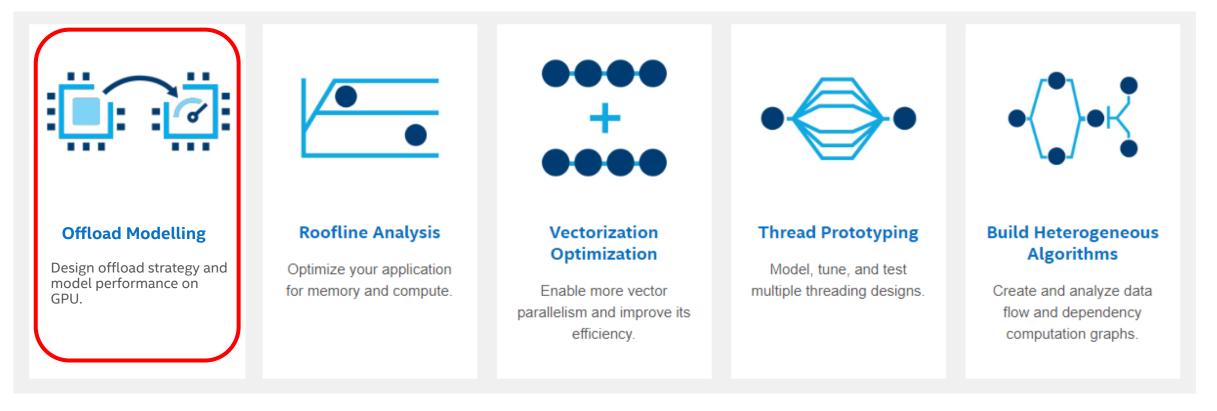
Intel[®] Advisor Offload Modeling

Dmitry Tarakanov Software Technical Consulting Engineer

Notices & Disclaimers

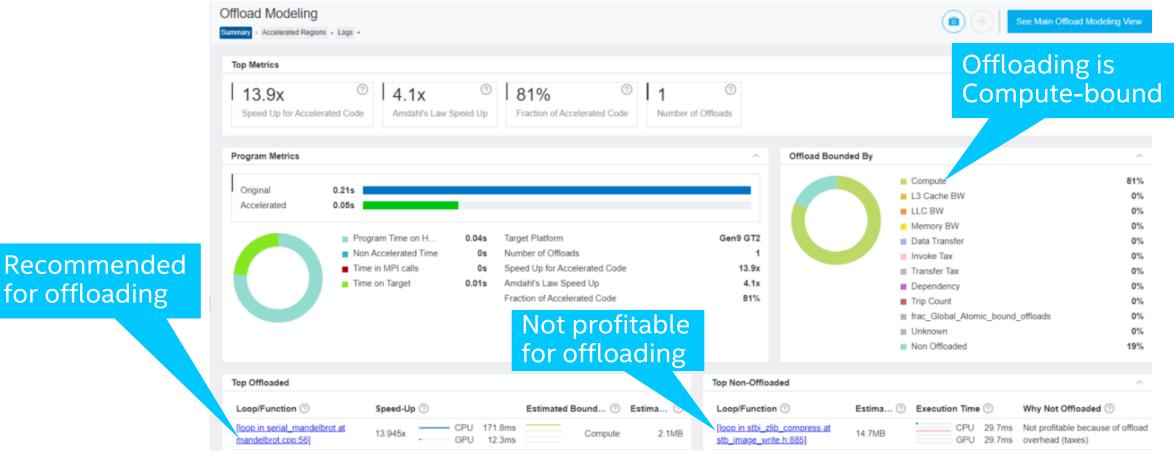
Performance varies by use, configuration, and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>.


Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details.

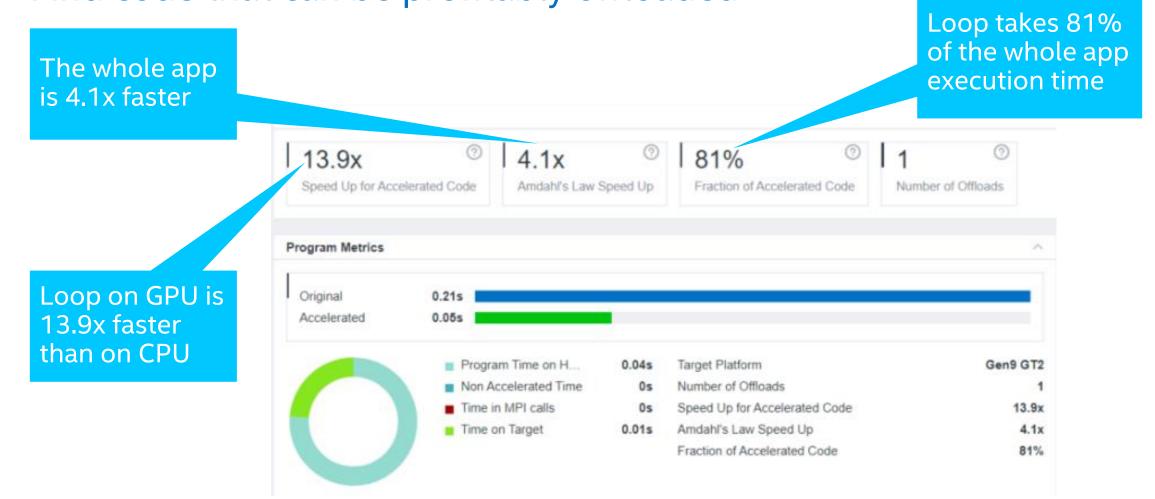
Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

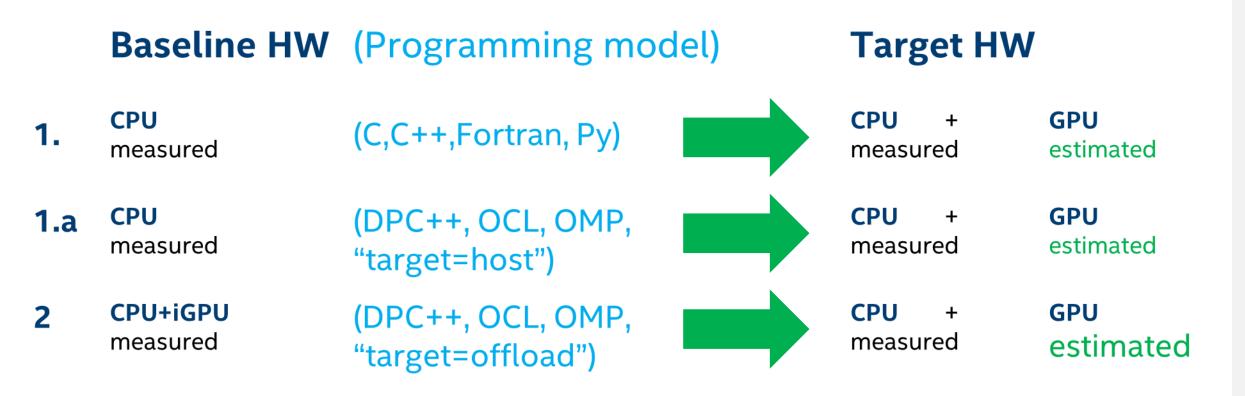
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.


Rich Set of Capabilities for High Performance Code Design Intel® Advisor

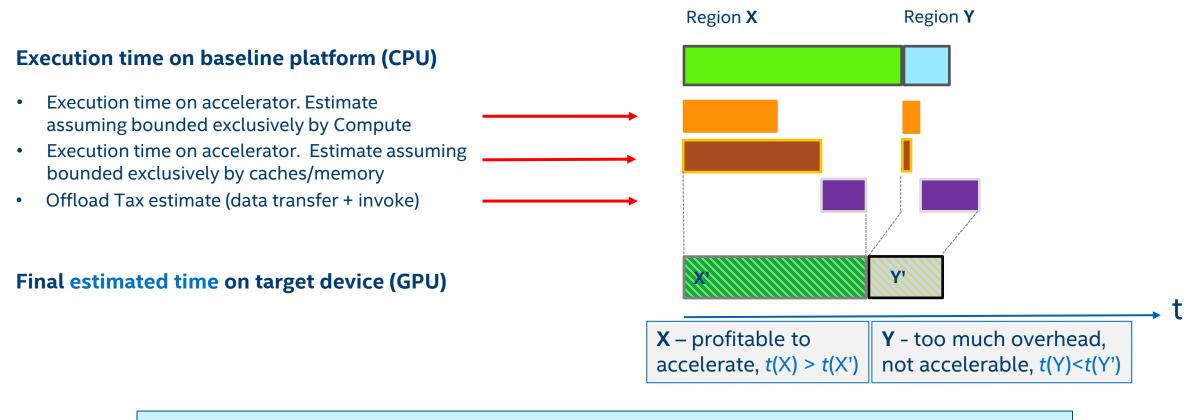
Intel[®] Advisor - Offload Modeling


"Run on CPU or GPU – Predict for GPU"

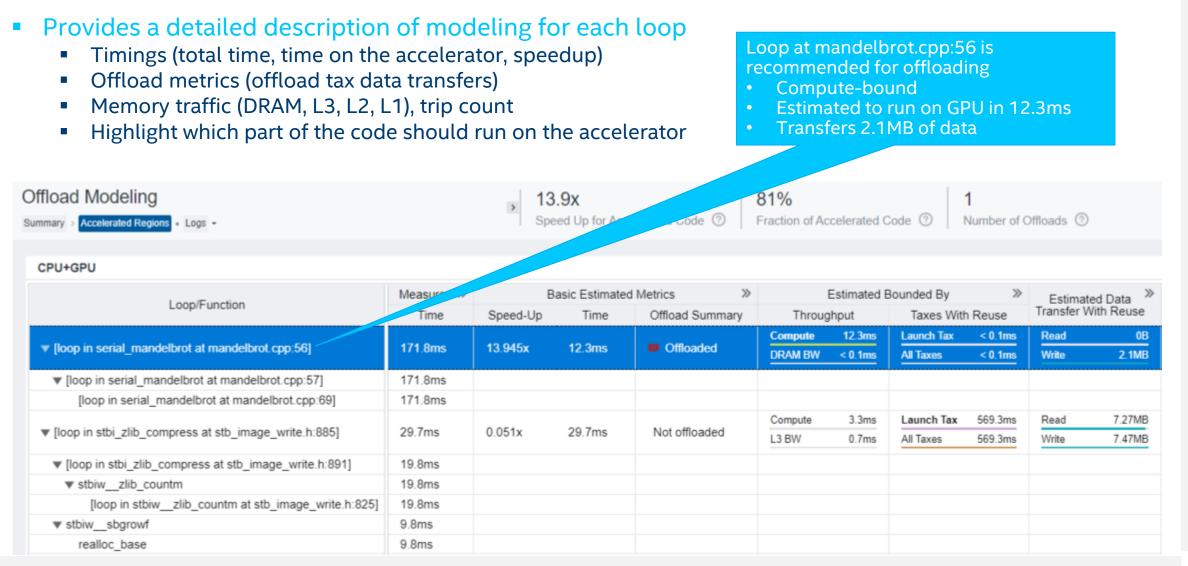
- Helps to define which sections of the code should run on a given accelerator
- Provides performance projection on accelerators



4


Intel[®] Advisor - Offload Modeling Find code that can be profitably offloaded

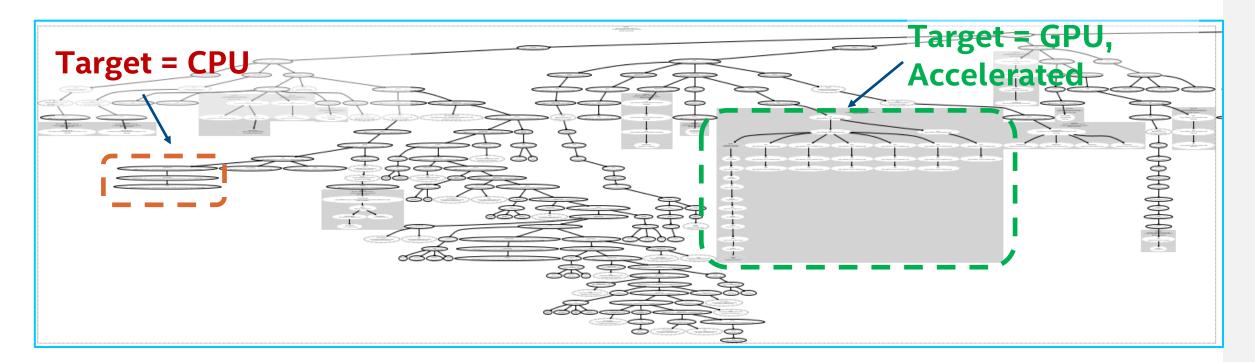
Intel[®] Advisor - Offload Modeling Find code that can be profitably offloaded



Intel[®] Advisor - Offload Modeling Find code that can be profitably offloaded

 $t_{\text{region}} = \max(t_{\text{compute}}, t_{\text{memory subsystem}}) + t_{\text{data transfer tax}} + t_{\text{invocation tax}}$

In-Depth Analysis of Top Offload Regions


In-Depth Analysis of Top Offload Regions

Loop metrics are matched with Sources and Call Tree

Leen/Function	Measured ≫		Basic Estimated Metrics >>>			Estimated Bounded			IBy ≫	Estimated Data ≫	
Loop/Function	Time	Speed-Up		Time	Offload Summary	Throug	Throughput Taxes		th Reuse	Transfer With Reuse	
▼ Total	211.4ms										
▼ RtlUserThreadStart	211.4ms										
▼ BaseThreadInitThunk	211.4ms		Sourc	Source Top-Down X Line Source Is Offloaded Speed-Up							Time
▼_scrt_common_main_seh	211.4ms		52 53		_mm_malloc(width * height * sizeof(unsig						Time
▼ main	211.4ms		54 55		<pre>// Traverse the sample space in equally spac // samples</pre>						
▼ serial_mandelbrot	171.8ms		56 57 58		<pre>for (int j = 0; j < height; ++j) { for (int i = 0; i < width; ++i) { double z_real = x0 + i * xstep; } }</pre>				es	13.945x	12.3ms
▼ [loop in serial_mandelbrot at mandelbrot.cpp:56]	171.8ms	13.945		12.3ms	Offloaded	Compute DRAM BW	12.3ms < 0.1ms	Launch Ta All Taxes		Read Write 2	UB .1MB
[loop in serial_mandelbrot at mandelbrot.cpp:57]	171.8ms			171.8		Compute DRAM BW	12.2ms < 0.1ms				
[loop in serial_mandelbrot at mandelbrot.cpp:69]	171.8ms			171.8		Compute L3 BW	12.1ms 0ms				

Program Tree

- The program tree offers another view of the proportion of code that can be offloaded to the accelerator.
 - Generated if the DOT(GraphViz*) utility is installed

Before you start to use Offload Advisor

- The only strict requirement for compilation and linking is full debug information:
 - -g: Requests full debug information (compiler and linker)
- Offload Advisor supports any optimization level, but the following settings are considered the optimal requirements:
 - -02: Requests moderate optimization
 - -no-ipo: Disables inter-procedural optimizations that may inhibit Offload Advisor to collect performance data (Intel[®] C++ & Fortran Compiler specific)

Performance Estimation Flow

- Performance estimation steps:
 - A. Profiling
 - B. Performance modelling
- 3 different approaches to get estimation:
 - run_oa.py (both A and B), most convenient
 - collect.py (A) + analyze.py (B)
 - advixe-cl (multiple times, A)
 + analyze.py (B), most control
- Performance estimation result:
 - List of loops to be offloaded
 - Estimated speed-up (relative to baseline)

Output:

1. report.html

Program metrics (2)				Offloads bounde	d by ⑦		Gen9 GT2 configuration ⑦	▲ 🖲
Speed Up for Accelerated Code ① 4 Amdahi's Law Speed Up ① 4	Trme on Host Ø Trme on Target Ø Sk Data Transfer Tax Ø Kernet Launch Tax Ø	Os 0.0231s 0.0000546s	0.1608	Compute () I. J. Cache BW () I. LO: BW () Memory BW () Data Transfer () Wroke Brax () Transfer Tax () Expendency () Trip Count () Unknown () Non Ottoaded ()	0% 100% 0% 0% 0% 0% 0% 0% 0%	100%	1 15 GHz Inequency () 24 EU () 512 0 KB L3 () 200 GB/s L3 bandwidth () 24 GB/s DRAM bandwidth () 14 GB/s DRAM bandwidth () Integrated GPU ()	
Top offloaded ⑦				Top non offloade	ed @			
Location Ø	Speed Up ⑦	Bounded By ⑦	Data Transfer ල					
[loop in main at gemm-main.c.56]	6.91x CPU 0.1608 GPU 0.0232s	L3_BW	3.15MB			No data e	vallable	

2. report.csv (whole grid in CSV table) For batch processing

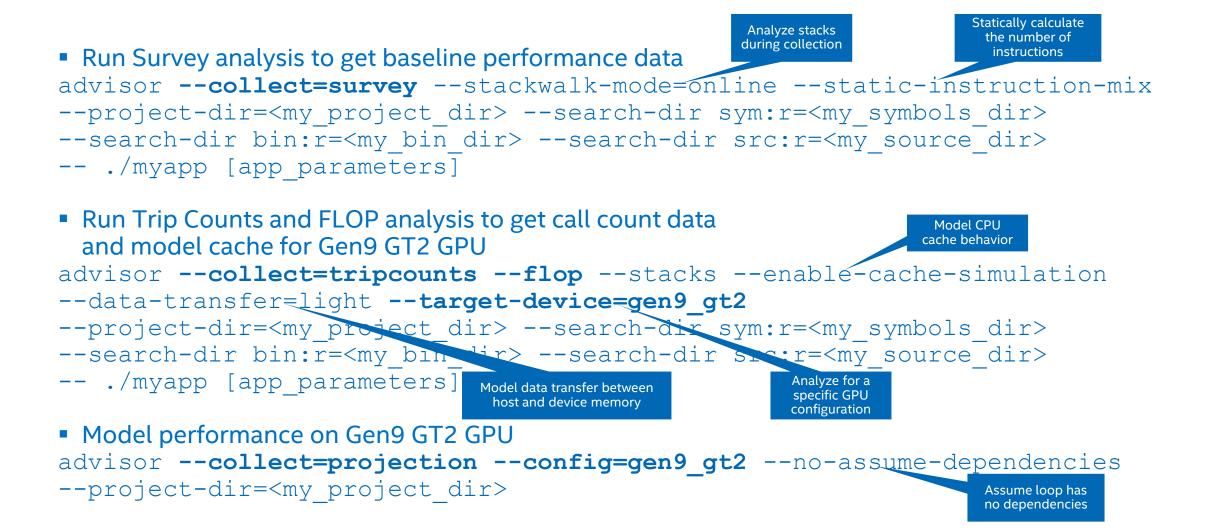
Using Python scripts to run Offload Advisor

Set up the Intel[®] Advisor environment (implicitly done by oneAPI setvars.sh) source <advisor_install_dir>/advixe-vars.sh

Environment variable APM points to <ADV_INSTALL_DIR>/perfmodels

Run the data collection

advixe-python \$APM/collect.py advisor_project --config gen9 -- <app> [app_options]


Also works with other installed python, advixe-python only provided for convenience.

- Run the performance modelling advixe-python \$APM/analyze.py advisor_project --config gen9 --out-dir proj_results
 View the report.html generated (or generate a command-line report)
- Alternatives: run_oa.py or advixe-cl + analyze-py

Analyze for a specific

GPU config

How to Run Offload Modeling

Offload Modeling Resources

User guide

https://software.intel.com/content/www/us/en/develop/documentation/advisoruser-guide/top/design-for-gpu-offload/offload-modeling-perspective.html

Cookbook recipes

https://software.intel.com/content/www/us/en/develop/documentation/advisorcookbook/top/design-and-optimize-application-with-offload-advisor.html https://software.intel.com/content/www/us/en/develop/documentation/advisorcookbook/top/model-cpp-application-performance-on-a-target-gpu.html

More user resources

https://software.intel.com/content/www/us/en/develop/articles/offloadmodeling-resources-for-intel-advisor-users.html

#