

2

HPC code optimisation workshop
The Roofline Model | 3 November 2021 | Jonathan Coles

The Roofline Model v1.0a | 3 November 2021 | Jonathan Coles

• What are we trying to optimize?
• What limits application performance?
• What is the cache-aware roofline model?
• How does it help identify performance problems?
• What can be done to improve performance?

3

Talk Outline

The Roofline Model | 3 November 2021 | Jonathan Coles

This talk will focus here

• Time to solution
• Algorithmic efficiency

• Is a better algorithm possible O(n2) → O(n) ?
• CPU Performance

• Is the CPU reaching its theoretical peak performance?
• Is there a bottleneck in memory access or processing?

• Memory requirements
• Is a different data structure needed?

• Other resources
• Compute hardware → More cores / socket?
• Energy → Different CPU or frequency?

4

Choosing a metric
What are we trying to optimize?

The Roofline Model | 3 November 2021 | Jonathan Coles

Before we talk about optimization, it is important to decide what metric we want to focus on.

Note: Both algorithmic efficiency and CPU performance may improve the time to solution, but not necessarily!

• For this talk:
• Fundamental algorithm, data structure, etc., are assumed fixed.
• Focus is on measuring and improving observed CPU Performance.
• Performance is defined as FLOP/s.

• Other definitions are possible to measure different scenarios.

• Measured performance P is limited by:
• The maximum saturated bandwidth bs to move data from memory to the CPU (byte/s).

• Usually bandwidth from DRAM or caches.
• The intensity of work I for each byte moved (FLOP/byte).

• How many times we reuse the same float in some set of floating-point operations.
• The theoretical maximum performance Ppeak of the CPU (FLOP/s).

• Affected by frequency, number of cores, vectorization or instructions like fused multiply-add.

5

Defining CPU Performance
What are we trying to optimize?

The Roofline Model | 3 November 2021 | Jonathan Coles

6

Memory
What limits application performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

DRAM

P0 P1 P2 P3 • Simple view: A large storage area of dynamic random
access memory (DRAM), directly connected to the
processing cores.

• However fast memory is expensive. To increase size at a
reduced cost DRAM is relatively slow. Also located
physically far away from the cores in the computer which
increases access time.

7

Memory Hierarchy
What limits application performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

L1 L1 L1 L1

L2 L2 L2 L2

L3

DRAM

P0 P1 P2 P3 • One solution is to place several layers of high-speed,
limited-space memory known as cache between the
cores and DRAM.

• The cache contains a working copy of part of memory.
• When another region of DRAM is needed, cached copies

of older regions may be evicted and written back to
higher cache levels or DRAM.

• Modern systems usually have three levels: L1, L2, L3.
• At each level closer to the core, the bandwidth to the

cores increases, but the size decreases.

8

SuperMUC-NG Processor
What limits application performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

$ likwid-topology
--
CPU name: Intel(R) Xeon(R) Platinum 8174 CPU @ 3.10GHz
CPU type: Intel Skylake SP processor
CPU stepping: 4
**
Hardware Thread Topology
**
Sockets: 2
Cores per socket: 24
Threads per core: 2
**
Cache Topology
**
Level: 1
Size: 32 kB
--
Level: 2
Size: 1 MB
--
Level: 3
Size: 33 MB
--
**
NUMA Topology
**
NUMA domains: 2
--

Shared among all cores of a socket!

10

Memory Bandwidth
What limits application performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

2

Fig. 1: General computer architecture

0.125 1 8 64 512 4096 32768 262144

16

32

64

128

256

512

1024

Data Traffic [KBytes]

M
e
m

o
ry

 B
a
n

d
w

id
th

 [
G

B
/s

]

L1!C

L2!C
L3!C

DRAM!C

DRAM!LLC

4 Cores

2 Cores

1 Core

B(�)
Measured
Theoretical

16 128 1024 8192 65536 524288

16

32

64

128

Double FP operations [Flops]

P
e
rf

o
rm

a
n

c
e
 [

G
F

lo
p

s
/s

]

MAD (Peak Performance)

ADD/MUL

4 Cores

2 Cores

1 Core

F (�)

Measured
Theoretical

Fig. 3: Performance and bandwidth variation on the Intel 3770K

Fig. 2: Original Roofline model (3770K)

0.0078125 0.0625 0.5 4 32 256 2048 16384

0.25

0.5

1

2

4

8

16

32

64

128

Operational Intensity [Flops/Byte]

P
e
rf

o
rm

a
n

c
e
 [

G
F

lo
p

s
/s

]

Pea
k

L1
ba

nd
wid

th

(L
1!

C)

L2!
C

L3!
C

D
RAM
!C

D
RAM
!LLC

MAD (Peak Performance F)

ADD/MUL

Fig. 4: Cache-aware Roofline model (3770K)

0.0078125 0.0625 0.5 4 32 256 2048 16384

0.5

1

2

4

8

16

32

64

128

Operational Intensity [Flops/Byte]

P
e
rf

o
rm

a
n

c
e
 [

G
F

lo
p

s
/s

]

Intel 3770K
 Ivy Bridge

rRMSE=0.0819
fitness=92.43%

L1 to Core (MAD)
L1 to Core (ADD)
L1 to Core (MUL)
L2 to Core
L3 to Core
DRAM to Core
DRAM to LLC

Fig. 5: Model validation for Intel 3770K

Fig. 6: Cache-aware Roofline model validation for different general-purpose machines

considers the complete volume of memory traffic, i.e., the
total number of transferred bytes (�), the I in the Cache-
aware Roofline Model is uniquely defined for all levels of
the memory hierarchy, thus resulting in a single-plot model.
In fact, in the proposed model, I can be the arithmetic inten-
sity (�/�). However, we use the term operational intensity
to reflect the possibility of applying the proposed model for
other types of operations (not necessarily arithmetic).

In order to experimentally assess the bandwidth and
performance, we executed a series of tests based on Alg. 1.
In particular, the bandwidth was characterized by vary-
ing the number of memory operations (test code A) to
hit different memory levels by accessing contiguous and
increasing memory addresses. Figure 3 shows the results for
the quad-core Intel 3770K architecture1 (see Tab. 1), where
bandwidth varies with the number of transferred bytes.
It also shows that the achievable peak FP performance,
obtained by varying the number of flops (test code B),
depends on the occupation of the arithmetic units’ pipeline.
Figure 3 also depicts the results for a different number
of cores. Thus, the accurate Roofline model must consider
these variations such that:

Fa(I) =
�

T (I)
= min {B(�)⇥ I, F (�)} (3)

where B and F are continuous functions of � and �.
In order to derive the limits of the attainable FP perfor-

mance in the Cache-aware Roofline model, one must con-
sider the peak FP performance (F (�)=Fp) for the compute
bound region and the L1 peak bandwidth (BL1�C) for the
memory bound region (the cache level closest to the Cores).
Figure 4 represents both the original and the Cache-aware
Roofline models as the upper bounds for the achievable FP
performance. It can be observed that the memory bound
region of the original model is extended in the Cache-aware
Roofline model, an effect herein designated as “upgrading
the loft”. The new memory bound limits can be derived
from Equation (3), substituting B(�) by BL1�C . The latter

1. To fully exploit the architecture, we consider herein double-
precision FP Advanced Vector Extensions (AVX) instructions.

value can be obtained from the processor specifications by
multiplying the number of cores, the L1 bus width, and the
clock frequency (see Tab. 1). Moreover, the insightfulness of
the Cache-aware Roofline model can be further extended
by introducing additional memory ceilings depending on
the achievable bandwidth for each memory level (see Fig. 3
and 4). It is worth mentioning that the bandwidth from the
DRAM to the Core (BD�C) is lower than the bandwidth
considered in the original Roofline model (BD) due to the
fact that the data goes through all cache levels before arriv-
ing to the processor Cores (see Fig. 3 and 4). Overall, the
proposed model reveals a previously unexplored area, thus
allowing even better insights on the attainable performance.

Experimental Setup and Model Validation
In order to validate the proposed model, we performed an
extensive set of experiments with micro-benchmarks based
on Alg. 1 (test code C), across 3 different architectures of
Intel processors in 4 computer systems (see Tab. 1). The
micro-benchmarks are assembly programs designed to hit a
given level of the memory hierarchy and to reach a specific
operational intensity by interleaving different numbers of
FP and memory operations. The proposed model does not
make any direct assumptions associated to Intel processors
and can be applied to any general-purpose architecture.

To experimentally construct the models, we have created
a specialized software tool2 that relies on built-in hardware
performance counters [1]. Each obtained point represents
the median of 8192 micro-benchmark repetitions to reduce
the intrinsic measurement errors in real non-dedicated sys-
tems. The accuracy of the testing tool and procedures can be
evidenced in Fig. 3 where the theoretical peak L1 bandwidth
was achieved, although these tests are the most error prone
and sensitive to the measurement method due to the very
low number of memory operations.

The theoretical models, presented as lines in Fig. 5
and 6, were validated by the experimentally obtained re-

2. The specialized software tool is available upon request by e-
mail to the corresponding authors.

Cache-aware Roofline model: Upgrading the loft. Ilic et al. (2013).

SuperMUC-NG:
Single core of Intel(R) Xeon(R) Platinum 8174 CPU

1 8 64 512 4096 32768
Size [kB]

4

8

16

32

64

128

256

B
an

dw
id

th
[G

B
/s

]

Sequential read (64-bit)
Sequential read (128-bit)
Sequential read (256-bit)
Sequential read (512-bit)
Sequential read bypassing cache (128-bit)

Random read (64-bit)
Random read (128-bit)
Random read (256-bit)
Random read bypassing cache (128-bit)

Level: 1
Size: 32 kB

Level: 2
Size: 1 MB

Level: 3
Size: 33 MB

L1 L2
L3

DRAM

11

Operational Intensity
What limits application performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/introduction

for (i=0; i < N; i++)
c[i] = a[i] + b[i];

for (i=0; i < N; i++)
d[i] = a[i] + b[i]*c[i];

for (i=1; i < N-1; i++)
for (j=1; j < M-1; j++)

next[i][j] = -4*prev[i][j] +
prev[i][j-1] +
prev[i][j+1] +
prev[i-1][j] +
prev[i+1][j];

I = 1 FLOP / ((2+1)*8 bytes) = 1:24

I = 2 FLOP / ((3+1)*8 bytes) = 1:16
Performance benefit from FMA

I = 5 FLOP / ((5+1)*8 bytes) ~ 1:12

• Operational Intensity is more common term.
May not be interested in only arithmetic in general.

• Calculation includes +1 for store back to memory.

12

Theoretical CPU Performance
What limits application performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

https://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

P = Freq(GHz) × Cores/Socket × FP/Hz

log P = log Freq(GHz)
+ log Cores/Socket
+ log FP/Hz

A[i+0] A[i+1] A[i+2] A[i+3]

B[i+0] B[i+1] B[i+2] B[i+3]

C[i+0] C[i+1] C[i+2] C[i+3]

SIMD increases FP/Hz

+

=

• The roofline model
• Provides a visual depiction of the factors limiting application performance.
• Placing application performance into the model can suggest ways to improve performance or show when

performance is limited by hardware.
• May suggest which optimizations will yield greater gains.

14

The Roofline Model

The Roofline Model | 3 November 2021 | Jonathan Coles

Pe
rfo

rm
an

ce
 (F

LO
P/

s)

Operational Intensity (FLOP/byte)

I × bs (FLOP/s)

Ppeak

P = min(Ppeak, I × bs)

FMA
Vector Add

Scalar Add
No ILP

17

The cache and performance limits
The Cache-Aware Roofline Model

The Roofline Model | 3 November 2021 | Jonathan Coles

Pe
rfo

rm
an

ce
 (F

LO
P/

s)

Operational Intensity (FLOP/byte)

Ppeak
• The Cache-Aware Roofline Model

discussed here measures
bandwidth from memory to core.

• The original model measured
DRAM to cache bandwidth.

• Faster caches can raise the
diagonal roofline.

• Slower components can lower the
diagonal roofline.

• Instruction level parallelism (ILP)
or vectorization can raise or lower
the horizontal roofline.

Network

Disk
 I/O

DRAML3L2L1

NOTE:
Axes are log-log.
Different bandwidth (diagonal)
bounds are parallel.

19

How does it help identify performance problems?

The Roofline Model | 3 November 2021 | Jonathan Coles

• Codes lying under the diagonal
are ultimately limited by some
form of memory access.

• Codes under the horizontal line
are ultimately compute bound.

• Moving higher requires different
solutions depending on where an
application lands on this plot.

• The “knee” is the least intensity
that achieves the best
performance given the compute
and memory bounds that are
intersecting.

Pe
rfo

rm
an

ce
 (F

LO
P/

s)

Operational Intensity (FLOP/byte)

Memory bound Compute bound

FMA
Vector Add

Scalar Add
No ILP

20

Some examples
How does it help identify performance problems?

The Roofline Model | 3 November 2021 | Jonathan Coles

Pe
rfo

rm
an

ce
 (F

LO
P/

s)

Operational Intensity (FLOP/byte)

Ppeak

NOTE: Axes are log-log. Different bandwidth (diagonal) bounds are parallel.

Network

Disk
 I/O

DRAML3L2L1★Limited by DRAM. Possibly
not fitting into cache.

★Broke through DRAM ceiling
with better cache use or
reduced data. Now limited by
L1. Could possibly benefit
from increased intensity.

★Reduced intensity but uses
vector ops to break through
scalar ceiling.

★Much higher intensity but no
performance benefit. Still
limited by scalar ops.

★Better cache use and benefits
from FMA. Now reaches peak
performance.

★Improved intensity and not
limited by L2. Still only using
scalar ops.

★Limited by something
not in the model.

21

Dynamic application behavior
How does it help identify performance problems?

The Roofline Model | 3 November 2021 | Jonathan Coles

Lorenzo et al. “Using an extended Roofline Model to understand data and thread affinities on NUMA systems.” (2014).(a) DyRM. (b) Density colouring.
Fig. 1. Examples of Dynamic Roofline Models for NPB benchmark SP.B.

II. EXTENSIONS TO THE ROOFLINE MODEL

In this section, the Dynamic Roofline Model (DyRM) [17]
and the 3DyRM [18], two extensions to the Roofline Model
that have been used in this paper, are introduced.

The RM [11] is an easy-to-understand model, offering
performance guidelines and information about the actual be-
haviour of a program when it is executed in a particular
system. It offers insight on how to improve the performance
of software and hardware. The RM uses a simple bound
and bottleneck analysis approach, where the influence of the
system bottlenecks are highlighted and quantified. In modern
systems, the main bottleneck is often the connection between
processor and memory. This is the reason why the RM relates
processor performance to off-chip memory traffic. It uses the
term operational intensity, OI, to mean operations per byte
of DRAM traffic (measured in Flops/Byte, FlopsB in the
Figures). Note that it measures traffic between the caches and
memory rather than between the processor and the caches.
Some authors have introduced cache-awareness to provide
a more insightful model [19]. Thus, OI takes into account
the DRAM bandwidth needed by a process on a particular
computer. The RM ties together floating-point performance
(measured in GFLOPS), OI, and memory performance in a
2D graph.

The Dynamic Roofline Model (DyRM) is essentially the
equivalent of splitting the execution of a code in time slices,
getting one RM for each slice, and then combining them in just
one graph. This way, a more detailed view of the performance
during the entire life of the code is obtained, showing its
evolution and behaviour. As an example, Figure 1(a) shows the
DyRM of a NAS application running on a multicore processor.
In this figure, lineal axes are used instead of the logarithmic
axes of the original RM to show more detailed differences in
the behaviour. As can be seen, a colour gradient is being used
to show the program evolution in time. Each point in the model
is coloured according to the elapsed time since the start of the
program (the same colouring schema is used in rest of figures
in this paper).

The DyRM allows the detection of different execution
phases or behaviours in the code. In addition, a two dimen-
sional density estimation of the points in the extended model
can be obtained (Figure 1(b)). Such an estimation allows
to readily find zones in the model where the code spends
more time, which are quite useful to identify performance
bottlenecks. The resulting groups can be highlighted and, by
changing the colour of the points in the DyRM, a better view
of them can be obtained. By using both graphs, the simplicity
of the RM and a detailed view of the program execution are
combined in a compact and simple way.

The OI is used to model the memory performance of a
program running in a specific system. As it was said before,
this metric uses the number of floating point operations per
byte accessed from main memory. OI takes into account the
cache hierarchy, since a better use of cache memories would
mean less use of main memory, and the memory bandwidth
and speed, since its performance would affect GFLOPS. Yet, to
characterise the performance, it may be insufficient, specially
on NUMA systems. The RM sets system upper limits to
performance, but on a NUMA system, distance and connection
to memory cells from different cores may imply variations
in the memory latency. This information is valuable in many
cases. Variations in access time cause different GFLOPS for
each core, even if each core performs the same number of
operations. This way, the same code may perform differently
depending on how different threads are scheduled. In these
situations, OI may keep the same value, hiding the fact
that poor performance is due to the memory subsystem. A
programmer trying to increase the application performance
would not know whether the differences in GFLOPS are due
to memory access or other reasons, like power scaling or the
execution of other processes in some cores. Extending the
DyRM with a third dimension showing the mean latency of
memory accesses for each point in the graph would clarify
the source of the performance problem. We called this model
3DyRM. Some examples of this extension of the RM are
shown along this paper.

• Be aware that a single data point
does not necessarily characterize
the entire application.

• In the figure, the NPB SP application
has two distinct behaviors with
transitions between them.

• NOTE: Linear axes are used here.
The colored rooflines represent
memory levels.

• As with any optimization we need to start by measuring our application.
• Estimating intensity can sometimes be done by hand for relatively simple kernels.

More complex kernels will need tools.
• Measuring the CPU performance is harder to do without the use of tools.
• Intel Advisor can generate a roofline model and measure the application.
• LIKWID can provide statistics that can be used to make a roofline model.
• Kerncraft can also be used (based on LIKWID).

22

Placing an application in the model
What can be done to improve performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

• Break through the horizontal ceiling (increase FLOP/s)
• FMA, SIMD vectorization / Instruction level parallelism (ILP)
• Use more cores.

• Break through the bandwidth ceiling (increase bytes/s)
• Increase data locality. Avoid long-range NUMA accesses. First touch policy.
• Increase cache reuse. Loop blocking. Long unit-stride loops to use memory prefetcher.
• Use smaller data structures to keep relevant data in cache. SoA vs. AoS.
• Use more cores.

• Move to the right to higher intensity (increase FLOP/byte) then up.
• Reorder code to use the same float multiple times. Loop unrolling. Store in registers.
• May need algorithmic changes.

23

Applying the roofline model
What can be done to improve performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

Some of these suggestions the compiler can do itself, but it may need help.
Best to turn on optimization/vectorization reporting when available!

24

The take away plot
What can be done to improve performance?

The Roofline Model | 3 November 2021 | Jonathan Coles

Pe
rfo

rm
an

ce
 (F

LO
P/

s)

Operational Intensity (FLOP/byte)

Data locality
and cache reuse

Vectorization

Reorganize computation
to reuse bytes

