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Intel® Xeon® Processor
Intel® Xeon® 

Scalable Processor

64-bit
5100 
series

5500 
series

5600 
series

E5-2600
E5-2600

V2
E5-2600

V3
E5-2600

V4
Platinum 

8180
Platinum 

9282

Core(s) 1 2 4 6 8 12 18 22 28 56

Threads 2 2 8 12 16 24 36 44 56 112

SIMD 
Width

128 128 128 128 256 256 256 256 512 512

*Product specification for launched and shipped products available on ark.intel.com.        

High performance software must be both

• Parallel (multi-thread, multi-process)

• Vectorized

World is changing: HW and SW change, too!
More Cores → More Threads → Wider Vectors
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Offload Modelling

Design offload strategy and 
model performance on 
GPU.

Rich Set of Capabilities for High Performance Code Design
Intel® Advisor
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Get Faster Code Faster!  Intel® Advisor
Vectorization Optimization

▪ Have you:
• Recompiled for AVX2 with little gain

• Wondered where to vectorize?

• Recoded intrinsics for new arch.?

• Struggled with compiler reports?

▪ Data Driven Vectorization:
• What vectorization will pay off most?
• What’s blocking vectorization?  Why?
• Are my loops vector friendly?
• Will reorganizing data increase 

performance?
• Is it safe to just use pragma simd?

"Intel® Advisor’s Vectorization Advisor 
permitted me to focus my work where it 
really mattered.  When you have only a 
limited amount of time to spend on 
optimization, it is invaluable."

Gilles Civario

Senior Software Architect

Irish Centre for High-End Computing
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Spend your time in the most efficient place!
A typical vectorized loop consists of…

Fastest!

Less
Fast
Less
Fast

• Optional
• Used for the unaligned references in 

your loop

• TripCount / VectorLength ≠ 0
• Scalar or slower vector is used
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The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

Filter vectorized 
loops

Focus on 
hot loops

What vectorization 
issues do I have?

How efficient 
is the code?

What prevents 
vectorization?

Which Vector instructions 
are used?

Get Faster Code Faster! 
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5 Steps to Efficient Vectorization

5. Memory Access Patterns Analysis

2. Guidance: detect problem and recommend how to 
fix it

1. Compiler diagnostics + Performance Data + SIMD 
efficiency information

4. Loop-Carried Dependency Analysis

3. “Precise” Trip Counts + FLOPs & MASKS: understand 
utilization, parallelism granularity & overheads
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Efficiently Vectorize your code

1. Compiler diagnostics + Performance 
Data + SIMD efficiency information
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Click to see recommendation

Advisor shows hints on issue fix

Get Specific Advice For Improving Vectorization

2. Guidance: detect problem and 
recommend how to fix it
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Identify how many times the loop executes & collect loop trip counts data

Check actual 
trip counts

Need to know the 
number of 

iterations, too

Not enough to 
know the time 
spent in a loop

3. “Precise” Trip Counts + FLOPs & MASKS: understand 
utilization, parallelism granularity & overheads
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Factors that prevent Vectorizing your code 
1. Loop-carried dependencies

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp);

}

2. Function calls (incl. indirect) 

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

3. Loop structure, boundary condition

4. Outer vs. inner loops

1a. Pointer aliasing (compiler-specific)

for(i = 0; i <= MAX; i++) {

for(j = 0; j <= MAX; j++) {

D[j][i] += 1;                  

}

}

void scale(int *a, int *b)

{   

for (int i = 0; i < 1000; i++) 

b[i] = z * a[i];

}

DO I = 1, N

A(I + M) = A(I) + B(I)

ENDDO

5. Cost-benefit (compiler specific..)

M >= SIMDlength?

4. Loop-Carried Dependency Analysis
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Is It Safe to Vectorize?
Dependencies Analysis to identify and explore loop-carried dependencies

Vector Dependence 
prevents 

Vectorization

Select loop for 
Dependency 
Analysis and 
press play!

Select loop 
and run 

Dependency 
Analysis

4. Loop-Carried Dependency Analysis
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Factors that slow-down your Vectorized code 

for (i = 1; i < nx; i++) {

sumx = sumx + 

serialized_func_call(x, y,xp);

}

2. Serialized or “sub-optimal” 
function calls

void doit(int *a, int *b, int

unknown_small_value)

{

for(int i = 0; i <   

unknown_small_value; i++)

a[i] = z*b[i];

}

3. Small trip counts not multiple of VL

4. Branchy codes, outer vs. inner loops
1b. Memory sub-system Latency / 
Throughput

for(i = 0; i <= MAX; i++) {

if ( D[i] < N) 

do_this(D);

else if (D[i] > M) 

do_that();

//…           

}

void scale(int *a, int *b)

{   

for (int i = 0; i < VERY_BIG; i++) 

c[i] = z * a[i][j];

b[i] = z * a[i];

}

5. MANY others: spill/fill,  floating-point 
accuracy trade-offs, FMA, DIV/SQRT, Unrolling

1a. Indirect memory access

for (i=0; i<N; i++) 

A[B[i]] = C[i]*D[i] Why 45% 
lost?

Run MAP analysis

5. Memory Access Patterns Analysis
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1
6

Memory 
access 
patterns

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

Unit strided (contiguous):

A[7]

A[0] A[1] A[2] A[3]

A[0].x

Constant strided:

A[0].y A[1].x A[1].y A[2].x

A[0].x A[1].x A[2].x A[3].x

Less efficient

Efficient

Inefficient

A[2].y

A[3] A[0] A[1]

Arbitrary access:

A[2]

A[0] A[1] A[2] A[3]

5. Memory Access Patterns Analysis
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Vectorization Accuracy Levels
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Vectorization Lab – Prepare Data
1. Build C++ application

cd ./base && make

2. Run Survey analysis to find hotspots and get performance data for your application
advisor --collect=survey --project-dir=./advisor_results -- ./release/Mandelbrot

3. Collect more detailed data
i. Determine the number of loop iterations and collect data about floating-point and integer operations

advisor --collect=tripcounts --flop --project-dir=./advisor_results

-- ./release/Mandelbrot

ii. Get IDs and locations of loops
advisor --report=survey --project-dir=./advisor_results

-- ./release/Mandelbrot

iii. Mark up loops for deeper analysis (e.g. 2 scalar loops)
advisor --mark-up-loops --select=mandelbrot.cpp:57,mandelbrot.cpp:69

--project-dir=./advisor_results -- ./release/Mandelbrot

iv. Check for possible dependencies
advisor --collect=dependencies --project-dir=./advisor_results

--search-dir src:r=./src -- ./release/Mandelbrot

v. Check memory access patterns
advisor --collect=map --project-dir=./advisor_results

--search-dir src:r=./src -- ./release/Mandelbrot

https://oneapi.team/mpetrova/advisor_demo/-/tree/vectorization
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Vectorization Lab – Analyze Results (Serial)
Check details on the loops of interest

▪ Dependencies? – No. Can vectorize!

▪ Vectorized? – No. Try to vectorize!

https://oneapi.team/mpetrova/advisor_demo/-/tree/vectorization
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Vectorization Lab – Vectorize
Run Advisor for SIMD implementation (with #pragma omp simd used) of application 

mandelbrot.cpp:113 loop is vectorized

Total Time is 2 times less than in scalar case

https://oneapi.team/mpetrova/advisor_demo/-/tree/vectorization


21


