mat, V, B

Work sharing: General mapping of data to images

Index transformation for an array dimension

a one-to-one mapping between local and global indices

local problem size on image p: nlocal{p}

for a work-balanced problem: nlocal{p} typically the same on all

images (some of the last images may have a slightly smaller value)

© 2009-22 LRZ Advanced Fortran Topics 14

REAL :: a(ndim, …)
p = this_image()
DO i=1, nlocal

j = … ! global index
a(i,…) = … ! expression involving j

END DO

may vary

between images

jpi ][)(

ndim large enough to hold

nlocal{p} elements


−

=

+=
1

1

}{
p

q

iqnlocalj

local array

index image index global index

for a blocked distribution

conceptual notation only

Inter-image data transfer

and

Synchronization

Ilustrating the need for communication

Open issue from M * v example

iterative solvers require repeated evaluation of matrix-vector

product

but the result we received is distributed across the images

Therefore, a method is needed

to transfer each B to the appropriate portion of V on all images

B on 1

B on 2

B on 3

V on 1 V on 2 V on 3

© 2009-22 LRZ Advanced Fortran Topics 16

physical

memory on

core execu-

ting image 4

PGAS data and memory model

© 2009-22 LRZ Advanced Fortran Topics 17

s1 s2 s3 s4

global memory

address (e.g. ,128 bit)

global entities

x x x x

per-image address

local entities

execute on any image

execute on image where

„right“ x is located impossible

the term „shared“:

→ slightly different

semantics than

in OpenMP

not explicitly shown:

purely local accesses

(fastest)

All entities belong to one of two classes:

local (private) entities: only accessible to the

image/thread which „owns“ them → this is what we get

from conventional language semantics

global (shared) entities in partitioned global memory:

objects declared on and physically assigned to one

image/thread may be accessed by any other one

allows implementation for distributed memory systems

Declaration of coarrays / shared entities
(simplest case)

Coarray declaration

symmetric objects

Execute with 4 images

one-to-one mapping of coindex to image index

© 2009-22 LRZ Advanced Fortran Topics 18

INTEGER :: b(3)
INTEGER :: a(3)[*]

A(1)[1]
A(2)[1]
A(3)[1]

A(1)[2]
A(2)[2]
A(3)[2]

A(1)[3]
A(2)[3]
A(3)[3]

A(1)[4]
A(2)[4]
A(3)[4]

Image 1 2 3 4

B(1)
B(2)
B(3)

B(1)
B(2)
B(3)

B(1)
B(2)
B(3)

B(1)
B(2)
B(3)

address space

simplest

case

INTEGER, CODIMENSION[*] :: a(3)

Difference between

A and B?

equivalent alternative to

declaration shown to the left

Details explained later

Further declaration variants

a scalar coarray

support for cartesian topology:
example for a corank 2 coarray with non-default lower cobound

coarray of derived type
dispense with all of MPI_TYPE_* API

polymorphic coarray
example for a polymorphic coarray dummy argument

© 2009-22 LRZ Advanced Fortran Topics 19

INTEGER, CODIMENSION[*] :: s

REAL :: c(ndim, ndim)[0:pdim,*] Details explained later

TYPE(body) :: asteroids(ndim)[*]
POD types trivially usable,

non-POD types have

usage restrictions

CLASS(body) :: asteroids(:)[*]

Inter-image communication: coindexed access

Get

one-sided communication between images p and q

Put

IF (this_image() == p) &
b = a(:)[q]

a coindexed

reference

A
q

p

execution sequence

B
ad

d
re

ss
sp

ace

statement

executed on p

IF (this_image() == p) &
a(:)[q] = b

a coindexed

definition

A
q

p

execution sequence

B

ad
d

re
ss

sp
ace

statement

executed on p

assumption: p and q have the same value on all images, respectively

sectioning is

obligatory

© 2009-22 LRZ Advanced Fortran Topics 20

Local accesses to coarrays

Design aim for non-coindexed accesses:

should be optimizable as if they were local entities

Explicit coindexing:

indicates to programmer that communication is happening

distinguish: coarray (a)  coindexed entity (a[p])

cosubscripts must be scalars of type integer

INTEGER :: a(3)[*]
INTEGER :: i
a(:) = […]
:
i = a(3) + …
:
CALL my_proc(a, …)

a(:)[this_image()] = […]

same meaning, but likely

slower execution speed

permitted: interface of my_proc declares

dummy argument corresponding to a as

real :: x(:) (not a coarray)

© 2009-22 LRZ Advanced Fortran Topics 21

Synchronization requirements

Asynchronous execution

causes race condition →

violates language rules

Image control statement

enforce segment ordering:

q1 before p2, p1 before q2

qj and pj are unordered

© 2009-22 LRZ Advanced Fortran Topics 22

a = …
IF (this_image() == p) &

b = a(:)[q]

a = …
SYNC ALL
IF (this_image() == p) &

b = a(:)[q]

programmer‘s

responsibility

Aq

p

execution sequence

B

ad
d

re
ss

sp
ace

local variable

q1 q2

p1 p2

global barrier

A
q

p

execution sequence

B

ad
d

re
ss

sp
ace

local

variable

statement executed

on q … but when?

statement executed

on q … but when?

statement executed

on q … but when?

Semantics of SYNC ALL

All images synchronize:

SYNC ALL provides a global barrier over all images

segments preceding the barrier on any image will be ordered

before segments after the barrier on any other image → implies

ordering of statement execution

If SYNC ALL is not executed by all images,

the program will discontinue execution indefinitely (deadlock)

however, it is allowed to execute the synchronization via two

different SYNC ALL statements

(for example in two different subprograms)

For large image count or sparse communication patterns,

exclusively using SYNC ALL may be too expensive

limits scalability, depending on algorithm (load imbalance!)

→ we'll learn about alternatives later

© 2009-22 LRZ Advanced Fortran Topics 23

General synchronization rules

Synchronization is required

between segments on any

two different images P, Q

which both access the

same entity (may be local

to P or Q or another image)

(1) P writes and Q writes, or

(2) P writes and Q reads, or

(3) P reads and Q writes.

Status of dynamic entities

replace „P writes“ by „P

allocates“ or „P associates“

will be discussed later
(additional constraints exist on

who is allowed to allocate)

Synchronization is not

required

for concurrent reads

if entities are modified via

atomic procedures (see

later)

© 2009-22 LRZ Advanced Fortran Topics 24

A special case where no synchronization is needed

Against compile-time initialized objects

Example:

a very inefficient method for calculating a sum

Coindexing is not permitted in constant expressions that

perform initialization (e.g. DATA statements)

INTEGER :: count[*] = 1

IF (this_image() == 1) THEN
DO i=2, num_images()
count[i] = count[i] + count[i-1]

END DO
sum = count[num_images()]

END IF

no synchronization needed

because initialization

is done at compile time

no synchronization needed

because references and definitions

happen on the same image

© 2009-22 LRZ Advanced Fortran Topics 25

Image control statements needed

for Get and Put patterns

Get Put

might be asynchronously

executed

a = …
SYNC ALL
IF (this_image() == p) THEN

b = a(:)[q]

… = b
END IF

b = …

IF (this_image() == p) &
a(:)[q] = b

: ! further statements
SYNC ALL
IF (this_image() == q) &

… = a

p and q are assumed to have the same value on all images, respectively.

Otherwise, more than one image pair communicates data.

consume b on

image p

no sync required

(no communication)

no sync required

(no communication)

consume a on

image q

© 2009-22 LRZ Advanced Fortran Topics 26

Completing the M*v:

Broadcast results to all images

Using "Get" implementation variant

modified declaration

first suggestion for communication code:

Assumption: must update V on each image with values from B

REAL :: Mat(MB, N), V(N)
REAL :: B(MB)

REAL :: Mat(MB, N), V(N)
REAL :: B(MB)[*]

CALL sgemv(…)
SYNC ALL ! assure remote B is available

DO m=1, num_images()
V((m-1)*MB+1:m*MB) = B(:)[m]

END DO
: ! use V again

Formally, a correct

solution ...

but what about

performance?

only B needs to be

accessible across images

© 2009-22 LRZ Advanced Fortran Topics 27

n
 =

=
 n

u
m

_
im

a
g

e
s
()

Analyzing the communication pattern

In m-th loop iteration:

effectively, a collectively

executed scatter operation

note that each image

concurrently executes a

communication statement

Slowest communication path

might be a network link

between two images, with

bandwidth BW in units of

GBytes/s

subscription factor is n

estimate for transfer duration of

each loop iteration is

(latency Tlat included)

this is unfavourable

(an n2 effect when all loop

iterations are accounted)

1

m

m+1

n
execution sequence

B

(shared)

Vm

(private)

𝑇 = 𝑇𝑙𝑎𝑡 +
𝑀𝐵 ∗ 𝑆𝑖𝑧𝑒 𝑟𝑒𝑎𝑙 ∗ 𝒏

𝐵𝑊

© 2009-22 LRZ Advanced Fortran Topics 28

Improved communication pattern

Introduce a per-image shift of source image

efficient pipelining of data transfer

balanced use of network links:

CALL sgemv(…)
SYNC ALL ! assure remote B

! is available
DO m=1, num_images()
img = m + this_image() - 1
IF (img > num_images()) &

img = img - num_images()
V((img-1)*MB+1:img*MB) = B(:)[img]

END DO
: ! use V again

1

2

m

m+1

n-m+1

n-m+2

n
execution sequence

B Vimg

In m-th loop iteration

𝑇 ≤ 𝑇𝑙𝑎𝑡 +
𝑀𝐵 ∗ 𝑆𝑖𝑧𝑒 𝑟𝑒𝑎𝑙 ∗ (𝒊𝒎𝒂𝒈𝒆𝒔 𝒑𝒆𝒓 𝒏𝒐𝒅𝒆)

𝐵𝑊

© 2009-22 LRZ Advanced Fortran Topics 29

Weak scaling results: N(1 image) = 20000

0,10

1,00

10,00

1 4 16 64 256 1024

Se
co

n
d

s
(S

G
ES

V
 +

 C
o

m
m

u
n

ic
at

io
n

)

Number of images

Intel (simple) Intel (optimized) Gfortran (simple) Gfortran (optimized) Ideal

N → N * 2

© 2009-22 LRZ Advanced Fortran Topics 30

8 images share one

memory channel

on Sandy Bridge
with FDR 10

Latency effects increase
with image count

MB = 625

Collective Procedures

Added in

Motivation

Common pattern in serial code:

use of reduction intrinsics, for example:

SUM for evaluation of global system properties

Coarray code:

on each image, an image-dependent partial sum is evaluated

i. e. the intrinsic is not image-aware

Variables that need to have the same value across all

images

e.g. global problem sizes

values are initially often only known on one image

REAL :: mass(NDIM,NDIM), velocity(NDIM,NDIM)
REAL :: e_kin
:
e_kin = 0.5 * sum(mass * velocity**2)

© 2009-22 LRZ Advanced Fortran Topics 32

Reductions: CO_SUM, CO_MAX, CO_MIN

Arguments:

a may be a scalar or array of

numeric type

result_image is an optional

integer with value between 1

and num_images()

without result_image, the

result is broadcast to a on all

images, otherwise only to a on

the specified image

+su
m

execution sequence

1

2

3

4

REAL :: a(2)
:
CALL co_sum(a, RESULT_IMAGE=2)

a becomes undefined

on images ≠ 2

+su
m

execution sequence

1

2

3

4

REAL :: a(2)
:
CALL co_sum(a)

a becomes defined

on all images

must execute on

all images

© 2009-22 LRZ Advanced Fortran Topics 33

Reductions with user-defined operations

Example: derived type

might already have a specific

used to overload addition

PURE function with scalar,

nonpolymorphic, nonalloca-

table, nonpointer, nonoptional

arguments

CO_REDUCE:

assignment to result is done

as if it were intrinsic
(finalizers might be invoked!)

operator must be the same

function on all images

TYPE :: matrix
: ! implementation detail

END TYPE

PURE FUNCTION matrix_plus(x, y) &
result(r)

TYPE(matrix), intent(in) :: x, y
TYPE(matrix) :: r
: ! implementation detail

END FUNCTION

TYPE(matrix) :: xm
:
CALL co_reduce(A=xm, &

OPERATOR=matrix_plus, &
RESULT_IMAGE=2)

must be mathematically

associative

© 2009-22 LRZ Advanced Fortran Topics 34

Data redistribution with CO_BROADCAST

Arguments:

a may be a scalar or array of any type. it must have the same

type and shape on all images. It is overwritten with its value on

SOURCE_IMAGE on all other images

SOURCE_IMAGE is an integer with value between 1 and

num_images()

TYPE(matrix) :: xm
:
CALL co_broadcast(A=xm, SOURCE_IMAGE=2)

b
ro

ad
ca

st

execution sequence

1

2

3

4

a
s

if
b

y
 in

trin
s
ic

a
s
s
ig

n
m

e
n
t

© 2009-22 LRZ Advanced Fortran Topics 35

Further comments on collective subroutines

All collectives are "in-place"

programmer needs to copy data argument if original value is still

needed

Data arguments need not be coarrays

however if a coarray is supplied, it must be the same (ultimate)

coarray on all images

No segment ordering is implied by execution of a

collective

Collectives must be invoked by all images

and from unordered segments, to avoid deadlocks

For coarrays, all collectives could of course be implemented by the programmer.

However it is expected that collective subroutines will perform better, apart from

being more generic in semantics.

© 2009-22 LRZ Advanced Fortran Topics 36

Coarrays and dynamic memory

Symmetric memory

For addressing efficiency, there is an advantage

in using symmetric memory for coarrays (i.e. on each image, same

local part of start address for a given object): no need to obtain a remote

address for accessing remote elements

carry this property over to dynamic memory: symmetric heap

… = a(2)[3]

lo
ca

lp
ar

t
o

f
ad

d
re

ss

a[1] a[2] a[3] a[4]

executed on image 1:

it is sufficient to calculate addresses locally

© 2009-22 LRZ Advanced Fortran Topics 38

Allocatable coarrays: Declaration

Allocatable object

Allocatable component

part of type declaration

objects of such a type must be scalars

and are not permitted to have the ALLOCATABLE or POINTER

attribute, or to themselves be coarrays

INTEGER, ALLOCATABLE :: id(:)[:]
TYPE(body), ALLOCATABLE :: pavement(:,:)[:,:]

both shape and coshape

are deferred

intrinsic type

derived type,

corank 2

TYPE :: co_vector
REAL, ALLOCATABLE :: v(:)[:]

END TYPE

TYPE(co_vector) :: a_co_vector

component is an

allocatable array

a coarray cannot have

the POINTER attribute

© 2009-22 LRZ Advanced Fortran Topics 39

Allocatable coarrays: Executing the allocation

Symmetric and collective:

the same ALLOCATE statement must be executed on all images

in unordered segments

Semantics:

1. each image performs allocation of its local (equally large)

portion of the coarray

2. if successful, all images implicitly synchronize against each

other

ALLOCATE (id(n)[0:*], pavement(n,10)[p,*], stat=my_stat)

ALLOCATE (a_co_vector % v(m)[*])

same bounds and cobounds

(as well as type and type parameters)

must be specified on all images

subsequent references or definitions are

race-free against the allocation

permits an implementation to make use of a symmetric heap

© 2009-22 LRZ Advanced Fortran Topics 40

Deallocation of allocatable coarrays

Symmetric and collective:

the same DEALLOCATE statement must be executed on all

images in unordered segments

for objects without the SAVE attribute, DEALLOCATE will be

executed implicitly when the object’s scope is left

Semantics:

1. all images implicitly synchronize against each other

2. each image performs deallocation of its local portion of the

coarray

DEALLOCATE (id, pavement, a_co_vector % v)

preceding references or definitions are

race-free against the deallocation

© 2009-22 LRZ Advanced Fortran Topics 41

Reallocation and moving an allocation

Auto-(re)allocation is not permitted for coarrays: In

the LHS must already be allocated and the RHS must conform

this avoids potential asymmetry as well as implicit synchronization

(or even deadlock)

The MOVE_ALLOC intrinsic

if the FROM argument is a coarray, it must be executed on all

images, and will imply synchronization of all images

TO must have the same corank as FROM

INTEGER, ALLOCATABLE :: id(:)[:]

id = some_other_array(:)

© 2009-22 LRZ Advanced Fortran Topics 42

Coarrays as targets

Specification of a TARGET attribute is permitted ...

... but only local pointer association and referencing is

possible

INTEGER, TARGET :: id(id_dim)[*]

INTEGER, POINTER :: id_ptr(:)
:
id_ptr => id(::2) ! OK

… = id_ptr(:)[3] ! Not permitted

id_ptr => id(:)[3] ! Not permitted

© 2009-22 LRZ Advanced Fortran Topics 43

Coarray objects of "container type"

Type definition contains dynamic components

might have either the POINTER or the ALLOCATABLE attribute

A coarray object of such a type is permissible

sy
m

m
et

ri
c

(s
h

ar
ed

)
m

em
o

ry
ad

d
re

ss

a[1] a[2] a[3] a[4]

u
n

sy
m

m
et

ri
c

(p
ri

va
te

)
m

em
o

ry
ad

d
re

ss



components must be locally allocated or associated

Unsymmetric objects

© 2009-22 LRZ Advanced Fortran Topics 44

Example: expand an existing serial code

Idea:

avoid modification of type and data design

implement necessary communication mechanism separately

Add a suitably constructed derived type, for example:

TYPE :: communication_container
REAL, POINTER :: data(:) => null()
: ! possibly further components

END TYPE

TYPE(communication_container) :: subfield[*]

coarray of

container type

© 2009-22 LRZ Advanced Fortran Topics 45

Assumptions on existing code and parallel extension

Baseline algorithm works on

In between, each image needs data from another image q:

say, a row or a column from field

REAL, ALLOCATABLE, TARGET :: field(:,:)

IF (use_row) THEN
subfield % data => field(row, :)

ELSE
subfield % data => field(:, column)

END IF
SYNC ALL
q = …
n(q) = size(subfield[q] % data, 1)

CALL process(field, …)
SYNC ALL
local_data(:n(q)) = … + subfield[q] % data

assure pointer association on q is ordered against

references to q from another image

assure that updates to field on q are ordered

against references to q from another image

remote size must be locally known

(array conformance)

field must be allocated

look at this together
with next slide

© 2009-22 LRZ Advanced Fortran Topics 46

1. access remote object

subfield[q] from image p

2. obtain location and size of

data component

3. transfer data component to

executing image

Performance impact:

• additional latency due to lookup

step

• for pointers, non-contiguous

access is likely to reduce

performance

field

Accessing remote component data (here: „Get“)

sy
m

m
et

ri
c

(s
h

ar
ed

)
m

em
o

ry
ad

d
re

ss

Image q Image p

u
n

sy
m

m
et

ri
c

(p
ri

va
te

)
m

em
o

ry
ad

d
re

ss

subfield[*]subfield[*]

reference to subfield[q] % data executed on image p

local_data

data
component

updates

1.

2.

3.

© 2009-22 LRZ Advanced Fortran Topics 47

Some limitations on intrinsic assignment

POINTER components

shallow copy semantics may conflict with locality requirement

Allocatable components

copying of data is allowed, but no (implied) remote allocation

subfield[q] = communication_container(field(:,1))
on image q, subfield % data

may become undefined

TYPE :: polynomial
PRIVATE
REAL, ALLOCATABLE :: f(:)

END TYPE

TYPE(polynomial) :: ps[*]

ps[q] = polynomial([2.0, 5.0])

ps[q] % f = [2.0, 5.0]
if executed on an image other

than q, ps % f must be

allocated there with size 2

This is not permitted

© 2009-22 LRZ Advanced Fortran Topics 48

Coarray subobjects

A subobject of a coarray is also a coarray if

it is not coindexed,

no vector subscript is involved in establishing it, and

no POINTER or allocatable component selection is

involved in establishing it.

Otherwise, it is not a coarray.

Relevance:

when passing as an argument to a procedure with a

coarray dummy

in an association block context

© 2009-22 LRZ Advanced Fortran Topics 49

following now: Exercise session 6

Advanced Synchronization

Partial synchronization

Image subsets

sometimes, it is sufficient to

synchronize only a few

images

synchronization statement:

executing image is implicitly

included in image set

More than 2 images:

need not have same image

set on each image

but: eventually all image

pairs must be resolved,

else deadlock occurs

IF (this_image() < 3) THEN

SYNC IMAGES ([1, 2])
END IF

execution sequence (/ 2 /) (/ 3 /)

(/ 3 /) (/ 1 /)

(/ 1 /) (/ 2 /)

1
2
3

1
2
3
4

Each grey box:

represents one
sync images

statement

© 2009-22 LRZ 51Advanced Fortran Topics

(/ 1 /)

deadlock

OK

Example: Simple Master-Worker

Scenario:

one image sets up data for

computations

others do computations

difference between

SYNC IMAGES (*) and

SYNC ALL: no need to

execute from all images

Performance notes:

sending of data by image 1

"Put" mode

an optimizing compiler might

perform non-blocking transfers,

and processing of data by

other images might start up in

a staggered sequence.

IF (this_image() == 1) THEN
: ! send data
SYNC IMAGES (*)

ELSE
SYNC IMAGES (1)
: ! use data

END IF
images 2 etc.

don‘t mind

stragglers

DO i=2, num_images()
a(:)[i] = …

END DO

„all images“

© 2009-22 LRZ 52Advanced Fortran Topics

Partial synchronization: Best Practices

Localize complete set of partial synchronization

statements

avoid interleaved subroutine calls which do synchronization of

their own

a very bad idea if subprogram does the following

likely to produce wrong results even if no deadlock occurs

IF (this_image() == 1) SYNC IMAGES (2)
CALL mysub(…)
:
IF (this_image() == 2) SYNC IMAGES (1)

SUBROUTINE mysub(…)
:
IF (this_image() == 2) SYNC IMAGES (1)
:

END SUBROUTINE

© 2009-22 LRZ 53Advanced Fortran Topics

sync images is

not context-safe

Weaknesses of previously treated

synchronization constructs

Symmetric

synchronization is overkill

the ordering of p1 before q2 is

often not needed

image q therefore might

continue without waiting

Therapy:

introduces a lightweight,

one-sided synchronization

mechanism – Events

Recall semantics of

SYNC ALL

enforces segment ordering:

q1 before p2, p1 before q2

qj and pj are unordered

applies for SYNC IMAGES as

well

Aq

p

execution sequence

B

ad
d

re
ss

sp
ace

local variable

q1 q2

p1 p2

global barrier

USE, INTRINSIC :: iso_fortran_env

TYPE(event_type) :: ev[*]

special opaque derived type;

all its objects must be coarrays

© 2009-22 LRZ Advanced Fortran Topics 54

One-sided synchronization with Events

Image q executes

and continues without

blocking

Image p executes

the WAIT statement blocks

until the POST has been

received. Both are image

control statements.

One sided segment ordering

q1 ordered before p2

no other ordering implied

no other images involved

© 2009-22 LRZ Advanced Fortran Topics 55

a = …

EVENT POST (ev[p])

EVENT WAIT (ev)
b = a(:)[q]

no coindex permitted

on event argument here

Aq

p

execution sequence

B

ad
d

re
ss

sp
ace

local variable

q1 q2

p1 p2

POST (+1)

WAIT (-1)

an event variable has an internal counter

with default value zero; its updates are

exempt from the segment ordering rules

(„atomic updates“)

The dangers of over-posting

Scenario:
Image p executes

Image q executes

Image r executes

Question:
what synchronization effect

results?

Answer: 3 possible outcomes
which one happens is

indeterminate

Case 1: p1 ordered before q2

Case 2: r1 ordered before q2

Case 3: ordering as given on

next slide

© 2009-22 LRZ Advanced Fortran Topics 56

EVENT POST (ev[q])

EVENT WAIT (ev)

EVENT POST (ev[q])

POST (+1)

p
p1 p2

WAIT (-1)

q
q1 q2

POST (+1)

r
r1

r2

POST (+1)
p

p1 p2

WAIT (-1)

q
q1 q2

POST (+1)

r
r1 r2

Avoid over-posting from multiple images!

Multiple posting done correctly

Why multiple posting?

Example: halo update

Correct execution:

Image p executes

Image r executes

Image q executes

p1 and r1 ordered before q2

© 2009-22 LRZ Advanced Fortran Topics 57

qp = q-1 r = q+1

FM

fm(:,1)[q] = …
EVENT POST (ev[q])

fm(:,n)[q] = …
EVENT POST (ev[q])

EVENT WAIT (ev, UNTIL_COUNT = 2)
… = fm(:,:)

POST (+1)

p
p1 p2

WAIT (-2)

q
q1 q2

POST (+1)

r
r1 r2

This case is enforced by using

an UNTIL_COUNT

number of posts needed

Mutual Exclusion (simplest case)

Critical region

block of code only executed

by one image at a time

order is indeterminate

can have a name, but this

has no semantics

associated with it

Subsequently executing

images:

segments corresponding to

execution of the code block

are ordered against one

another

this does not apply to

preceding or subsequent

code blocks

→ may need additional

synchronization to protect

against race conditions

CRITICAL
: ! statements in region

END CRITICAL

© 2009-22 LRZ 58Advanced Fortran Topics

Example for mutual exclusion via a critical region

© 2009-22 LRZ Advanced Fortran Topics 59

e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

REAL :: s, stot[*]

REAL :: a(:)

INTEGER :: i

stot = 0.0

SYNC ALL

s = 0.0

DO i = 1, size(a)

s = s + a(i)

END DO

CRITICAL

stot[1] = stot[1] + s

END CRITICAL

SYNC ALL

… = stot[1]

Image:

1 2 3 4

s1 s2 s3 s4

s1 s2 s3 s4

▪ Only one image at a time can execute the critical region

▪ others must wait → code in region is effectively serialized

stot[1]

stot[1]

synchronization
point

coarray private

stot[1]

stot[1]

stot[1]

stot[1]

inefficient sum reduction

give all images
the final value

avoid race of above
assignment against

first update

© 2009-22 LRZ

Mutual exclusion with locks

A coarray lock variable can be used to implement
specifically designed synchronization mechanisms

mutual exclusion bound to objects

→ more flexible than critical regions

objects may require protection in multiple blocks

different objects protected by different locks

→ improved scalability

60Advanced Fortran Topics

Simplest example for lock usage

Image control statements

LOCK and UNLOCK

Lock variable:

two states - unlocked or locked

locked means: acquired by a

specific image (until that image

releases the lock again)

Notes:

typically there exist as many

locks as there are images, but

only one is used

segment ordering is one-way

(like for events)

USE, INTRINSIC :: iso_fortran_env

TYPE(lock_type) :: my_lock[*]

LOCK (my_lock[1])
: ! update shared data
: ! through coindexing
UNLOCK (my_lock[1])

default initialized to the

"unlocked" state

blocks until the variable has the state

"unlocked", then acquires the lock

must be invoked by the image

that previously acquired the lock.

Immediately continues after releasing the lock.

Example works analogous

to a CRITICAL region

Quiz: why image 1 in the example?

© 2009-22 LRZ Advanced Fortran Topics 61

Non-blocking usage and performance considerations

Best case timing

for lock acquisition

𝑻𝒍𝒐𝒄𝒌 = 𝑻𝒍𝒂𝒕 ∗ log2𝑵

where

Tlat is the maximum

latency in the system

(a couple of µs → 10,000 cycles)

N is the number of image

groups for which Tlat

applies.

Typical value for large

programs: 100,000 cycles
(excludes outstanding data transfers)

USE, INTRINSIC :: iso_fortran_env

TYPE(lock_type) :: nb_lock[*]
LOGICAL :: got_it

DO
LOCK (nb_lock[1], ACQUIRED_LOCK=got_it)
IF (got_it) EXIT

: ! do stuff unrelated to shared data
: ! protected by the lock

END DO
: ! update protected shared data
UNLOCK (nb_lock[1])

instead of blocking, returns whether

the lock was successfully acquired.

locks are an expensive

synchronization mechanism

© 2009-22 LRZ Advanced Fortran Topics 62

The EVENT_QUERY intrinsic

Permits to inquire the state of an event variable

the event argument cannot be coindexed

the current count of the event variable is returned

the facility can be used to implement non-blocking execution on

the WAIT side of event processing

invocation has no synchronizing effect

CALL event_query(event = ev, count = my_count)

© 2009-22 LRZ Advanced Fortran Topics 63

Event and lock subobjects

Declare type components as events or locks

but then objects of that type are obliged to be coarrays:

TYPE :: queue
TYPE(lock_type) :: lock
TYPE(work_item) :: work
TYPE(queue), POINTER :: &

next => null()
END TYPE

TYPE :: pipeline
TYPE(event_type) :: start
TYPE(work_item) :: work

END TYPE

TYPE(queue) :: my_queue[*]
TYPE(pipeline), ALLOCATABLE :: my_pipeline(:)[:]

TYPE(queue) :: incorrect_queue ! Not permitted

© 2009-22 LRZ Advanced Fortran Topics 64

Memory fence

Target: support for user-defined synchronization

Prerequisite: subdivide a segment into two segments

Assurance given by memory fence:

operations on x[q] and y[q] via statements on p

action on x[q] precedes action on y[q] → code movement by compiler

prohibited

p is subdivided into two segments

but: segment on q is unordered with respect to both segments on p

image p

image q

memory fence

Fortran memory fence:
sync memory

x[q] y[q]

Note:
A memory fence is implied

by many, but not all of the

image control statements

execution sequence

© 2009-22 LRZ 65Advanced Fortran Topics

p1 p2

Atomic procedures: programming with race conditions

Exception to segment ordering rules is given for

for scalars of some intrinsic datatypes

that are only modified via invocation of atomic procedures, for

example those defined in the standard:

Programming with race conditions:

might be very fast (hardware atomics, asynchronous execution), but also

is dangerous to use

high likelihood of producing unportable code

INTEGER(atomic_int_kind)
LOGICAL(atomic_logical_kind)

atomic_define(atom, value)

atomic_ref(value, atom)
atom[q] := value

value := atom[q]

Envisioned purpose:
Permit the experienced

programmer to implement

customized synchronization

mechanisms

atom a coarray or

coindexed variable

© 2009-22 LRZ Advanced Fortran Topics 66

Example for usage and effect of atomic procedures

With

execute the following statements

Then the following applies:

this is standard-conforming (with or without the SYNC MEMORY)

the result printed out may be 0 or 1 - there is no ordering requirement

for visibility of atomic updates seen from unordered segments

This is even the case if the additional SYNC MEMORY statement is

executed on image p as indicated

INTEGER(atomic_int_kind) :: x[*] = 0, y[*] = 0
INTEGER :: tmp = 0

on image p on image q

CALL atomic_define(x, 1)

CALL atomic_define(y, 1)

DO WHILE (tmp == 0)
CALL atomic_ref(tmp, y[p])

END DO
CALL atomic_ref(tmp, x[p])
WRITE(*, *) tmp

SYNC MEMORY optionally added

© 2009-22 LRZ Advanced Fortran Topics 67

Programmer‘s responsibility

To evaluate all possible results of a set of atomic

operations, the programmer must

check all possible interleavings of atomic operations

executed on unordered segments

taking care that atomic references and definitions of different entities

may also be unordered against each other

and that ordering may also depend on the image that observes values

of variables involved in atomic operations.

The assumption that any issued atomic operation

eventually completes is legitimate, though.

© 2009-22 LRZ Advanced Fortran Topics 68

Example for user-defined segment ordering
(purely illustrative)

With

execute the following statements

Simple (!) state change of x:

guarantees that SYNC MEMORY on p is executed before that on q

and therefore p1 is ordered against q2

and therefore the coindexed access to a[p] on q is conforming

INTEGER(atomic_int_kind) :: x[*] = 0
INTEGER :: tmp = 0
REAL :: a[*] = 0.0

on image p on image q

a = 2.5
SYNC MEMORY
CALL atomic_define(x, 1)

DO WHILE (tmp == 0)
call atomic_ref(tmp, x[p])

END DO
SYNC MEMORY
WRITE(*, *) a[p]

end segment p1

start segment q2

Only slightly less simple state changes can easily trip you up:

just search for „ABA race condition“

© 2009-22 LRZ Advanced Fortran Topics 69

Further atomic functions defined in

atomic_add(atom, value)

atomic_<and|or|xor>(atom, value)

atomic_fetch_<op>(atom, value, old)

atomic_cas(atom, old, compare, new)

atom[q] := atom[q] + value (integer)

atom[q] := atom[q] <op> value (logical)

incoming atom[q] assigned to OLD in addition to
operation <op>, which may be any of the above

compare and swap (integer or logical):
old = atom[q]
if (atom[q] == compare) atom[q] = new

© 2009-22 LRZ Advanced Fortran Topics 70

Example for how atomic_add() could be used

For synchronization involving all images

Result:

Segment q3 is ordered against 1st segment of all images

© 2009-22 LRZ Advanced Fortran Topics 71

INTEGER(atomic_int_kind) :: x[*] = 0, z
INTEGER :: q
q = … ! same value on each image
SYNC MEMORY
CALL atomic_add(x[q], 1)
IF (this_image() == q) THEN
wait: DO
CALL atomic_ref(z, x)
IF (z == num_images()) EXIT wait

END DO wait
SYNC MEMORY

END IF

order of updates is

indeterminate

guarantee exit once all

images have executed (A)

(A)

q

exe
cu

tio
n

se
q

u
e

n
ce

p

x

some p ≠ q

p1

p2

q1

q2

q3

data on q

sync memory
atomic_add
atomic_ref

Using coarrays together with

object-oriented features

➢ Shaky ground due to

implementation issues

➢ Limited semantics

Combining coarrays with object orientation

A coarray may be polymorphic

example shows typed allocation

coindexing is not permitted for a polymorphic left hand side:

LHS coarray in intrinsic assignment cannot be polymorphic

CLASS(body), ALLOCATABLE :: particles(:)[:]

ALLOCATE(charged_body :: particles(n)[*])

body

charged_body

SELECT TYPE (particles)
TYPE IS (charged_body)
particles(:)[p] = …

END SELECT

Collective allocation and synchronization.

It must be guaranteed that the dynamic type is the

same on each image.

OK - particles are non-polymorphic here

particles(:)[p] = … Not permitted for intrinsic assignment

POD types

note that it would need to be allocatable

© 2009-22 LRZ Advanced Fortran Topics 73

Restrictions on association

Coindexing is not permitted:

But appearance of a coarray is OK

we've already seen it for SELECT TYPE

here an example for coarray subobject association:

SELECT TYPE(particles[2])
:

END SELECT

ASSOCIATE(p => asteroids[2])
p = …

END ASSOCIATE

Not permittedNot permitted

appears as

local

TYPE(body) :: asteroids(ndim)[*]

ASSOCIATE(p => asteroids%mass)
p(:)[q] = …

END ASSOCIATE
p is a discontiguous real array coarray,

because asteroids%mass is a coarray subobject.

© 2009-22 LRZ Advanced Fortran Topics 74

Limitation on type extension

Applies for types with coarray components:

is only permitted if the parent type already has a coarray

component:

otherwise, existing code for co_m would stop working for the

extension → violation of inheritance mechanism

TYPE, EXTENDS(co_m) :: co_mv
REAL, ALLOCATABLE :: v(:)[:]

END TYPE

TYPE :: co_m
REAL, ALLOCATABLE :: m(:,:)[:]

END TYPE

© 2009-22 LRZ Advanced Fortran Topics 75

Execution of type- and object-bound procedures

Discussed:

local vs. coindexed execution

procedure pointer: remote alias

is not locally known, no remote

execution supported

type-bound procedure is the

same on all images

polymorphism removed via

SELECT TYPE (RTTI)

TYPE :: body
: ! data components
PROCEDURE(p), POINTER :: print

contains
PROCEDURE :: dp

END TYPE

SUBROUTINE dp(this, kick)
CLASS(body), INTENT(INOUT) :: this
REAL, INTENT(IN) :: kick(3)
: ! give body a kick

END SUBROUTINE

object-bound

procedure (pointer)

type-bound

procedure (TBP)

CALL particles(7) % dp(kick)
CALL particles(8) % print()

IF (this_image() == 1) THEN
SELECT TYPE(particles)
TYPE IS (charged_body)
CALL particles(7)[2] % print()
CALL particles(8)[2] % dp(kick)

END SELECT
END IF

coindexed actual

arguments to be discussed

© 2009-22 LRZ Advanced Fortran Topics 76

Restrictions for container types

with polymorphic components

For explicit references to such components,

coindexing is not permitted.

A cooperative circumlocution is required, for example:

TYPE :: trajectory
CLASS(body), ALLOCATABLE :: &

particle(:)
INTEGER :: nsize

END TYPE

TYPE(trajectory) :: mytr[*]
CLASS(body), ALLOCATABLE :: &

auxiliary(:)[:]

ALLOCATE(charged_body :: &
mytr%particle(n))

mytr%nsize = n
: ! supply data

ALLOCATE(charged_body :: &
auxiliary(nmax)[*])

p = … ! target image
SELECT TYPE (auxiliary)
TYPE IS (charged_body)
auxiliary(1:mytr[p]%nsize)[p] = &

mytr % particle
: ! further code elided

END SELECT

SYNC IMAGES ([p,q])

: ! consume local portion
: ! of auxiliary(:) assuming the same dynamic

type on all images

assuming one-to-one

mapping between source

and target images

© 2009-22 LRZ Advanced Fortran Topics 77

Comments on parallel library design

Coarrays as dummy arguments

Library codes may need

to communicate and synchronize

argument data

declare these as coarrays

Restrictions that prevent copy-

in/out of coarray data:

if dummy is not assumed-shape,

actual must be simply contiguous

or have the CONTIGUOUS attribute

VALUE attribute prohibited for

dummy argument

Invocation:

actual argument must be a

coarray if the dummy is

argument c: for an assumed

shape dummy, the actual may be

discontiguous

SUBROUTINE co_sub(n,w,x,y)
INTEGER :: n
REAL :: w(n)[*]
REAL :: x(n,*)[*]
REAL :: y(:,:)[*]
:

END SUBROUTINE

explicit shape

assumed shape

assumed size

REAL :: a(ndim)[*], b(ndim,2)[*]
REAL, ALLOCATABLE :: c(:,:,:)[:]
ALLOCATE(c(10,20,30)[*])

CALL co_sub(ndim, a, b, c(1,:,:))

e
x

p
li

c
it

 i
n

te
rf

a
c

e
re

q
u

ir
e

d

© 2009-22 LRZ Advanced Fortran Topics 79

Image-dependent coarray passing

Example Procedure:

Invocation

with a different coarray

(subobject) on each image

Illustrating the communication

pattern

all references and definitions are

done „in-place“, on elements of the

original array coarray

not all images need to call the

procedure

SUBROUTINE add_pivot(x, img, y, n)
INTEGER, INTENT(IN) :: img, n
REAL, INTENT(IN) :: x[*]
REAL, INTENT(INOUT) :: y(:)

y(n) = y(n) + x[img]
END SUBROUTINE

REAL :: x(ndim)[*]
INTEGER :: p, n
p = …; n = …
x(:) = …
SYNC ALL
CALL add_pivot(x(n), p, x, n)

p /= this_image(),
n and p are different

on each image

here, dummy is a

scalar coarray

actual is a scalar

coarray subobject

image qimage p image r

original array

coarray

original array

coarray

original

array coarray

scalar coarray used

for invocation on q

scalar coarray used

for invocation on p

© 2009-22 LRZ Advanced Fortran Topics 80

Limitations for execution inside PURE procedures

Coindexed definitions („Put“) are not permitted

because this constitutes a side effect

coindexed references („Get“) are OK though

Image control statements are not permitted

ELEMENTAL procedures

are not permitted to have coarray dummy arguments

© 2009-22 LRZ Advanced Fortran Topics 81

Procedure-local coarrays

Requirements:

must have the SAVE or the ALLOCATABLE attribute or both

a function result cannot be declared a coarray

Consequence:

automatic coarrays or coarray function results are not permitted

Rationale:

not prohibiting this would imply a need for implicit

synchronization of (and hence also invocation from) all images

Note that for an allocatable procedure-local coarray this is the

case anyway, but the synchronization point is explicitly visible!

If that coarray does not also have the SAVE attribute, it will be

auto-deallocated at exit from the procedure if no explicit

DEALLOCATE was previously issued.

© 2009-22 LRZ Advanced Fortran Topics 82

Coindexed actual arguments

Assumptions:

actual argument is a coindexed object (therefore not a coarray)

it is modified inside the subprogram

therefore, typically copy-in/out will

be required

→ an additional

synchronization rule

is needed

Usually not a good idea

performance issues

problematic or impermissible for container types (effective

assignment!)

execution sequence

p

a
q

r

a[q] = … a[q] = …

© 2009-22 LRZ Advanced Fortran Topics 83

Factory procedures for coarrays

Allocatable dummy argument is a coarray:

intent(out) is not permitted (would imply synchronization)

actual argument: must be allocatable, with matching type, rank

and corank

procedure must be executed on all images, and with the same

effective argument

SUBROUTINE read_coarray_data(simulation_field, file_name)
REAL, ALLOCATABLE, INTENT(INOUT) :: simulation_field(:,:,:)[:]
CHARACTER(LEN=*), INTENT(IN) :: file_name
: ! determine size
IF (allocated(simulation_field)) DEALLOCATE(simulation_field)
ALLOCATE(simulation_field(n1, n2, n3)[0:*])
: ! read data

END SUBROUTINE read_coarray_data

© 2009-22 LRZ Advanced Fortran Topics 84

Overloading the assignment

Use this as circumlocution in cases where intrinsic assignment

is prohibited

Example: polymorphic coarray

Generic resolution of coarray vs. noncoarray specific is not possible
(syntax identical for calls with / without coarray)

MODULE mod_body
: ! type definition etc
INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE assign_body

END INTERFACE
CONTAINS
SUBROUTINE assign_body(out, in)
CLASS(body), INTENT(INOUT), ALLOCATABLE :: out(:)[:]
CLASS(body), INTENT(IN) :: in(:)
: ! assert that size of in is the same on all images
ALLOCATE(out(size(in,1))[*], SOURCE = in)

END SUBROUTINE
:

END MODULE

USE mod_body
TYPE(charged_body) :: nuclei(ndim)
CLASS(charged_body), &

ALLOCATABLE :: conuc(:)[:]

conuc = nuclei

could also be

a coarray

RHS might also

be a function call

© 2009-22 LRZ Advanced Fortran Topics 85

Using type-bound procedures to implement communication

Example:

handle data transfer for the

container type

here we only look at put

Execution

of put on image p

of code consuming s on image q

TYPE :: polynomial
REAL, ALLOCATABLE :: f(:)

CONTAINS
PROCEDURE :: get, put

END TYPE

TYPE(polynomial) :: s[*]
INTEGER :: status[*]

SYNC ALL
:
s = …
status[q] = s%put(q)
EVENT POST (ev[q])

s = … ! or … = s
SYNC ALL
:
EVENT WAIT (ev)
IF (status == comm_success) THEN
: ! reference local part of s

END IF

comm_success and comm_fail
are distinct integer constants

remember that
s[p] = …

is not permitted for an

s of type polynomial

© 2009-22 LRZ Advanced Fortran Topics 86

Implementation sketch

For support of type extensions writing an overriding TBP is

most appropriate

INTEGER FUNCTION put(this, img)
CLASS(polynomial), INTENT(INOUT) :: this[*]
INTEGER, INTENT(IN) :: img
INTEGER :: rem_size, lb, ub
IF (.NOT. allocated(this[img]%f) .AND. allocated(this%f)) THEN

put = comm_fail
RETURN

END IF
rem_size = size(this[img]%f,1)
IF (rem_size >= size(this%f)) THEN

lb = lbound(this[img]%f,1); ub = lb + size(this%f,1) - 1
this[img]%f(lb:ub) = this%f
this[img]%f(ub+1:) = 0.0
put = comm_success

ELSE
put = comm_fail

END IF
END FUNCTION

failure is will occur if component on target image

• is not allocated

• is allocated, but too small to hold data

© 2009-22 LRZ Advanced Fortran Topics 87

Documenting the synchronization behaviour

Synchronization performed by library code

is part of its semantics and should be documented

In particular,

whether (and which) additional synchronization is required

by the user of a library,

and whether a procedure needs to be called from all

images („collectively“) or can be called from image subsets

It may be a good idea

to supply optional arguments that permit to change the

default synchronization behaviour

© 2009-22 LRZ Advanced Fortran Topics 88

following now: Exercise session 7

Interoperation with MPI

Basic execution model

Nothing is formally standardized

Existing practice:

each MPI task is identical with a coarray image

0 1 2 3
1 2 3 4

this_image()

exe
cu

tio
n

se
q

u
e

n
ce

result of calling

MPI_Comm_rank()

PROGRAM with_mpi
USE mpi_f08
: ! further declarations, including coarrays
IF (.not. initialized) CALL MPI_Init()
: ! code with both MPI calls and
: ! coarray communication / synchronization
CALL MPI_Finalize()

END PROGRAM

obtained from call to

MPI_Initialized()

implementation may

either want this or

not like this

no guarantee on

ordering, though

© 2009-22 LRZ Advanced Fortran Topics 90

Program design ideas

Do not rewrite an existing MPI code base

Instead, extend it with coarray functionality

to avoid deadlocks, keep MPI synchronizations separate from coarray

synchronizations

avoid coindexed actual arguments in MPI calls

coarrays can be used in MPI calls (always considering segment ordering

rules), but be careful with non-blocking MPI calls

it is probably a good idea to avoid using the same object in both MPI and

coarray atomics

Knowledge of communication structure is required

analysis with tracing tool may be needed

© 2009-22 LRZ Advanced Fortran Topics 91

Technical details

Compilation

use mpifort/mpif90 wrapper

together with switch for

coarray activation

not every MPI

implementation might be

usable:

if the compiler uses MPI as

implementation layer for

coarrays, it is likely that you'll

need to use at least a binary

compatible MPI together with it

Execution

at least for distributed-

memory, it is likely that you

will need to use mpiexec to

start up

consult your vendor's or

computing centre's

documentation

facilities for pinning of MPI

tasks are likely to be useful

for coarray performance as

well ☺

© 2009-22 LRZ Advanced Fortran Topics 92

Composing coarray programs:

The concept of Teams

Weaknesses of flat coarray model (1)

Development of parallel library code

coarrays are symmetric → memory management not flexible enough

avoid deadlocks → obliged to do library call from all images

collectives, global barriers must be executed from all images

management of image subsets can become a headache

MPMD scenario: coupling of domain-specific simulation codes

we‘ll look at a pseudo-application of this type to illustrate the new semantics

© 2009-22 LRZ Advanced Fortran Topics 94

typically each doing its own internal synchronization

maybe doing internal coarray allocation/deallocation

data distribution strategy:

workload balance and

memory requirements
structure structure

fluidfluidfluid

by independent

programmer teams

Weaknesses of flat coarray model (2)

Matching execution to hardware

future systems likely are non-homogeneous (memory, core count)

A unified hybrid programming model is desired → want to fully exploit high

internal bandwidth and fast synchronization of node architecture via

independent image subsets

© 2009-22 LRZ Advanced Fortran Topics 95

fat node

(big memory,

many cores)

Interconnect fabric

thin nodes

(usually 2 sockets)

one coarray image

(multiple per node)

Connection typical
comm
BW
(GB/s)

typical
sync
Latency
(ns)

5-50 50-250

1-10 800-5000

0.5-5 800-5000

per image pair

Improving the scalability of the

coarray programming model

defines the concept of a team of images

Teams provide additional syntax and semantics to

subdivide set of images into subsets that can independently execute,

allocate/deallocate coarrays, communicate, and synchronize;

repeated (i.e., recursive and/or nested) subsetting is also permitted.

Two essential steps:

1. define the subsets

2. change the execution context to a particular subset (and back again)

Breaking composability where necessary

cross-team communication is also supported –

as usual, with clear visual indication to the programmer

© 2009-22 LRZ Advanced Fortran Topics 96

„composable parallelism“

Setting up a team decomposition

FORM TEAM statement

must be executed on all images of the current team

all images of that team are synchronized

© 2009-22 LRZ Advanced Fortran Topics 97

1 2 3 4 5

form team

this_image()
in initial teamexe

cu
tio

n
se

q
u

e
n

ce

structure structure

fluidfluidfluid

FORM TEAM (id, team [, NEW_IMAGE=…])

here: the initial team

integer supplies „color“ resulting team of opaque

type team_type

option for programmer-

defined image indexing

inside new teams

Example code

FORM TEAM does not by itself split execution

after the statement, regular execution continues on all images

© 2009-22 LRZ Advanced Fortran Topics 98

PROGRAM coupled_systems
USE, INTRINSIC :: iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: fluid = 1, structure = 2
INTEGER :: nf, id
TYPE(team_type) :: coupling_teams
:
nf = …
IF (this_image() <= nf) THEN
id = fluid

ELSE
id = structure

END IF

FORM TEAM (id, coupling_teams)
:

END PROGRAM

further declarations

further executable

statements

structure structure

fluidfluidfluid

two teams

are formed

declares the type

team_type

Switching the execution context:

The CHANGE TEAM block construct

Properties:
at beginning, changes current

team to become the one the

executing image belongs to

at end of block, reverts to

execution as ancestor team

team-wide synchronization of

images of each team at beginning

and end of each block

programmer is responsible for

setting up appropriate control flow

inside the block

© 2009-22 LRZ Advanced Fortran Topics 99

1 2 3 4 5

form team

change team

1 2 3 1 2

end team

this_image()
in initial teamexe

cu
tio

n
se

q
u

e
n

ce

this_image() in

team structure

return to original
numbering

sets up an ancestor relationship

between previous and new team

fluid and structure
are sibling teams Inside the new context:

wherever we had “all images”, now understand

this as “all images of the current team”

Syntax for CHANGE TEAM

Code fragment left

indicates how control flow is

implemented

information stored in

coupling_teams determines

which team the executing

image belongs to

Supporting intrinsics (team identification)

TEAM_NUMBER([TEAM]) returns an integer with the identifier ("color") of
the specified (default: the current) team, -1 if the
current team is the initial team.

GET_TEAM([LEVEL]) returns the type(team_type) team value for the
current team if LEVEL is not specified, or the team
value corresponding to the integer constants
INITIAL_TEAM, PARENT_TEAM, or CURRENT_TEAM.

CHANGE TEAM(coupling_teams)
SELECT CASE(team_number())
CASE(fluid)
:

CASE(structure)
:

END SELECT
END TEAM

only executed by

members of fluid

only executed by

members of structure

variable of
type(team_type)

constants are defined in
iso_fortran_env

© 2009-22 LRZ Advanced Fortran Topics 100

Simulation data (representing physical observables)

Fluid:

field fl, boundary dfl

Structure:

field st, boundary dst

Declarations:

Interaction

Fluid-Structure:

boundary bd

applies for both teams!

fluidfluid

dfl(:,:,2)[1] dfl(:,:,1)[2]

fl(:,:,:) on 1 fl(:,:,:) on 2

REAL, ALLOCATABLE :: fl(:,:,:), dfl(:,:,:)[:]
REAL, ALLOCATABLE :: st(:,:,:), dst(:,:,:)[:]
REAL, ALLOCATABLE :: bd(:,:)[:]

structure

fluidfluid
bd(:,:)[*]bd(:,:)[*]

te
a
m

-s
p
e
c
if
ic

d
a
ta

te
a
m

-s
p
e
c
if
ic

d
a
ta

© 2009-22 LRZ Advanced Fortran Topics 101

Processing of each subsystem

ALLOCATE(bd(…)[*])
simulation : CHANGE TEAM (coupling_teams)
SELECT CASE(team_number())
CASE(fluid)

ALLOCATE(fl(…), dfl(…)[*])
DO
CALL process_fluid(fl, dfl, …)
:
IF (completed) EXIT simulation

END DO
CASE(structure)

ALLOCATE(st(…), dst(…)[*])
DO
CALL process_structure(st, dst, …)
:
IF (completed) EXIT simulation

END DO
END SELECT
END TEAM simulation

auto-deallocation of team-allocated

coarrays is done here

fluid-structure interactions etc.

(see later slide)

data only established
in team fluid

data only established
in team structure

fluid-structure interactions etc.

(see later slide)

data established
in initial team

© 2009-22 LRZ Advanced Fortran Topics 102

applies to team-specific

coarrays as well as to pre-

established coarrays
→ what is bd[4] in the initial team

becomes bd[1] when the CHANGE

TEAM starts executing

→ team-local coindexing preserves

composability ☺

Interaction fluid ↔ structure

need to communicate across

team boundaries without

leaving the team execution

context (otherwise allocated data

vanish …)

Special syntax required

for cross-team accesses

Data distribution and access

Coindexing semantics:

coindices are evaluated relative

to the new image index
(which is processor dependent unless

NEW_IMAGE is specified in FORM TEAM)

1 2 3 4 5

change team

1 2 3 1 2

end team

exe
cu

tio
n

se
q

u
e

n
ce

dfl[*] dst[*]

bd[*]

no access to dfl[q]

from „structure“

© 2009-22 LRZ Advanced Fortran Topics 103

Extending the image selector:
Cross-team coarray references and definitions

Example:

statements below are executed

on image 2 of the fluid team

sibling team syntax:

ancestor team syntax:

© 2009-22 LRZ Advanced Fortran Topics 104

… = bd(:,:)[1, TEAM_NUMBER=structure]

… = bd(:,:)[4, TEAM=bd_team]

Notes:
both variants yield the same result in this situation

which to use depends on the image‘s knowledge of image

indices and teams, and on the data assignment strategies.

an image control

statement is missing here

change team

end team

exe
cu

tio
n

se
q

u
e

n
ce

bd[*]

2 4

2 1

execute
bd_team = get_team()

Team synchronization and memory management

Synchronization of all images of a team

for example, synchronize all images of the parent team while

executing in the descendant team context

contrast to SYNC ALL, which applies to the current team

Restrictions on coarray allocation and deallocation:

coarrays cannot have „holes“ → in the current team, it is not

permitted to deallocate a coarray that has been allocated in an

ancestor team

avoid appearance of overlapping coarrays → all coarrays

allocated while a CHANGE TEAM block is executing are

deallocated at the latest when the corresponding END TEAM

statement is reached (even if they have the SAVE attribute)

© 2009-22 LRZ Advanced Fortran Topics 105

SYNC TEAM (my_team)

Dealing with the fluid-structure interaction
(including necessary synchronization)

© 2009-22 LRZ Advanced Fortran Topics 106

TYPE(team_type) :: bd_team
:
bd_team = get_team()
simulation : CHANGE TEAM (coupling_teams)
select case(team_number())
CASE(fluid)
ALLOCATE(…)
DO
:
IF (interact) then

DO i=1, nimg
bd(…)[img(i),TEAM_NUMBER=structure] = fl(…)

END DO
SYNC TEAM (bd_team)
CALL process_interaction(bd, fl, …)

END IF
END DO

CASE(structure)
:

END SELECT
END TEAM simulation

against update of

local bd by structure

pushes data to fluid and

also needs to execute
sync team

1 2 3 4 5

1 2 3 1 2

exe
cu

tio
n

se
q

u
e

n
ce

SYNC ALL

only within team

SYNC TEAM

across specified team

Array indexing and

possibly needed

interpolation are

glossed over below
team-local processing

shown earlier

Non-default topologies

and

coindexing rules

Non-trivial coindex-to-image mappings

Corank of a coarray may be larger than one

sum of rank and corank can be up to 15

Lower cobound for each codimension can be different from 1

Example: corank 2

Mapping to image index for 10 executing images

z(:,:)[2,4]
(100 elements)1

2

3

4

5

6

7

8

9

10

0

1

2

3

3 4 5

→ possibly ragged rectangular pattern

z(:,:)[3,5]
invalidc

o
s
h
a
p
e

=
 [
4
,
3
]

REAL :: z(10,10)[0:3,3:*]

lower cobound

of codimension 1

upper cobound

of last codimension

© 2009-22 LRZ Advanced Fortran Topics 108

Supporting intrinsics (1)

Programmer's responsibility to specify valid coindices

Examples

this_image(coarray [,dim]) compute (local) coindices from object on an
image, optionally only that for a specified
codimension

image_index(coarray, sub) compute (remote) image index from object
and coindex value; zero for invalid coindex. e.g., for later use

in synchronization

statements

1

2

3

4

5

6

7

8

9

10

0

1

2

3

3 4 510 images

cindx = this_image(z)

m1 = this_image(z,1)

img = image_index(z,[2,4])

img = image_index(z, [2,5])

on image 7, returns [2,4]

on image 7, returns 2

on all images, returns 7

on all images, returns 0

REAL :: z(10,10) [0:3,3:*]
INTEGER :: cindx(2), m1, img

© 2009-22 LRZ Advanced Fortran Topics 109

Supporting intrinsics (2)

Cobounds and coshape

additional dim argument: return scalar value for specified

codimension

additional kind argument: determine kind of result value

Examples

© 2009-22 LRZ Advanced Fortran Topics 110

lcobound(coarray [,dim] [,kind]) compute lower cobound(s) of a coarray

ucobound(coarray [,dim] [,kind]) compute upper cobound(s) of a coarray

coshape(coarray [,dim] [,kind]) compute size(s) of the codimensions of a coarray
(ucobound – lcobound + 1)

uc = ucobound(z)

lc = lcobound(z)

REAL :: z(10,10) [0:3,3:*]
INTEGER :: lc(2), uc(2)on all images, returns [3,5]

10 images

on all images, returns [0,3]

Usage scenario

Cartesian topology

e.g. require data access to a neighbouring submatrix

usually want to avoid ragged pattern

© 2009-22 LRZ Advanced Fortran Topics 111

REAL, ALLOCATABLE :: a(:,:)[:,:]
INTEGER :: n, p, q, ip, iq
: ! calculate symmetric n, p, q
ALLOCATE (a(n,n) [p,*])
ip = this_image(a, 1); iq = this_image(a, 2)

: ! do calculations on local part of a

SYNC ALL
IF (ip > 1 .AND. iq < q) &
a(:,:) = ... + a(:,:)[ip-1, iq+1] * ...

:

assert that

p * q == number

of images

assure cobounds

are not violated

1

2

3

4

1 2 3

Procedures with a coarray dummy argument

Implementation Invocation

© 2009-22 LRZ Advanced Fortran Topics 112

SUBROUTINE process_co_mat(a, p, q)
INTEGER, INTENT(IN) :: p, q
REAL, INTENT(INOUT) :: a(:,:)[p,*]
:
ip = this_image(a, 1)
iq = this_image(a, 2)
SYNC ALL
IF (ip > 1 .AND. iq < q) &
a(:,:) = ... + &
a(:,:)[ip-1, iq+1] * ...

:
END SUBROUTINE

REAL, ALLOCATABLE :: a(:,:)[:,:]
INTEGER :: n, p, q
: ! calculate symmetric n, p, q
ALLOCATE (a(n,n) [p,*])

CALL process_co_mat(a, p, q)

Permissible but questionable invocations

Corank mismatch

corank 1 actual vs. corank 2

dummy argument

remapping of coindices is done

when procedure is called

this will work OK if all

communication is done using

the same remapping
(either explicitly by the

programmer, or via consistently

used interfaces)

Image-dependent setup

is permissible in principle

because the mapping is done

image-locally,

but confusing for programmer,

and likely to cause algorithmic

trouble or illegal accesses

inside called procedure

© 2009-22 LRZ Advanced Fortran Topics 113

REAL, ALLOCATABLE :: a(:,:)[:]
INTEGER :: n, p, q
: ! calculate symmetric n, p, q
ALLOCATE (a(n,n) [*])
: ! set up local a
CALL process_co_mat(a, p, q)

REAL, ALLOCATABLE :: a(:,:)[:,:]
INTEGER :: n, p, q, p1
: ! calculate symmetric n, p, q
ALLOCATE (a(n,n) [p,*])

: ! give p1, q1 an
: ! image-dependent value

CALL process_co_mat(a, p1, q1)

Generalized coindexing and teams

Inside the construct

a is still a corank 2 coarray

coindex mapping is to team-

local image index, though

© 2009-22 LRZ Advanced Fortran Topics 114

REAL, ALLOCATABLE :: a(:,:)[:,:]
INTEGER :: n, p, q, id
TYPE(team_type) :: my_teams
id = mod(this_image(),2) + 1
FORM TEAM(id, TEAM=my_teams, &

NEW_IMAGE=...)
: ! calculate symmetric n, p, q
ALLOCATE (a(n,n) [p,*])
: ! set up local a

CHANGE TEAM (my_teams)
CALL process_co_mat(a, p/2, q)

END TEAM

1

2

3

4

1 2 3

assuming two teams

comprised of

even/odd images

and NEW_IMAGE

retains ordering

1

2

1 2 3

1

2

1 2 3

procedure call

on team even

procedure call

on team odd→ additional bookkeeping may be needed!

Bookkeeping support (1)

Associating coarray

permits remapping on CHANGE

TEAM opening statement

Example

creates three teams

each team corresponds to a

„column“ part of the original

coarray

in each team, acol permits

addressing this part of the

coarray directly via its coindex

© 2009-22 LRZ Advanced Fortran Topics 115

REAL, ALLOCATABLE :: a(:,:)[:,:]
INTEGER :: n, p, me(2)
TYPE(team_type) :: my_teams
: ! calculate symmetric n, p
ALLOCATE (a(n,n) [p,*])
me = this_image(a)
FORM TEAM(me(2), TEAM=my_teams, &

NEW_IMAGE=me(1))
: ! set up local a

CHANGE TEAM (my_teams, &
acol[*] => a)

: ! work on acol
END TEAM

1

2

3

4

1 2 3

Bookkeeping support (2)

Extra team argument for some coarray intrinsics

permits inquiries for a team

other than the current one

image_index() can – instead

of a type(team_type)
argument – also take an integer

TEAM_NUMBER argument to

inquire on a sibling team

for the cases with a coarray

argument, the coarray must be

established in the referenced

team

© 2009-22 LRZ Advanced Fortran Topics 116

USE, INTRINSIC :: iso_fortran_env, &
ONLY : INITIAL_TEAM

REAL, ALLOCATABLE :: a(:,:)[:,:]
INTEGER :: n, p, me, local_ix(2), ix
TYPE(team_type) :: my_teams, initial
: ! calculate symmetric n, p
ALLOCATE (a(n,n) [p,*])
: ! set up my_teams

CHANGE TEAM (my_teams)
initial = get_team(INITIAL_TEAM)
me = this_image(TEAM=initial)
local_ix = this_image(a, TEAM=initial)
ix = image_index(a, &

[2,2], TEAM=initial)
:

END TEAM

Program Termination

Termination variants

• by (implicit or explicit) execution of an
ERROR STOP statement

error
termination

• by execution of a STOP or END
PROGRAM statement

normal
termination

• through a hardware or system software
failure, or by execution of a FAIL IMAGE
statement

image
failure

support for continued program execution upon image

failure is an optional feature of the standard

o
rd

er
o

f
p

reced
e

n
ce

© 2009-22 LRZ Advanced Fortran Topics 118

highest

Error termination

Initiation of error termination:

by processor if an error condition is encountered on an image

(e.g., I/O statement cannot be processed and is not handled by user

code)

explicitly by executing an ERROR STOP statement in user code

Upon error termination by any image,

the intent is that the implementation should terminate execution

of all images as quickly as possible

Usual implications:

all program state vanishes

files that were connected to opened I/O units for write access at

the time error termination was initiated are likely to have an

undefined state (corrupt or incomplete data)

© 2009-22 LRZ Advanced Fortran Topics 119

Normal termination

Three steps:

1. image initiates termination

2. synchronizes with all other images
other images may still request data from terminating one

3. image terminates execution

Step 2 guarantees that no image terminates before all

have completed Step 1

if all images execute normal termination from unordered

segments, all is fine

(for example, a stopping criterion might be propagated across all images

prior to termination via a collectively executed STOP statement)

© 2009-22 LRZ Advanced Fortran Topics 120

Normal termination from

conceptually ordered segments

Semantics need to suppress deadlock

obligation to add a STAT argument to all involved image control

statements,

else error termination is initiated

1 2 3 4 5 exe
cu

tio
n

se
q

u
e

n
ce

sync all (STAT=sst)

integer sst is supplied with value
STAT_STOPPED_IMAGE

on all images still executing.

These active images execute a
SYNC MEMORY only.

A stopped image.

Data remain available.

STOP implies

a SYNC MEMORY

All images

terminate

IF (…) STOP ! normal termination

image 3

SYNC ALL (STAT=sst)
IF (sst==stat_stopped_image) THEN

x = a(:)[3] ! get and
WRITE(…) x ! save data
STOP

END IF

image 2

© 2009-22 LRZ Advanced Fortran Topics 121

Fail-safe execution (1):
Behaviour after image failure

What happens in case an image fails?

typical cause: hardware problem (DIMM, CPU, network link, …)

(and all the rest of the HPC infrastructure): complete program terminates

: optional support for continuing execution

images that are not directly impacted by partial failure might continue

supported if the constant STAT_FAILED_IMAGE from

ISO_FORTRAN_ENV is positive, unsupported if it is negative

© 2009-22 LRZ Advanced Fortran Topics 122

A failed image;

it remains failed.

Data become unavailable

integer sst supplied with value
STAT_FAILED_IMAGE
on all active images.

Active images synchronize.

1 2 3 4 5 exe
cu

tio
n

se
q

u
e

n
ce

sync all (STAT=sst)

a reference to a

failed image

Fail-safe execution (2):
Programmer‘s Responsibilities

Synchronization: Without a STAT specifier on

image control statements (including ALLOCATE and DEALLOCATE),

collective, MOVE_ALLOC, or atomic subroutine invocations,

the program terminates if an image failure is determined to have

occurred.

With a STAT specifier, active images continue execution,

image control statements work as expected for these images,

collective and atomic subroutine results are undefined

Data handling and Control fIow:

programmer must deal with loss of data on failed image, and

with side effects triggered by references and definitions of variables on failed

images

FAILED_IMAGES intrinsic:

produces list of images

known to have failed.

© 2009-22 LRZ Advanced Fortran Topics 123

INTEGER, ALLOCATABLE :: fl(:)
:
SYNC ALL (STAT=sst)
fl = FAILED_IMAGES()

Returns indices of at least

the images that have failed

up to the „sync all“

Referencing and defining objects

Reference to an object located on a failed image:

Referencing image continues execution, but the object

has a processor-dependent value

example: statement executed on image 2

Definition of an object located on a failed image:

Does not do anything, except setting a STAT argument if present

example: statement executed on image 2

© 2009-22 LRZ Advanced Fortran Topics 124

a(:)[3, STAT=sst] = …

… = a(:)[3, STAT=sst] optional stat argument

permits identifying

image 3 as failed

2 3 exe
cu

tio
n

se
q

u
e

n
ce

get

put

Defining objects (continued)

Definition of an object performed by a failed

image:

Objects that would become defined by the failed image

during execution of the segment in which failure occurred

become undefined.

example: statement executed on image 3

Difficulty of diagnosis: images that reference a[2] in a

subsequent segment need to

know the communication pattern, and hence

identify image 3 as failed

© 2009-22 LRZ Advanced Fortran Topics 125

a(:)[2] = …

2 3

exe
cu

tio
n

se
q

u
e

n
ce

puta[2] becomes

undefined

„race condition“

of failure vs. put

avoid propagation of NaNs

or incorrect values

FAIL IMAGE statement

A statement that causes an image executing it to fail

Enables testing of code that should execute in a fail-safe

manner

execution might be conditioned on value returned by

random_number

© 2009-22 LRZ Advanced Fortran Topics 126

Fail-safe execution and teams

Algorithm may rely on a particular image-to-data mapping

missing images cause this concept to fail

Possible solution:

split image set into two subteams, worker (many) and

spare (few)

only the worker team runs the simulation

if an image in worker fails, end team execution and

generate a new worker team that uses an image from the

original spare pool, assigning it the image index of the

missing image.

this can be repeated until the spare pool is empty

© 2009-22 LRZ Advanced Fortran Topics 127

Conclusions for PGAS programming in Fortran

Strengths

easier to use than MPI

syntactic integration

one-sided semantics

better control of memory

locality than OpenMP

implementation can optimize

for latency

independent of memory

paradigm (coherency)

integration into language

standard

no dependence on library

idiosyncrasies

Weaknesses

MPMD / hybrid will take some

time to implement

Irregular problems

program-wide linked structures

Without use of teams, assumes

UMA→ NUMA performance

issues

(all parallel models are impacted)

Combination

with MPI

with OpenMP

may hit implementation issues

© 2009-22 LRZ Advanced Fortran Topics 128

following now: Exercise session 8

Thanks for your attention

and good luck

with your Fortran

programming endeavours

