
Explicit Vector Programming
November 2021

2
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

▪ Limitations of Auto-Vectorization

▪ OpenMP* SIMD directive

• Syntax, examples

▪ OpenMP SIMD functions

• Syntax, examples

▪ Special Idioms

• Compress, histogram patterns

3
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪ Multiple loop exits
• Or trip count unknown at loop entry

▪ Dependencies between loop iterations
• Mostly, avoid read-after-write “flow” dependencies

▪ Function or subroutine calls
• Except where inlined

▪ Nested (Outer) loops
• Unless inner loop fully unrolled

▪ Complexity
• Too many branches
• Too hard or time-consuming for compiler to analyze

software.intel.com/articles/requirements-for-vectorizable-loops

Obstacles to Auto-Vectorization

https://software.intel.com/articles/requirements-for-vectorizable-loops

4
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization is so important
➔ consider explicit vector programming

Modeled on OpenMP* for threading (explicit parallel programming)

Enables reliable vectorization of complex loops the compiler can’t auto-vectorize

E.g. outer loops

Directives are commands to the compiler, not hints
#pragma omp simd

Compiler does no dependency and cost-benefit analysis !!
Programmer is responsible for correctness (like OpenMP threading)

E.g. PRIVATE, REDUCTION or ORDERED clauses

Incorporated in OpenMP since version 4.0 portable

-qopenmp or -qopenmp-simd to enable

OpenMP* SIMD Programming

5
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪ Use #pragma omp simd (-qopenmp-simd enabled by default)

▪ Loop was multiversioned

• With more pointers the compiler will not do it

▪ Use SIMD pragma when you KNOW that a given loop is safe to vectorize

The Intel® Compiler will vectorize if at all possible
▪ (ignoring dependency or efficiency concerns)

▪ Minimizes source code changes needed to enforce vectorization

OpenMP* SIMD pragma

void addit(double* a, double* b, int m,

int n, int x)

{

for (int i = m; i < m+n; i++) {

a[i] = b[i] + a[i-x];

}

}

godbolt.org/z/c71ddYaMj

void addit(double* a, double* b, int m,

int n, int x)

{

#pragma omp simd // I know x<0

for (int i = m; i < m+n; i++) {

a[i] = b[i] + a[i-x];

}

}

https://godbolt.org/z/c71ddYaMj

6
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The programmer (i.e. you!) is responsible for correctness
• Just like for race conditions in loops with OpenMP* threading

Available clauses:
• PRIVATE

• LASTPRIVATE

• REDUCTION

• COLLAPSE (for nested loops)

• LINEAR (additional induction variables)

• SIMDLEN (preferred number of iterations to execute concurrently)

• SAFELEN (max iterations that can be executed concurrently)

• ALIGNED (tells compiler about data alignment)

Clauses for OMP SIMD directives

like OpenMP for threading

7
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

7
Example: Outer Loop Vectorization

#ifdef KNOWN_TRIP_COUNT

#define MYDIM 3

#else // pt input vector of points

#define MYDIM nd // ptref input reference point

#endif // dis output vector of distances

#include <math.h>

void dist(int n, int nd, float pt[][MYDIM], float dis[], float ptref[]) {

/* calculate distance from data points to reference point */

#pragma omp simd

for (int ipt=0; ipt<n; ipt++) {

float d = 0.;

for (int j=0; j<MYDIM; j++) {

float t = pt[ipt][j] - ptref[j];

d+= t*t;

}

dis[ipt] = sqrtf(d);

}

}

Inner loop with
low trip count

Outer loop with
high trip count

godbolt.org/z/9odrETGhn

https://godbolt.org/z/9odrETGhn

8
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

-std=c99 -xcore-avx512 -qopt-report-phase=loop,vec -qopt-report-file=stderr

…
LOOP BEGIN at <source>(11,2)

remark #15542: loop was not vectorized: inner loop was already vectorized
…

LOOP BEGIN at <source>(14,3)
remark #15300: LOOP WAS VECTORIZED

▪ We can vectorize the outer loop by adding the pragma

#pragma omp simd

▪ Would need private clause for d and t if declared outside SIMD scope
…
LOOP BEGIN at <source>(11,2)

remark #15301: SIMD LOOP WAS VECTORIZED
remark #26013: Compiler has chosen to target XMM/YMM vector. Try using -qopt-zmm-usage=high to override

LOOP BEGIN at <source>(14,3)
remark #15548: loop was vectorized along with the outer loop

LOOP END
LOOP END
…

8Outer Loop Vectorization

9
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪ If the trip count is fixed and the compiler knows it, the inner loop can be fully unrolled.
Outer loop vectorization is more efficient also because stride is now known

▪ -std=c99 -xcore-avx512 -qopt-report-phase=loop,vec -qopt-report-file=stderr -DKNOWN_TRIP_COUNT

LOOP BEGIN at <source>(11,2)
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

LOOP BEGIN at <source>(14,3)
remark #25436: completely unrolled by 3 (pre-vector)

LOOP END
LOOP END

9

Unrolling the Inner Loop

10
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

10

Outer Loop Vectorization - performance

Optimization Options Speed-up What’s going on

-O1 1.0x No vectorization

-O2 -xavx 1.5x Inner loop vectorization

-O2 -xavx 3.5x Outer loop vectorization
unknown stride

-O2 -xavx
-DKNOWN_TRIP_COUNT

6.5x Inner loop fully unrolled
known outer loop stride

-O2 -xcore-avx2
-DKNOWN_TRIP_COUNT

7.4x + Intel® AVX2
including FMA

instructions

▪ Speed-up you may get by using explicit vectorization

OpenMP* SIMD functions

A way to vectorize loops containing calls to functions that can’t be inlined

12
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Function calls can have side effects that introduce a loop-carried
dependency, preventing vectorization

Possible remedies:
▪ Inlining
▪ best for small functions
▪ Must be in same source file, or else use -ipo

▪ OMP SIMD pragma or directive to vectorize rest of loop, while preserving
scalar calls to function (last resort)

▪ SIMD-enabled functions
▪ Good for large, complex functions and in contexts where inlining is difficult
▪ Call from regular “for” loop

12

Loops Containing Function Calls

13
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler generates SIMD-enabled (vector) version of a scalar function that can be called from a
vectorized loop:

▪ #pragma omp simd may not be needed in simpler cases

SIMD-enabled Function

godbolt.org/z/GxrjYa617

#pragma omp declare simd uniform(y,z,xp,yp,zp)

float func(float x, float y, float z, float xp, float yp, float zp)

{

float denom = (x-xp)*(x-xp) + (y-yp)*(y-yp) + (z-zp)*(z-zp);

denom = 1./sqrtf(denom);

return denom;

}

…

#pragma omp simd private(x) reduction(+:sumx)

for (i=1; i<nx; i++) {

x = x0 + (float) i * h;

sumx = sumx + func(x, y, z, xp, yp, zp);

}

These clauses are required for
correctness, just like for OpenMP*

y, z, xp, yp and zp are constant,
x can be a vector

https://godbolt.org/z/GxrjYa617

14
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#pragma omp declare simd

▪ UNIFORM argument is never vector

▪ LINEAR (REF|VAL|UVAL) additional induction variables use REF(X) when vector
argument is passed by reference (Fortran default)

▪ INBRANCH / NOTINBRANCH specify whether function will be called conditionally

▪ SIMDLEN vector length

▪ ALIGNED asserts that listed variables are aligned

▪ PROCESSOR(cpu) Intel extension, tells compiler which processor to target,
e.g. core_2nd_gen_avx, haswell, knl, skylake_avx512
NOT controlled by -x… switch, may default to SSE

Simpler is to target processor specified by -x switch
using -vecabi=cmdtarget

Clauses for SIMD-enabled Functions

15
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

15

Processor targeting for SIMD functions

Default ABI requires passing arguments in 128 bit xmm registers
• even with -xCORE-AVX512

• may result in inefficient 128 bit code instead of 256 or 512 bit

#pragma omp declare simd

remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4, unmasked

remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4, masked

Ways to target newer processors with longer vectors:

• Compile with -vecabi=cmdtarget -xcore-avx512 (simplest!)

• takes SIMD length from -x switch

• Or use PROCESSOR clause, e.g.

#pragma omp declare simd processor(skylake_avx512) notinbranch

remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16, unmasked

Special Idioms

Compiler must recognize to handle apparent dependencies

17
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

17

Compress Loop Pattern
Auto-vectorization

VCOMPRESSPD|PS|D|Q
Store sparse packed
floating-point values into
dense memory

VEXPANDPD|PS|D|Q
Load sparse packed
floating-point values from
dense memory

double/single-precision/doubleword/quadword

vcompresspd YMMWORD PTR [rsi+rax*8]{k1}, ymm1

int compress(double *a, double * __restrict b, int na)

{

int nb = 0;

for (int ia=0; ia <na; ia++)

{

if (a[ia] > 0.)

b[nb++] = a[ia];

}

return nb;

}

godbolt.org/z/MabhfvsMv

https://godbolt.org/z/MabhfvsMv

18
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

18

Compress Loop Pattern
Auto-vectorization

Targeting Intel® AVX-512
-xcore-avx512 -qopt-report-file=stderr -qopt-report-phase=vec
LOOP BEGIN
remark #15300: LOOP WAS VECTORIZED

LOOP END

Targeting Intel® AVX2
-xcore-avx2 -qopt-report-file=stderr -qopt-report-phase=vec
LOOP BEGIN
remark #15344: loop was not vectorized: vector dependence prevents vectorization.
remark #15346: vector dependence: assumed FLOW dependence between b[nb] (7:4) and a[ia] (7:4)

LOOP END

Key Take Aways
Compress/Expand loop pattern doesn’t vectorize on architectures like

Intel® AVX2 and the previous ones and does with Intel® AVX-512

godbolt.org/z/MabhfvsMv

https://godbolt.org/z/MabhfvsMv

19
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

19

Compress Loop Pattern
Complex example

int compress(int n1, int n2, float a[][n2], float b[__restrict])

{

int nb = 0;

for (int i1 = 0; i1 < n1; i1++)

{

float sc = 0.f;

for (int i2 = 0; i2 < n2; i2++)

sc += a[i1][i2];

if (sc > 0.f)

b[nb++] = sc;

}

return nb;

}

godbolt.org/z/qPTPx4aK7

▪ Loop was vectorized

▪ Part with dependencies is scalar (ordered)

https://godbolt.org/z/qPTPx4aK7

20
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

20

Compress Loop Pattern
Complex example

#pragma omp simd

for (int i1 = 0; i1 < n1; i1++)

{

float sc = 0.f;

for (int i2 = 0; i2 < n2; i2++)

sc += a[i1][i2];

#pragma omp ordered simd monotonic(nb:1)

if (sc > 0.f)

b[nb++] = sc;

}

Key Take Aways
1. Outer loop vectorization can be achieved using OpenMP SIMD pragma.
2. The Compress/Expand loop pattern can hinted to compiler using monotonic clause.
3. The ordered clause takes into account the nb dependency (if omitted, wrong results)

godbolt.org/z/qPTPx4aK7

https://godbolt.org/z/qPTPx4aK7

21
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

21

Compress Loop Performance

Key Take Aways
1. Ordered clause will serialize the execution of the compress logic
2. Monotonic clause hints the compiler on the specific loop pattern and helps code

generation in picking vcompress/vexpand vector instruction which leads to better
performance.

Optimization Options Speed-up What’s going on

Simple Loops (–O2 –xCORE-AVX2) 1.0 No vectorization

(-O2 –xCORE-AVX512) 12.8x Auto-vectorized

Nested Loops (-O2 –xCORE-AVX512) 1.0x Loop was auto-vectorized
as ordered

Monotonic (-O2 –xCORE-AVX512) 4.1x vcompress instruction used

22
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

22

▪ Store to h is a scatter

▪ ih can have the same value for different values of i

▪ Vectorization with a SIMD directive would cause incorrect results

VPCONFLICT instruction detects
elements with previous conflicts in a
vector of indexes

• Allows to generate a mask with a
subset of elements that are
gurarnteed to be conflict free

vpconflictd zmm1{k1}, zmm2

Histogram Loop pattern
Auto-vectorization

for (i=0; i<n; i++)

{

y = sinf(x[i]*twopi);

ih = floor((y-bot)*invbinw);

ih = ih > 0 ? ih : 0;

ih = ih < nbin ? ih : nbin;

h[ih] = h[ih] + 1;

}

godbolt.org/z/vr6qoMvTE

https://godbolt.org/z/vr6qoMvTE

23
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

23

Histogram Loop pattern
Auto-vectorization

Targeting Intel® AVX2
-xcore-avx2 -qopt-report-file=stderr -qopt-report-phase=vec -qopt-report=3

LOOP BEGIN
remark #15344: loop was not vectorized: vector dependence prevents vectorization.
remark #15346: vector dependence: assumed FLOW dependence between h[ih] (13:5) and h[ih] (13:5)

LOOP END

Targeting Intel® AVX-512
-xcore-avx512 -qopt-report-file=stderr -qopt-report-phase=vec -qopt-report=3

LOOP BEGIN
remark #15300: LOOP WAS VECTORIZED

LOOP END

Key Take Aways
Histogram loop pattern doesn’t vectorize on architectures like

Intel® AVX2 and the previous ones and does with Intel® AVX512

godbolt.org/z/vr6qoMvTE

https://godbolt.org/z/vr6qoMvTE

24
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

remark #15543: loop was not vectorized: loop with function call not considered an optimization candidate.

24

Histogram Loop pattern
Complex example

for (int i=0; i<n; i++)

{

float y = myfun(x[i]);

int ih = floor((y-bot)*invbinw);

ih = ih >= 0 ? ih : 0;

ih = ih <= nbin-1 ? ih : nbin-1;

++contents[ih];

}

godbolt.org/z/hj38Mq7Tq

https://godbolt.org/z/hj38Mq7Tq

25
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

25

▪ Can be vectorized with OpenMP* by:

• Making myfun() a SIMD function

• Using the OMP ORDERED SIMD
pragma/directive

• Add the OVERLAP hint to help compiler
vectorize more efficiently

Key Take Aways
1. Outer loop vectorization can be achieved using OpenMP SIMD pragma.
2. The Histogram loop pattern can hinted to compiler using overlap clause.
3. The ordered clause takes into account the nb dependency (if omitted, wrong results)

Histogram Loop pattern
Complex example

#pragma omp declare simd

float myfun(float x);

#pragma omp simd

for (int i=0; i<n; i++)

{

float y = myfun(x[i]);

int ih = floor((y-bot)*invbinw);

ih = ih >= 0 ? ih : 0;

ih = ih <= nbin-1 ? ih : nbin-1;

#pragma omp ordered simd overlap(ih)

++contents[ih];

}

godbolt.org/z/xee558oac

https://godbolt.org/z/xee558oac

26
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

26

Histogram Loop pattern
vecabi compiler option

▪ Compiler creates both vector and scalar versions

▪ Use -vecabi=cmdtarget to target instruction set specified by –x switch

▪ Else ABI requires arguments to be passed using xmm registers (Intel® SSE)

#pragma omp declare simd

float myfun(float x) {

float twopi=2.f*acosf(-1.f);

float y = sinf(x*twopi);

return y;

}

Key Take Aways
1. -vecabi option help to pass arguments via ymm/zmm registers

godbolt.org/z/cPzr94GKx

https://godbolt.org/z/cPzr94GKx

27
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Histogram Performance

Key Take Aways
Speedup really depends on the data set being histogramed.

Lesser the conflict within the SIMD register, more is the speedup.

Optimization Options Speed-up What’s going on

-O2 -xCORE-AVX2 1.0x Non-vectorized

-O2 -xCORE-AVX512 9.0x Vectorized

28
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

28

Lab exercises

• 2 options:

• Check generated ASM and opt report using Godbolt links

Complete “let’s try” tasks

• Try full version of examples from github on Intel DevCloud

git clone https://github.com/fbaru-dev/hpc-workshop.git

https://github.com/fbaru-dev/hpc-workshop.git

29
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

29

Exercise 1 – skx_512

▪ You should observe the difference between the two cases and look at the
assembly code

▪ Go to the folder skylake-avx512/compress/01

▪ Type make to compile the default case with AVX2. The compiler report
is generated and you can read/interpret it. It does not vectorize the
compress loop.

▪ Type make run to run the test and measure the timing.

▪ Type make AVX512=yes to compile for the AVX512, observe the change
in the compiler report, run the test with make run and measure the
timing.

▪ Generate the assembly code with make AVX512 asm.

NB: Set ulimit –s unlimited before run

git clone https://github.com/fbaru-dev/hpc-workshop.git

https://github.com/fbaru-dev/hpc-workshop.git

30
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

30

Exercise 2 – skx_512

▪ You should observe the difference between the two cases

▪ Go to the folder skylake-avx512/compress/02

▪ Type make AVX512=yes to compile the default case with AVX512.
The compiler report is generated and you can read/interpret it. It
vectorizes the inner loop.

▪ Type make run to run the test and measure the timing.

▪ Type make AVX512=yes SIMD=yes to compile with openmp simd
enabled, observe the change in the compiler report, run the test
with make run and measure the timing.

NB: Set ulimit –s unlimited before run

31
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

31

Exercise 3 – skx_512
▪ You should observe the difference between the two cases and look at the

assembly code

▪ Go to the folder skylake-avx512/histo/01

▪ Type make to compile the default case with AVX2. The compiler report
is generated and you can read/interpret it. It does not vectorize the
histogram patetrn loop.

▪ Type make run to run the test and measure the timing.

▪ Type make AVX512=yes to compile for the AVX512, observe the change
in the compiler report, run the test with make run and measure the
timing.

▪ Generate the assembly code with make AVX512 asm.

NB: Set ulimit –s unlimited before run

32
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

32

Exercise 4 – skx_512
▪ You should observe the difference between the two cases and look

at the simd vectorized code

▪ Go to the folder skylake-avx512/histo/02

▪ Type make to compile the default case with AVX512. The compiler
report is generated and you can read/interpret it. It does not
vectorize the histogram pattern loop.

▪ Type make run to run the test and measure the timing.

▪ Type make SIMD=yes to compile the SIMD version, observe the
change in the compiler report, run the test with make run and
measure the timing.

NB: Set ulimit –s unlimited before run

33

QUESTIONS?

34
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Notices & Disclaimers
▪ This document contains information on products, services and/or processes in development. All information provided here is subject to change

without notice.

▪ Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at intel.com, or from the OEM or retailer.

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such
as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

▪ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

▪ Copyright © 2020, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or
its subsidiaries in the U.S. and other countries. Khronos® is a registered trademark and SYCL is a trademark of the Khronos Group, Inc.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

35

