
1

Leibniz Supercomputing Centre
I/O Considerations | June 2022 | Patrick Böhl

I/O Considerations | Jun 2022 | P.B.

• Unix-like Filesystems
• Parallel Filesystems: Spectrum Scale
• HPC I/O Systems and I/O Patterns
• Short introduction to HDF5
• Hyperslabs in HDF5
• I/O Profiling: Darshan

2

Outline
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• On your laptop you likely use something like Btrfs, Ext4,…
• Most filesystems divide the available disk space in two regions:

 Inode (index node) region
 Data region

• Each file is assigned an Inode which contains the metadata of a file:
 Name of the file
 Size of the file
 UID (User ID; Ownership) and GID (Group ID)
 Creation Date
 Pointers to the data blocks of the file
 Some more things… we see in a second

3

Unix-like Filesystems
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• The data region is split into “blocks”.
• A block is the largest contiguous amount of disk space that can be allocated to a file.
• Files larger than one block are stored in multiple blocks (not necessarily contiguous)

see later for parallel filesystems.
• Files smaller than one block occupy a full block see below.
• The block size determines the maximum size of a read request or write request that a

file system sends to the I/O device driver.
• It is also the largest amount of data that can be transferred in a single I/O operation

(IOP).

4

Unix-like Filesystems
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• You can check the meta-data of a file and also the block size with “stat” (here for my
Laptop):

~> touch myfile # create an empty file

~> stat myfile

File: myfile

Size: 0 Blocks: 0 IO Block: 4096 regular empty file

Device: 801h/2049d Inode: 12324216 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1000/ patrick) Gid: (1000/ patrick)

Access: 2022-06-22 12:24:26.132397644 +0200

Modify: 2022-06-22 12:24:26.132397644 +0200

Change: 2022-06-22 12:24:26.132397644 +0200

Birth: -

• Block size of 4kiB is pretty common.

5

Unix-like Filesystems
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

create a non-empty file

~> echo "foo" > myfile

~> stat myfile

File: myfile

Size: 4 Blocks: 8 IO Block: 4096 regular file

Device: 801h/2049d Inode: 12324218 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1000/ patrick) Gid: (1000/ patrick)

Access: 2022-06-22 12:25:32.069346984 +0200

Modify: 2022-06-22 12:25:32.069346984 +0200

Change: 2022-06-22 12:25:32.069346984 +0200

Birth: -

6

Unix-like Filesystems
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

Note: “stat” returns blocks of 512 bytes
instead of the block size of the filesystem.

Actual block size of the file system;
so here 8 blocks are one I/O block.

check size and disk usage of a file:

~> stat --format="File is %s bytes and uses %B*%b bytes on disk" myfile

File is 4 bytes and uses 512*8 bytes on disk # 512*8bytes = 4096 bytes = 1 block
size

create a 6kb file

~> dd if=/dev/zero of=myfile2 bs=6k count=1

1+0 records in

1+0 records out

6144 bytes (6,1 kB, 6,0 KiB) copied, 0,000349934 s, 17,6 MB/s

~> stat --format="File is %s bytes and uses %B*%b bytes on disk" myfile2

File is 6144 bytes and uses 512*16 bytes on disk # = 8192 bytes = 2 block sizes

7

Unix-like Filesystems
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• Theoretical maximum number of inodes: 232 for 32-bit and 264 for 64-bit filesystems.

• Practical limit: capacity of hard drive/block size of the filesystem # no more space left.

• Use of many inodes (i.e. many small files) is generally NOT a good thing:
Especially on parallel filesystems with large blocksizes (4MB-16MB) you lose a lot of

performance.
On a notebook (likely with SSD) this does not matter too much.
But this can become a real nightmare on parallel filesystems with “spinning disks”.
We saw users with more than 25 millions of files Disaster.
Most users are not aware that what works on their Laptop does not automatically

scale to HPC systems.

8

Unix-like Filesystems
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

General recommendations:
• There are several (also not so hard to use) alternatives available:

 High-level I/O libraries like HDF5 (see in a few minutes) and NetCDF (not covered
in this lecture).

 If really necessary, one can also put the small files in a tar-ball (e.g. with the
mpifileutils) and on the compute nodes extract the tar-ball into a RAM disk, process
the data and afterwards put the data again in a tar-ball).

 File based databases like LMDB, LevelDB, Petastorm or WebDataset etc.
(Disclaimer: no personal experience yet, so not covered in this lecture. But
recommended by other colleagues who suffer from having users with even 600Mio.
files).

9

Unix-like Filesystems
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• Here at LRZ we use IBM Spectrum Scale, formerly known as GPFS (General Parallel File
System) on both the Linux Cluster and SuperMUC-NG. Other parallel filesystems: Lustre,
BeeGFS,…, also Object Storages like DAOS.

• Storage clusters at LRZ consists only of spinning
disks (no SSDs etc.).

• Spectrum Scale is a cluster file system that provides
concurrent access to filesystems/files.

• Enables high performance access to this common
set of data.

10

Parallel Filesystems: IBM Spectrum Scale (GPFS)
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• Main characteristics of Spectrum Scale:
 Scalability: Large files are divided into equal-sized blocks and the consecutive blocks

are placed on different disks in a round-robin fashion. No contigous files on a
single disk anymore. All data and meta-data is distributed across all resources, so-
called „wide striping“.

 Client-side Caching: Cache is kept in a dedicated and pinned area of each node
called the pagepool. The cache is managed with both read-ahead techniques and
write-behind techniques.

 Cache coherence and protocol: Uses the distributed locking to synchronize the
access to data and metadata on a shared disk.

 Metadata management: It uses inodes and indirect blocks to record file attributes and
data block addresses.

11

Parallel Filesystems: Spectrum Scale
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• The block size is rather large: 8MiB on the Linux SCRATCH and 16MiB on
WORK/SCRATCH on SuperMUC-NG.

• But: Not every small file occupies 8/16MiB. Each block consists of an integer number of
subblocks.

• Subblocks (or fragments) are the smallest amount of contiguous disk space that can be
allocated to a file.

• Files smaller than one block occupy as many subblocks as required to store the data.
• Files larger than one block are stored in several full blocks plus the required number of

subblocks of the last block holding the data.
• One can check the block and subblock size with “mmlsfs”, here for WORK on SuperMUC-

NG:

12

Parallel Filesystems: Spectrum Scale
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

~> /usr/lpp/mmfs/bin/mmlsfs work

[…]

-f […]

65536 Minimum fragment (subblock) size in bytes (other pools)

-B […]

16777216 Block size (other pools)

[…]

• Each block consists here of 256 subblocks, so each file occupies at least 64kiB of disk
space Ratio controls the balance between performance (i.e. large subblocks) and the
treatment of small files (i.e. small subblocks).

• Larger block sizes have better performance with spinning disks, but it becomes more
likely to cause problems if different tasks try to write to the same block which can cause
severe performance drops.

13

Parallel Filesystems: Spectrum Scale
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

14

HPC I/O system
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

15

HPC I/O system
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• POSIX: (Portable Operating System Interface) is a set of standard operating system
interfaces based on the Unix operating system. I/O layer present on all unix-like
systems.

• The portability and optimization needed for parallel I/O cannot be achieved with the
POSIX interface.

• MPI-IO: provides a high-level interface supporting partitioning of file data among
processes and a collective interface supporting complete transfers of global data
structures between process memories and files.

• Many applications make use of higher-level I/O libraries such as the Hierarchical Data
Form (HDF), the Network Common Data Format (NetCDF).

16

HPC I/O software stack
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

Parallel applications perform I/O in serial and parallel.

Serial I/O: A single process gets all information to be written via communication from all other
processes.

17

HPC I/O patterns
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

Parallel I/O: Several processes perform I/O within a single file or multiple files.

18

HPC I/O patterns
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• 1 file per process (UNIQUE access type)
Limited by file system and it does not scale for large count of processes.
Number of files creates bottleneck with metadata operations and a
number of simultaneous disk accesses can create contention for file system
resources.

• A Single shared File (SHARED access type)
Data layout within the shared file must be defined appropriately to avoid
the contention due to concurrent accesses.

• Single file shared for ”N” processes
The number of shared files increases and it decreases the number of
processes per file. In this way, it is possible reduce the metadata
operations and the concurrent accesses to shared files.

19

HPC I/O patterns
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• Avoid unnecessary I/O. For example: switch off debug output for production runs.
• Perform I/O in few and large chunks. In parallel file systems, the chunk size should be

multiple of the block size of the file system.
• Avoid unnecessary/large-scale open/close statements.
• Think carefully what filesystem to use. Parallel file systems may have bad scaling for

metadata operations, but provide high/scalable bandwidth.
• You want to have effective I/O for long simulations Checkpointing is important and you

want it to be fast.

• Avoid explicit flushes of data to disk, except when needed for consistency reasons.
• Use existing specialized I/O libraries.

20

Main messages:
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• No one forces you to use many small files and you should really avoid this.
• If you need to transfer the binary files between different architectures, consider the little

vs. big-endian byte order (can pretty much all be avoided using e.g. HDF5). Limitations
may apply on file sizes and data types.

• For parallel programs, the strategy “single file per process” could provide highest
throughput, but usually this needs post-processing. And one ends up again with many
single files for large simulations.

• HDF-Group: “Friends don’t let friends use file-per-process!” [1]
Pros: No post-processing. Possible to change the number of processes when reading a
checkpoint.

• There is no general “rule” how to do proper I/O Experiments are necessary.

[1] https://www.hdfgroup.org/wp-content/uploads/2020/06/2020-06-26-Parallel-HDF5-Performance-Tuning.pdf

21

Main messages:
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

https://www.hdfgroup.org/wp-content/uploads/2020/06/2020-06-26-Parallel-HDF5-Performance-Tuning.pdf

• Designed to store and organize large amounts of data.
• HDF5 has no file size limitation and is able to manage files as big as the largest allowed

by the operating system.
• Supports more than one unlimited dimension in a data type (no need to know the extend

in advance).
• HDF5 provides support for C, Fortran, Java, C++, Python…
• Can be compiled to provide parallel support using the MPI library.
• Contents of an HDF file can be accessed using the POSIX-like syntax /path/to/mydata.

Kind of a filesystem in a file way to get rid of many small files.
• Supports inline compression of datasets using GNUzip, Szip and also external compression.
• NetCDF4 and later is based on HDF5.

22

HDF5: Hierarchical Data Format
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

HDF5 is designed at three levels:
• A Data Model:
consists of abstract classes, such as files, datasets, groups, datatypes

and dataspaces.
Developers use them to construct a model of their higher-level

concepts.
• A Software Library:
designed to provide applications with an object-oriented programming

interface.
a powerful, flexible and high performance interface.

• A file format:
provides portable, backward and forward compatible,

and extensible instantiation of the HDF5 data model.

23

HDF5: Hierarchical Data Format
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• HDF5 files are organized in a hierarchical structure, with two primary
structures: groups and datasets.
 HDF5 group: a grouping structure containing instances of zero or more

groups or datasets, together with supporting metadata.
 HDF5 dataset: a multidimensional array of data elements, together

with supporting metadata.
• The primary classes in the HDF5 data model are:
File
Dataset
Group
Link
Attribute

24

HDF5: Hierarchical Data Format
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• HDF5 datasets organize and contain data elements.
• HDF5 datatype describes individual data elements.
• HDF5 dataspace describes the logical layout of the data elements.

25

HDF5: Hierarchical Data Format
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• H5 general purpose library functions
• H5A annotations: attribute access and manipulation routines
• H5D dataset access and manipulation routines
• H5E error handling routines
• H5F file access routines
• H5G group creation and operation routines
• H5I identifier routines
• H5L link routines
• H5O object routines
• H5P object property list manipulation routines
• H5R reference routines
• H5S dataspace definition and access routines
• H5T datatype creation and manipulation routines
• H5Z compression routine(s)

26

HDF5 interface conventions
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• The API looks (and actually is) really is extensive: more than 300 functions.
• But do not worry to much:
For the beginning, only a few functions are needed to start with HDF5.
 If you need more advanced features, there is quite a good documentation to learn from.

• Basic workflow:
An object is opened or created.
The object is accessed, possibly many times.
The object is closed.

• Properties of objects are optionally defined, like:
Access or creation properties (e.g. open an existing or overwrite an existing file; parallel

file access…).

27

HDF5 API
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

Abstact simple call scheme:

H5Fcreate (H5Fopen) create (open) File
H5Screate_simple/H5Screate create Dataspace

H5Dcreate (H5Dopen) create (open) Dataset
H5Dread, H5Dwrite access Dataset

H5Dclose close Dataset
H5Sclose close Dataspace

H5Fclose close File

28

HDF5 API
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

If you want to see a detailed example have a look at hdf5_examples/h5_write.c . It is
taken from the source tarball of HDF5 but with some added explanations and the Endian
conversion was removed for clarity.
You can compile and run it:

~> module load hdf5 # already MPI parallel version

HDF5 comes with some convenient compiler wrappers:
~> h5pcc –o h5_write h5_write.c

~> ./h5_write

And then you can look at the created HDF5 file, e.g. with:
~> h5dump SDS.h5

29

HDF5 API
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• HDF5 allows reading or writing to a portion of a dataset by use of a hyperslab selection.
• Can be a logically contiguous collection or a regular pattern of points or blocks.
• Hyperslabs are described by four parameters:
start: (or offset): starting location.
stride: separation blocks to be selected.
count: number of blocks to be selected.
block: size of block to be selected from dataspace.

• The dimensions of these four parameters correspond to dimensions of the underlying
dataspace.

30

Hyperslabs
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

start: starting location stride: separation blocks to be selected
count: number of blocks to be selected block: size of block to be selected

31

Hyperslabs Example 1
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

32

Hyperslabs Example 2
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• Now we use hyperslabs to write a distributed dataset to a single file.
• The dimension of the dataset is 8x5.
• Each process writes 1 or 2 or 4 o 8 complete rows to a file.
• Here four process writes 2 row into a file:

dimsf[0] = 8 # number of rows in the full dataset

dimsf[1] = 5 # number of columns

count [0] = dimsf [0] / mpi_size
count [1] = dimsf [1]

stride and count is not needed here

Source: https://portal.hdfgroup.org/display/HDF5/Writing+by+Contiguous+Hyperslab+in+PHDF5

https://portal.hdfgroup.org/display/HDF5/Writing+by+Contiguous+Hyperslab+in+PHDF5

33

Hyperslabs Example 2
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

The offset for each rank is then

offset[0] = mpi_rank * count[0];

7 offset[1] = 0;

stride and block are not needed here

The principle calling signature to tell HDF5 about the hyperslab is here:

H5Sselect_hyperslab(dataspace_in_file, H5S_SELECT_SET, *start, *stride, *count, *block)

Where we have to set *stride and *block to NULL:

H5Sselect_hyperslab(dataspace_in_file, H5S_SELECT_SET, *start, NULL, *count, NULL)

Now dataspace_in_file knows where the local data should be written to.

Source: https://portal.hdfgroup.org/display/HDF5/Writing+by+Contiguous+Hyperslab+in+PHDF5

https://portal.hdfgroup.org/display/HDF5/Writing+by+Contiguous+Hyperslab+in+PHDF5

The full example code can be found in hdf5_examples/Hyperslab_by_row.c
Compilation is completely similar:

~> h5pcc –o Hyperslab_by_row Hyperslab_by_row.c

~> mpiexec –n NUM_PROCESSES ./Hyperslab_by_row

You can check again the output for different number of processes with h5dump.

34

HDF5 Example 2
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• Darshan is a lightweight, scalable I/O characterization tool that transparently captures I/O
access pattern information from production applications.

• Darshan provides I/O profile for C and Fortran calls including: POSIX and MPI-IO
(including support for HDF5).

• Darshan does not provide information about the I/O activity along the runtime, only
afterwards.

• It uses a LD_PRELOAD mechanism to wrap the I/O calls.
• Easy to use:
~> cd $SCRATCH # you should have learned this by now!

~> module load darshan-runtime

~> export DARSHAN_LOGHINTS="" # needed for Intel-MPI

~> mpiexec -n 4 -env LD_PRELOAD=$DARSHAN_LIBDIR/libdarshan.so \

./Hyperslab_by_row

35

I/O Profiling: Darshan
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

• At LRZ the Darshan logfiles are stored in $SCRATCH/.darshan-logs

• You can generate a pdf job summary using darshan-utils:
~> module load darshan-utils

~> cd $SCRATCH/.darshan-logs

~> for i in *.darshan; do darshan-job-summary.pl $i ; done

In the following example logfile I adjusted the values in Hyperslab_by_row.c to

#define NX 1024*1024

#define NY 500

So overall 500*1024*1024*4bytes=2GiB are written, where 4bytes is the size of an integer.

36

I/O Profiling: Darshan
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

It shows you how much time your program spends doing I/O:

Rule of thumb: more than 10% percent of runtime for I/O
Indicate indicate an I/O bottleneck. Ooops.

37

I/O Profiling: Darshan
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

Looks much better. For more information please refer
to the Darshan Documentation or also
Best Practice Guide – Parallel I/O.

38

I/O Profiling: Darshan
I/O Considerations

I/O Considerations | Jun 2022 | P.B.

https://www.mcs.anl.gov/research/projects/darshan/documentation/
https://prace-ri.eu/training-support/best-practice-guides/best-practice-guide-parallel-io/

	Foliennummer 1
	Outline		
	 Unix-like Filesystems
	 Unix-like Filesystems
	 Unix-like Filesystems
	 Unix-like Filesystems
	 Unix-like Filesystems
	 Unix-like Filesystems
	 Unix-like Filesystems
	Parallel Filesystems: IBM Spectrum Scale (GPFS)
	Parallel Filesystems: Spectrum Scale
	Parallel Filesystems: Spectrum Scale
	Parallel Filesystems: Spectrum Scale
	HPC I/O system
	HPC I/O system
	HPC I/O software stack
	HPC I/O patterns
	HPC I/O patterns
	HPC I/O patterns
	Main messages:
	Main messages:
	HDF5: Hierarchical Data Format
	HDF5: Hierarchical Data Format
	HDF5: Hierarchical Data Format
	HDF5: Hierarchical Data Format
	HDF5 interface conventions
	HDF5 API
	HDF5 API
	HDF5 API
	Hyperslabs
	Hyperslabs Example 1
	Hyperslabs Example 2
	Hyperslabs Example 2
	HDF5 Example 2
	I/O Profiling: Darshan
	I/O Profiling: Darshan
	I/O Profiling: Darshan
	I/O Profiling: Darshan

