
Intel® Advisor Vectorization

Dmitry Tarakanov

Software Technical Consulting Engineer

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

3

Intel® Xeon® Processor
Intel® Xeon®

Scalable Processor

64-bit
5100
series

5500
series

5600
series

E5-2600
E5-2600

V2
E5-2600

V3
E5-2600

V4
Platinum

8180
Platinum

9282

Core(s) 1 2 4 6 8 12 18 22 28 56

Threads 2 2 8 12 16 24 36 44 56 112

SIMD
Width

128 128 128 128 256 256 256 256 512 512

*Product specification for launched and shipped products available on ark.intel.com.

High performance software must be both

• Parallel (multi-thread, multi-process)

• Vectorized

World is changing: HW and SW change, too!
More Cores → More Threads → Wider Vectors

44

®

™ ™™ ™ ™

http://www.intel.com/PerformanceIndex

5

Offload Modelling

Design offload strategy and
model performance on
GPU.

Rich Set of Capabilities for High Performance Code Design
Intel® Advisor

6

Get Faster Code Faster! Intel® Advisor
Vectorization Optimization

▪ Have you:
• Recompiled for AVX2 with little gain

• Wondered where to vectorize?

• Recoded intrinsics for new arch.?

• Struggled with compiler reports?

▪ Data Driven Vectorization:
• What vectorization will pay off most?
• What’s blocking vectorization? Why?
• Are my loops vector friendly?
• Will reorganizing data increase

performance?
• Is it safe to just use pragma simd?

"Intel® Advisor’s Vectorization Advisor
permitted me to focus my work where it
really mattered. When you have only a
limited amount of time to spend on
optimization, it is invaluable."

Gilles Civario

Senior Software Architect

Irish Centre for High-End Computing

7

Spend your time in the most efficient place!
A typical vectorized loop consists of…

Fastest!

Less
Fast
Less
Fast

• Optional
• Used for the unaligned references in

your loop

• TripCount / VectorLength ≠ 0
• Scalar or slower vector is used

8

The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

Filter vectorized
loops

Focus on
hot loops

What vectorization
issues do I have?

How efficient
is the code?

What prevents
vectorization?

Which Vector instructions
are used?

Get Faster Code Faster!

9

5 Steps to Efficient Vectorization

5. Memory Access Patterns Analysis

2. Guidance: detect problem and recommend how to
fix it

1. Compiler diagnostics + Performance Data + SIMD
efficiency information

4. Loop-Carried Dependency Analysis

3. “Precise” Trip Counts + FLOPs & MASKS: understand
utilization, parallelism granularity & overheads

10

Efficiently Vectorize your code

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

11

Click to see recommendation

Advisor shows hints on issue fix

Get Specific Advice For Improving Vectorization

2. Guidance: detect problem and
recommend how to fix it

12

Identify how many times the loop executes & collect loop trip counts data

Check actual
trip counts

Need to know the
number of

iterations, too

Not enough to
know the time
spent in a loop

3. “Precise” Trip Counts + FLOPs & MASKS: understand
utilization, parallelism granularity & overheads

1313

Factors that prevent Vectorizing your code
1. Loop-carried dependencies

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp);

}

2. Function calls (incl. indirect)

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

3. Loop structure, boundary condition

4. Outer vs. inner loops

1a. Pointer aliasing (compiler-specific)

for(i = 0; i <= MAX; i++) {

for(j = 0; j <= MAX; j++) {

D[j][i] += 1;

}

}

void scale(int *a, int *b)

{

for (int i = 0; i < 1000; i++)

b[i] = z * a[i];

}

DO I = 1, N

A(I + M) = A(I) + B(I)

ENDDO

5. Cost-benefit (compiler specific..)

M >= SIMDlength?

4. Loop-Carried Dependency Analysis

14

Is It Safe to Vectorize?
Dependencies Analysis to identify and explore loop-carried dependencies

Vector Dependence
prevents

Vectorization

Select loop for
Dependency
Analysis and
press play!

Select loop
and run

Dependency
Analysis

4. Loop-Carried Dependency Analysis

15

Factors that slow-down your Vectorized code

for (i = 1; i < nx; i++) {

sumx = sumx +

serialized_func_call(x, y,xp);

}

2. Serialized or “sub-optimal”
function calls

void doit(int *a, int *b, int

unknown_small_value)

{

for(int i = 0; i <

unknown_small_value; i++)

a[i] = z*b[i];

}

3. Small trip counts not multiple of VL

4. Branchy codes, outer vs. inner loops
1b. Memory sub-system Latency /
Throughput

for(i = 0; i <= MAX; i++) {

if (D[i] < N)

do_this(D);

else if (D[i] > M)

do_that();

//…

}

void scale(int *a, int *b)

{

for (int i = 0; i < VERY_BIG; i++)

c[i] = z * a[i][j];

b[i] = z * a[i];

}

5. MANY others: spill/fill, floating-point
accuracy trade-offs, FMA, DIV/SQRT, Unrolling

1a. Indirect memory access

for (i=0; i<N; i++)

A[B[i]] = C[i]*D[i] Why 45%
lost?

Run MAP analysis

5. Memory Access Patterns Analysis

16

1
6

Memory
access
patterns

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

Unit strided (contiguous):

A[7]

A[0] A[1] A[2] A[3]

A[0].x

Constant strided:

A[0].y A[1].x A[1].y A[2].x

A[0].x A[1].x A[2].x A[3].x

Less efficient

Efficient

Inefficient

A[2].y

A[3] A[0] A[1]

Arbitrary access:

A[2]

A[0] A[1] A[2] A[3]

5. Memory Access Patterns Analysis

17

Vectorization Accuracy Levels

18

Vectorization Lab – Prepare Data
1. Build C++ application

cd ./base && make

2. Run Survey analysis to find hotspots and get performance data for your application
advisor --collect=survey --project-dir=./advisor_results -- ./release/Mandelbrot

3. Collect more detailed data
i. Determine the number of loop iterations and collect data about floating-point and integer operations

advisor --collect=tripcounts --flop --project-dir=./advisor_results

-- ./release/Mandelbrot

ii. Get IDs and locations of loops
advisor --report=survey --project-dir=./advisor_results

-- ./release/Mandelbrot

iii. Mark up loops for deeper analysis (e.g. 2 scalar loops)
advisor --mark-up-loops --select=mandelbrot.cpp:57,mandelbrot.cpp:69

--project-dir=./advisor_results -- ./release/Mandelbrot

iv. Check for possible dependencies
advisor --collect=dependencies --project-dir=./advisor_results

--search-dir src:r=./src -- ./release/Mandelbrot

v. Check memory access patterns
advisor --collect=map --project-dir=./advisor_results

--search-dir src:r=./src -- ./release/Mandelbrot

https://oneapi.team/mpetrova/advisor_demo/-/tree/vectorization

19

Vectorization Lab – Analyze Results (Serial)
Check details on the loops of interest

▪ Dependencies? – No. Can vectorize!

▪ Vectorized? – No. Try to vectorize!

https://oneapi.team/mpetrova/advisor_demo/-/tree/vectorization

20

Vectorization Lab – Vectorize
Run Advisor for SIMD implementation (with #pragma omp simd used) of application

mandelbrot.cpp:113 loop is vectorized

Total Time is 2 times less than in scalar case

https://oneapi.team/mpetrova/advisor_demo/-/tree/vectorization

21

