Leibniz Supercomputing Centre

of the Bavarian Academy of Sciences and Humanities

= s e

HPC code optimisation workshop
The Roofline Model | 3 November 2021 | Jonathan Coles

The Roofline Model v1.0a | 3 November 2021 | Jonathan Coles

Talk Outline

What are we trying to optimize?

What limits application performance?

What is the cache-aware roofline model?

How does it help identify performance problems?
What can be done to improve performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

What are we trying to optimize?
Choosing a metric

Before we talk about optimization, it is important to decide what metric we want to focus on.

 Time to solution

« Algorithmic efficiency
* Is a better algorithm possible O(n?) — O(n) ?

« CPU Performance

+ Is the CPU reaching its theoretical peak performance? This talk will focus here
* |s there a bottleneck in memory access or processing?

 Memory requirements
* |s a different data structure needed?

 Other resources

« Compute hardware — More cores / socket?
« Energy — Different CPU or frequency?

Note: Both algorithmic efficiency and CPU performance may improve the time to solution, but not necessarily!

The Roofline Model | 3 November 2021 | Jonathan Coles

What are we trying to optimize?

Defining CPU Performance

* For this talk:
« Fundamental algorithm, data structure, etc., are assumed fixed.
« Focus is on measuring and improving observed CPU Performance.

« Performance is defined as FLOP/s.
» Other definitions are possible to measure different scenarios.

« Measured performance P is limited by:
* The maximum saturated bandwidth b, to move data from memory to the CPU (byte/s).

« Usually bandwidth from DRAM or caches.
* The intensity of work I for each byte moved (FLOP/byte).

« How many times we reuse the same float in some set of floating-point operations.
* The theoretical maximum performance P, of the CPU (FLOP/s).

« Affected by frequency, number of cores, vectorization or instructions like fused multiply-add.

The Roofline Model | 3 November 2021 | Jonathan Coles

What limits application performance?

Memory

« Simple view: A large storage area of dynamic random
access memory (DRAM), directly connected to the

I I I I processing cores.

* However fast memory is expensive. To increase size at a
reduced cost DRAM is relatively slow. Also located
physically far away from the cores in the computer which
Increases access time.

The Roofline Model | 3 November 2021 | Jonathan Coles 6

What limits application performance?

Memory Hierarchy

The Roofline Model | 3 November 2021 | Jonathan Coles

One solution is to place several layers of high-speed,
limited-space memory known as cache between the
cores and DRAM.

The cache contains a working copy of part of memory.

When another region of DRAM is needed, cached copies
of older regions may be evicted and written back to
higher cache levels or DRAM.

Modern systems usually have three levels: L1, L2, L3.

At each level closer to the core, the bandwidth to the
cores increases, but the size decreases.

What limits application performance?

SuperMUC-NG Processor

$ 1likwid-topology

CPU name: Intel(R) Xeon(R) Platinum 8174 CPU @ 3.10GHz
CPU type: Intel Skylake SP processor

CPU stepping: 4

X %k %k %k 3k %k %k 3k Xk %k %k Xk % %k Xk % % % % % % %k % % > % % % %k % % % % % %k 5k % % % % % % % % % % % % % > % % % X %X %

Hardware Thread Topology

Xk %k % %k 3k %k %k %k Xk %k %k Xk %k %k Xk % % % % % % %k % % > % % % %k % % % % % % 3k % % % % % % % % % % % % % % % % % X %X %

Sockets: 2
Cores per socket: 24
Threads per core: 2

X %k % %k 3k %k %k %k Xk %k %k Xk % %k Xk % % % % % % %k % % % % % % %k % % % % % % 3k % % % % % % % % % % % % % > % % % X %X %

Cache Topology

Xk %k % %k 3k %k %k 3k Xk >k %k Xk % %k Xk % % % % % % %k % % % % % % %k % % % % % % 5k % % % % % % % % % % % % % % % % % X %k % %X X%

Level: 1
Size: 32 kB
Level 2
Size: 1 MB

X %k % %k 3k %k %k %k Xk %k %k Xk %k % Xk % % % % % % %k % % % % % % %k % % % % % % 3k % % % % % % % % % % % % % % % % % X %X X%

NUMA Topology

X %k % %k 3k %k %k %k Xk %k %k Xk %k %k Xk % % % % % % %k % % > % % % %k % % % % % % 3k % % % % % % % % % % % % % % % % % X %

NUMA domains: 2

The Roofline Model | 3 November 2021 | Jonathan Coles

What limits application performance?

Memory Bandwidth

10241

4 Cores L1-C —— Measured
— R Y » Y 47~ T W R Theoretical
é 512 2 Cores B(ﬁ)
E 256/ 1 Core
-'§ Y
3 128
5
m 64
ol
I
£ 32r
Q
=
167 e -
0.125 1‘ é 6‘4 5"l2 4696 32768 262144 E
Data Traffic [KBytes] m
S,
=
S
=
©
Level 1 S
Size 32 kB °©
Level 2
Size 1 MB
Level: 3
Size: 33 MB

The Roofline Model | 3 November 2021 | Jonathan Coles

SuperMUC-NG:

Single core of Intel(R) Xeon(R) Platinum 8174 CPU

16

—— Sequential read (64-bit)
Sequential read (128-bit)

— Sequential read (256-bit)

—— Sequential read (512-bit)

= Random read (64-bit)
Random read (128-bit)
= Random read (256-bit)
Random read bypassing cache (128-bit)

——— Sequential read bypassing cache (128-bit)

1 8 64 512
Size [kB]

10

What limits application performance?
Operational Intensity

0.1-1.0 flops per byte Typically < 2 flops per byte O(10) flops per byte

I=1FLOP/((2+1)*8 bytes) = 1:24 _ » N e

N\ ' N 7 A\

for (i=0; i < N; i++)

cli] = a[i] + b[i];

t’lc Intensity

I=2FLOP/((3+1)*8 bytes) = 1:16
Performance benefit from FMA Bj@%

Particle
for (i=0: i < N: i++) Stencils (PDEs) EET D Methods
oy L . . S, ense
dfi] = a[i] + b[i]*c[i]; Lattice Boltzmann Spectral Methods Linear Algebra
Methods (BLAS3)
\ J \ J \
Y Y Y

I=5FLOP/((5+1)*8 bytes) ~ 1:12 o(1) O(log(N)) O(N)

-4*prev[i 1[j 1]

Operational Intensity is more common term.

prev[i 1[j-1]
previi 1[j+1] May not be interested in only arithmetic in general.

prev[i-1][]]
prev[i+1][] 1;

Calculation includes +1 for store back to memory.

The Roofline Model | 3 November 2021 | Jonathan Coles 11

What limits application performance?
Theoretical CPU Performance

Intel Processor GFLOPS/Package Contributions over time Skylake
Xeon
| mlog10(GHz) Haswell /
P = Freq(GHz) x Cores/Socket x FP/Hz 30 — Sandy — Broadwell
| ®log10(Cores/Socket) Bri dge = roaawe
log P = log Freq(GHz) c || Dlogl0(FP/Hz) Ivy Bridge
+ log Cores/Socket g
9 £ Nehalem/
+ log FP/Hz S 20 Westmere 6 16
& Core 2 :
O
T
SIMD increases FP/Hz g
Al A[i+1]|A[i+2] |A[1 g .
£ 1o | — Pentium 4 - NN
[EESICRENICRIIEES] @ | ‘
= C U 8 U O ® 0
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Thuu

The Roofline Model | 3 November 2021 | Jonathan Coles

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

12

The Roofline Model m

* The roofline model
» Provides a visual depiction of the factors limiting application performance.

» Placing application performance into the model can suggest ways to improve performance or show when
performance is limited by hardware.

* May suggest which optimizations will yield greater gains. 1y p, (FLOP/s)
S

P

peak

Your
program
here

Better still
Better Is here

P =min(P .., I X by)

Performance (FLOP/s)

Operational Intensity (FLOP/byte)

The Roofline Model | 3 November 2021 | Jonathan Coles 14

The Cache-Aware Roofline Model
The cache and performance limits

The Cache-Aware Roofline Model
discussed here measures L1L2L3 DRAM P FMA
bandwidth from memory to core. /// / / / peak
The original model measured —_ Vector Add
DRAM to cache bandwidth. 0
ol
o) Scalar Add
Faster caches can raise the 1 No ILP
diagonal roofline. L O
N
Slower components can lower the ®
diagonal roofline. &)
Instruction level parallelism (ILP) %
or vectorization can raise or lower -
the horizontal roofline. B
=
)
al
NOTE: _]
Axes are log-log. Operational Intensity (FLOP/byte)

Different bandwidth (diagonal)
bounds are parallel.

The Roofline Model | 3 November 2021 | Jonathan Coles 17

How does it help identify performance problems?

Codes lying under the diagonal
are ultimately limited by some
form of memory access.

Codes under the horizontal line
are ultimately compute bound.

Moving higher requires different
solutions depending on where an
application lands on this plot.

The “knee” is the least intensity
that achieves the best
performance given the compute
and memory bounds that are
intersecting.

The Roofline Model | 3 November 2021 | Jonathan Coles

Performance (FLOP/s)

Memory bound Compute bound

Operational Intensity (FLOP/byte)

19

How does it help identify performance problems?
Some examples

*Limited by DRAM. Possibly |_1 L2 L3 DRAM

not fitting into cache

| FMA
Broke through DRAM ceiling / Preak
with better cache use or / /// Vector Add
Y Scalar Add

reduced data. Now limited by
No ILP

L1. Could possibly benefit
from increased intensity.

*Improved intensity and not
limited by L2. Still only using
scalar ops.

Much higher intensity but no
performance benefit. Still

limited by scalar ops. X Limited by something

not in the model.

Performance (FLOP/s)

Reduced intensity but uses
vector ops to break through
scalar ceiling.

*Better cache use and benefits Operational IntenSity (FLOP/byte)

from FMA. Now reaches peak
performance. NOTE: Axes are log-log. Different bandwidth (diagonal) bounds are parallel.

The Roofline Model | 3 November 2021 | Jonathan Coles 20

How does it help identify performance problems?
Dynamic application behavior

Lo
« Be aware that a single data point S
does not necessarily characterize o |
the entire application. @
 In the figure, the NPB SP application 0 |
has two distinct behaviors with o
transitions between them. w ©
¢ S <
9
. NOTE: Linear axes are used here. & 2
The colored rooflines represent
memory levels. -
M
2 -
S _
o

00 01 02 03 04 05 06
FlopsB

The Roofline Model | 3 November 2021 | Jonathan Coles

What can be done to improve performance?
Placing an application in the model

« As with any optimization we need to start by measuring our application.

« Estimating intensity can sometimes be done by hand for relatively simple kernels.
More complex kernels will need tools.

« Measuring the CPU performance is harder to do without the use of tools.
* Intel Advisor can generate a roofline model and measure the application.
« LIKWID can provide statistics that can be used to make a roofline model.
« Kerncraft can also be used (based on LIKWID).

The Roofline Model | 3 November 2021 | Jonathan Coles 22

What can be done to improve performance?

Applying the roofline model

Some of these suggestions the compiler can do itself, but it may need help.
Best to turn on optimization/vectorization reporting when available!

« Break through the horizontal ceiling (increase FLOP/s)
 FMA, SIMD vectorization / Instruction level parallelism (ILP)
» Use more cores.
« Break through the bandwidth ceiling (increase bytes/s)
 |Increase data locality. Avoid long-range NUMA accesses. First touch policy.

 Increase cache reuse. Loop blocking. Long unit-stride loops to use memory prefetcher.

« Use smaller data structures to keep relevant data in cache. SoA vs. AoS.
« Use more cores.
* Move to the right to higher intensity (increase FLOP/byte) then up.
« Reorder code to use the same float multiple times. Loop unrolling. Store in registers.
« May need algorithmic changes.

The Roofline Model | 3 November 2021 | Jonathan Coles

23

What can be done to improve performance?

The take away plot

E—

Reorganize computation
to reuse bytes

Data locality Vectorization
and cache reuse

Performance (FLOP/s)

Operational Intensity (FLOP/byte)

The Roofline Model | 3 November 2021 | Jonathan Coles

24

