NODULE TWO: PROFILING

Dr. Volker Weinberg | LRZ

MODULE OVERVIEW

Topics to be covered

- Compiling and profiling sequential code
- Explanation of multicore programming
- Compiling and profiling multicore code

COMPILING SEQUENTIAL CODE

NVIDIA'S HPC COMPILERS (AKA PGI) NVIDIA Compiler Names (PGI names still work)

- nvc The command to compile C code (formerly known as 'pgcc')
- nvc++ The command to compile C++ code (formerly known as 'pgc++')
- nvfortran The command to compile Fortran code (formerly known As pgfortran/pgf90/pgf95/pgf77)
- The -fast flag instructs the compiler to optimize the code to the best of its abilities

\$ nvc -fast main.c
\$ nvc++ -fast main.cpp
\$ nvfortran -fast main.F90

\$ pgcc -fast main.c \$ pgc++ -fast main.cpp \$ pgfortran -fast main.F90

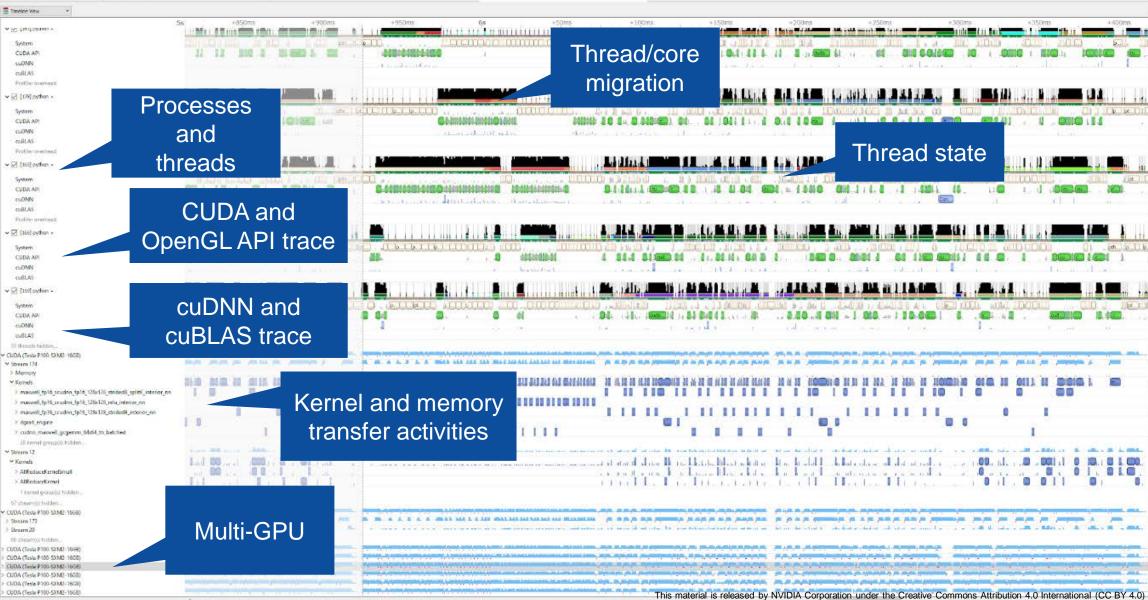
NVIDIA'S HPC COMPILERS (AKA PGI) -Minfo flag

- The Minfo flag will instruct the compiler to print feedback about the compiled code
- -Minfo=accel will give us information about what parts of the code were accelerated via OpenACC
- -Minfo=opt will give information about all code optimizations
- -Minfo=all will give all code feedback, whether positive or negative

\$ pgcc -fast -Minfo=all main.c
\$ pgc++ -fast -Minfo=all main.cpp
\$ pgfortran -fast -Minfo=all main.f90

NVIDIA NSIGHT FAMILY

Nsight Product Family

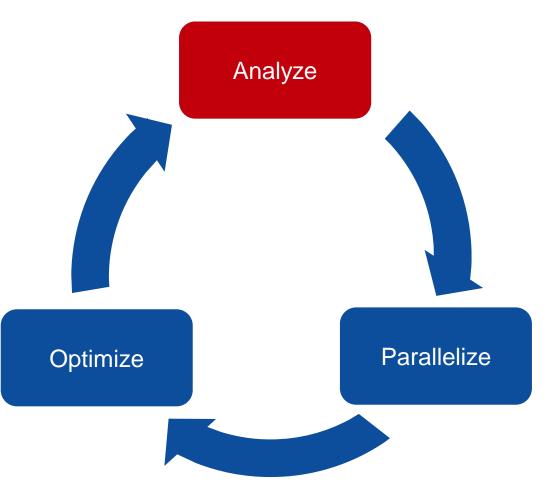


MITDIA System Profiler 4.0

file Yew Help

More Info.

hojaci 2 🔄 DGXV6-bit-AGPU.galap 🔄 hava DGX1_JF_jornhola, Salahcido with-base-baddrawa, glap 🛄 kara DGX1_JF_jornhola, Jasahcido with-base-baddrawa-glap bits 🖂 trae DGX1_C2_portbets, Realecto-with-trase-baddrawa-glap bits



PROFILING SEQUENTIAL CODE

OPENACC DEVELOPMENT CYCLE

- Analyze your code to determine most likely places needing parallelization or optimization.
- Parallelize your code by starting with the most time consuming parts, check for correctness and then analyze it again.
- Optimize your code to improve observed speed-up from parallelization.

PROFILING SEQUENTIAL CODE

Step 1: Run Your Code

Record the time it takes for your sequential program to run.

Note the final results to verify correctness later.

Always run a problem that is representative of your real jobs.

Terminal Window

```
$ pgcc -fast jacobi.c laplace2d.c
$./a.out
   0, 0.250000
 100, 0.002397
 200, 0.001204
 300, 0.000804
 400, 0.000603
 500, 0.000483
 600, 0.000403
 700, 0.000345
 800, 0.000302
 900, 0.000269
 total: 39.432648 s
```


PROFILING SEQUENTIAL CODE

Step 2: Profile Your Code

Obtain detailed information about how the code ran.

This can include information such as:

- Total runtime
- Runtime of individual routines
- Hardware counters

Identify the portions of code that took the longest to run. We want to focus on these "hotspots" when parallelizing.

PROFILING WITH NSIGHT SYSTEM AND NVTX

PROFILING SEQUENTIAL CODE

Using Command Line Interface (CLI)

NVIDIA Nsight Systems CLI provides

- Simple interface to collect data
- Can be copied to any system and analysed later
- Profiles both serial and parallel code
- For more info enter nsys --help on the terminal

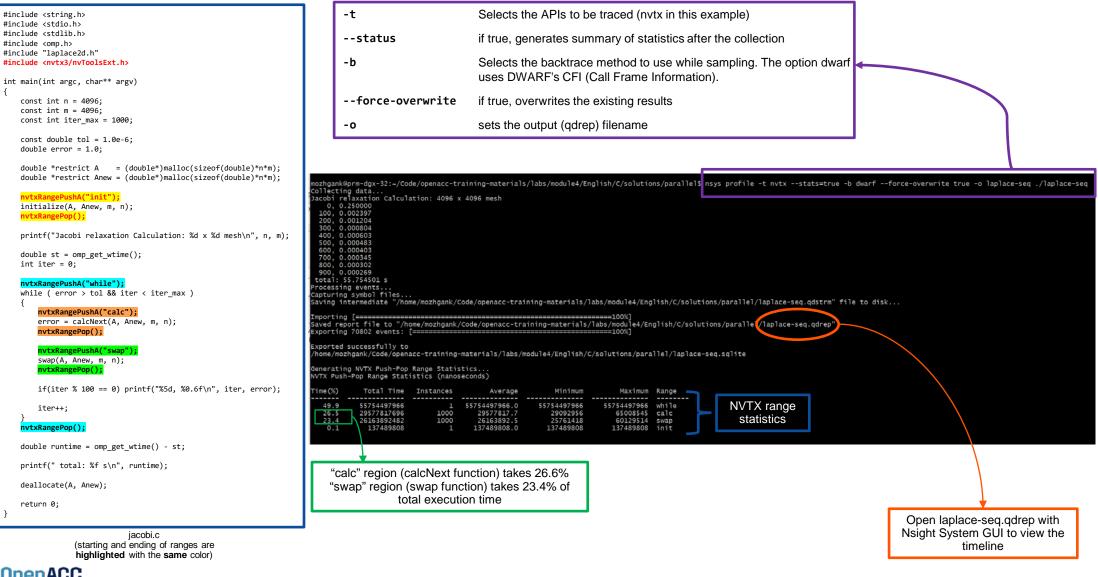
To profile a serial application with NVIDIA Nsight Systems, we use NVIDIA Tools Extension (NVTX) API functions in addition to collecting backtraces while sampling.

PROFILING SEQUENTIAL CODE

NVIDIA Tools Extension API (NVTX) library

What is it?

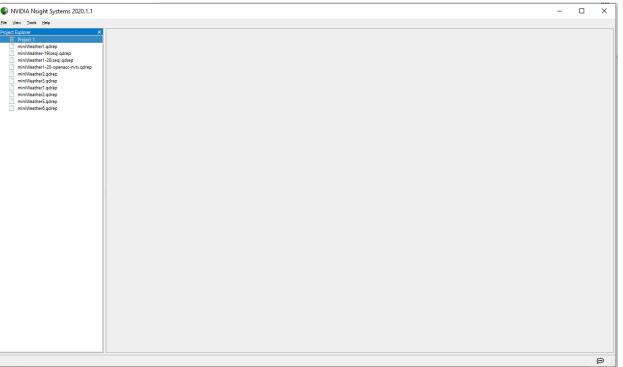
- A C-based Application Programming Interface (API) for annotating events
- Can be easily integrated to the application
- Can be used with NVIDIA Nsight Systems


Why?

- Allows manual instrumentation of the application
- Allows additional information for profiling (e.g: tracing of CPU events and time ranges)

How?

- Import the header only C library nvToolsExt.h
- Wrap the code region or a specific function with nvtxRangePush() and nvtxRangPop()



OpenACC

Open the generated report files (*.qdrep) from command line in the Nsight Systems profiler.

File > Open

Navigate through the "view selector".

"Analysis summary" shows a summary of the profiling session. To review the project configuration used to generate this report, see next slide.

"Timeline View" contains the timeline at the top, and a bottom pane that contains the events view and the function table.

 ×
 Image: Summary

 Image: Summary
 0s

 Image: Symbol Resolution Logs

 Image: Files

 Image: CPU (80)

 Image: Threads (3)

 Image: Threads (3)

 Image: Threads (3)

Read more: https://docs.nvidia.com/nsight-systems

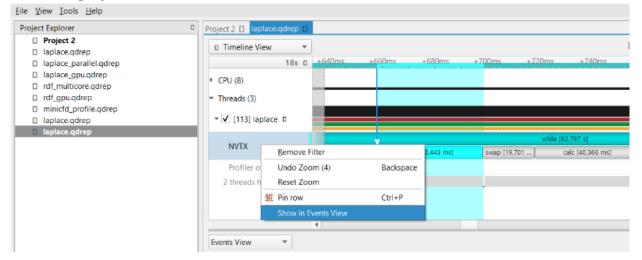
Using	Nsight Systems	 CPU (B) Threads (D) 		
		- @ [12100] barbara -		
leaded dates to a second strength at the seco			while power of	
		NVTX P	max (particul)	
Profiling session duration: 00 Total number of threads 3	0:55.623			
Number of events collected 70,773		Poplar overhead		
Report size 851.22 KB				
Report capture date 19 March 2020	0.08.01.16	2 thraudi hidden		
Host computer prm-dgk-28				
Profiling stop reason Stopped by use	er en			
Imported from /home/mozhgan	ark/Code/openace/training-materialu/labs/module2/English/C/laplace3-qdstm			
Import host computer prm-dgx-28				
CLI command used neys profile -t m	mix -statemene -ferez-overwrite true -o laplace3 . Applece			
Show report file in folder				
prm-dgx-28 (0:1)				
Target			Timeline view	
Target name prm-dgx-28			(charts and the hierarchy on the top pane)	
Platform Linux			(charts and the merarchy on the top pane)	
05 Ubuntu 18.0	94 3 1 7 3			
Hardware platform x85_64				
Serial number Local (CLI)				
CPU description intel(R) Xeor	ex(R) CPU E5-2658 v4 @ 2.20GH₂			
CUDA driver version 10.2				
NVIDIA criver version 44033.01				
GPU context switch unecorted				
	Analysis Summary	1 + 0		Dustion TO 131 100 ms 12109 151.470 s 12108

Timeline view (event view and function table on the bottom pane) 141234

NVIDIA Nsight Systems 2021.2.1 × Eile View Tools Help Project 1 | laplace.qdrep **Project Explorer** D Project 1 0 x³ 1x D Timeline View § 1 error, 10 messages laplace.qdrep g 0s 30s 40s 50s 60s 105 204 CPU (8) Threads (3) ▼ √ [316] laplace + while [66,990 s] NVTX Profiler overhead Filter and Reorder Shift+F -2 threads hidden... Filter and Zoom in Zoom into Selection right click in selected region and Zoom into selection!

Enlarge view!

Timeline View	-	0 x ² 1x (1 error, 10 message
	9s I	0ms +300ms +350ms +400ms +450ms +500ms +550ms
 CPU (8) 		
 Threads (3) 		
💌 🗸 [316] laplace 👻		
NVTX		while [66,990 s] swap [30,4 calc [36,252 ms] swap [30,3 calc [36,083 ms] swap [30,4 calc [36,042 ms] swap [30,4 calc [36,002 ms] swap [30,5 calc [36,064 ms] sw
Profiler overhead		
2 threads hidden	ag o	
Events View 👻		



PROFILING SEQUENTIAL CODE

Viewing captured NVTX events and time ranges via Nsight Systems GUI

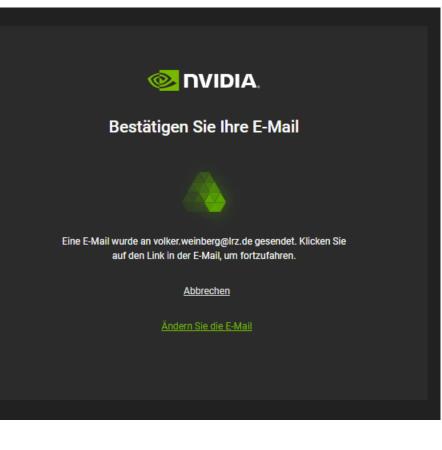
From the Timeline view, right click on the "NVTX" from the top pane and choose "Show in Events View".

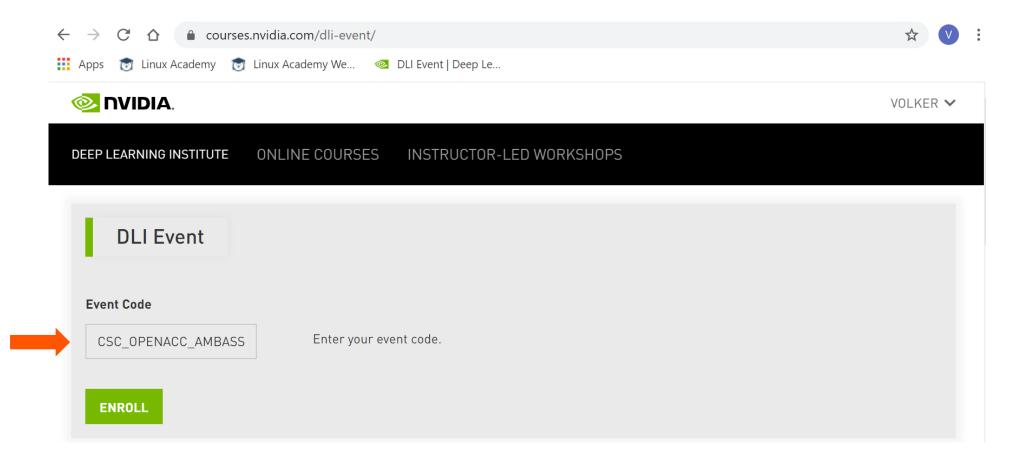
From the bottom pane, you can now see name of the events captured with the duration.

NVIDIA Nsight Systems 2022.2.1

	laplace.qdrep 🛛										
□ Timeline								$0 \overline{x^2} 1x$	1 1	\$ <u>1 error</u>	
	18s 🛛	+640ms	+660ms	+680ms	+700ms	+720ms	+740ms	+760ms	+780ms	+800ms	+820r
CPU (8)											
Threads (3	3)										
✔ [113]	laplace 🛛										
						while	[62,797 s]				
NVTX		c swap [19,72	23	calc [40,443 ms]	swap [19		calc [40,366 ms]	swap [19,76	57	calc [40,423 ms]	sv
Profiler	r overhead										
2 thread	s hidden 🔏 🜼										
		4									
ents View	•										
								Nai	me 🔻		
	 Name 			Start	[Duration	TID	Category	≜ De	escription:	
1	👻 🗌 whil	e		0,193	229s	62,797 s	113			hile	
2		calc		18,59	81s	40,468 ms	113			gins: 0,193229s ds: 62,9905s (+62,7	/07 c)
3	:	swap		18,63	86s	19,723 ms	113			read: 113	51 5)
		calc		18,65	83s	40,443 ms	113				
4				18,69	88s	19,701 ms	113				
	:	swap									
] 4] 5] 6		swap calc		18,71	85s	40,366 ms	113				

PLEASE START LAB NOW!


- To get started, follow these steps:
- Create an NVIDIA Developer account at <u>http://courses.nvidia.com/join</u> Select "Log in with my NVIDIA Account" and then "Create Account"
- Visit <u>http://courses.nvidia.com/dli-event</u> and enter the event code


LRZ_OPENACC_AMBASSADOR_MY22

OpenAC

Erstelle deinen Acco	unt
Email	
volker.weinberg@lrz.de	
Anzeigename V Weinberg	
Y Heniberg	
Geburtsdatum	
	-
Passwort	
	<u></u>
Vannuart hastätinan	Stark
Kennwort bestätigen	Stark
	Stark
	Stark
Angemeldet bleiben <u>Mit Sicherh</u> Lch bin ein Mensch	<i>⊠</i> eitsgerät anmelden ● DIA-Konto-
Angemeldet bleiben <u>Mit Sicherh</u> Lich bin ein Mensch Privatsphäre - Bedingungen Indem ich fortfahre, stimme ich den <u>NVIE</u>	DIA-Konto-
Angemeldet bleiben Mit Sicherhu Angemeldet bleiben Ich bin ein Mensch Captcha Privatsphäre - Bedingungen Indem ich fortfahre, stimme ich den <u>NVIC Nutzungsbedingungen</u> und <u>Datenschutz</u>	<i>⊠</i> eitsgerät anmelden ● DIA-Konto-

🚳 NVIDIA.

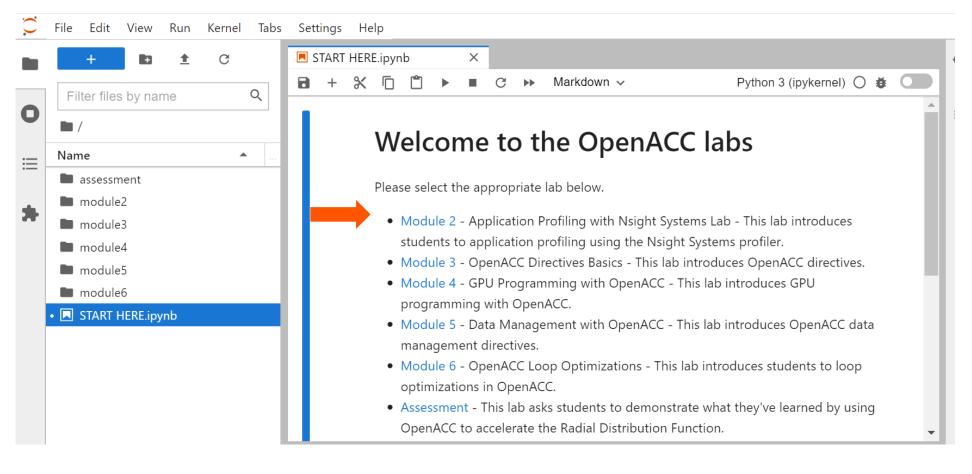
Eaadhack

VOLKER 🗸

undamentals of Accelerated Computing with OpenACC	Sear	ch the course	Search Start Course
		Course Toole	
Welcome to Fundamentals of Accelerated Computing with	×	Course Tools Bookmarks	
OpenACC.		🖭 Updates	
Head over to the "Course" tab to get started!		Course Hando	
		No Course Har	ndouts
Exp	and All		

🕺 NVIDIA.

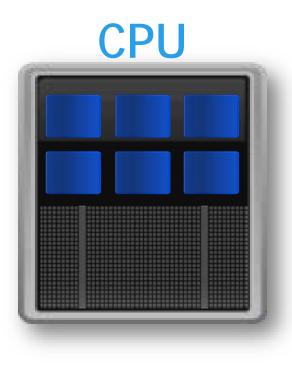
VOLKER 🗸


se Progre	255				
se > Fundai	mentals of Accelerated Computir	ng with > Click here to get s	started > Fundamentals of Accelerated	Computing with	
					Next 🔰
Previous					
	tals of Accelerated _{page}	Computing with (

This will launch a pre-configured GPU workstation, it may take 5-10 minutes.

rse Progr	ess					
rse > Funda	amentals of Accelerated Comp	outing with > Click here to get	started > Fundamentals of Accelerated	Computing with		
Previous			Ð			Next 🔰
	ntals of Accelerate	ed Computing with				Next >
		ed Computing with				Next >
undamer		ed Computing with	OpenACC	: -2 : -4 / 8 : 00 : 00		Next >

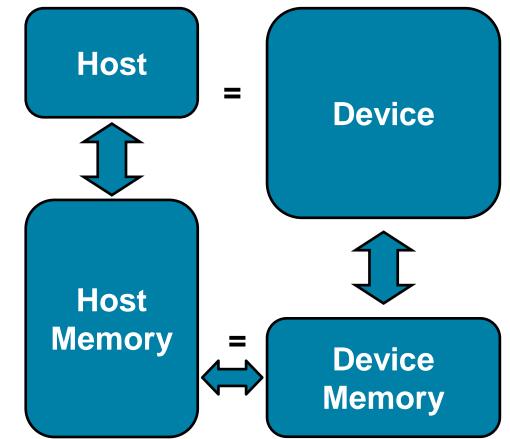
To be able to visualise Nsight System profiler output during the course, please install Nsight System latest version on your local system before the course. The software can be downloaded from <u>https://developer.nvidia.com/nsight-systems</u>.



PROFILING MULTICORE CODE

PROFILING MULTICORE CODE What is multicore?

- Multicore refers to using a CPU with multiple computational cores as our parallel device
- These cores can run independently of each other, but have shared access to memory
- Loop iterations can be spread across CPU threads and can utilize SIMD/vector instructions (SSE, AVX, etc.)
- Parallelizing on a multicore CPU is a good starting place, since data management is unnecessary



PROFILING MULTICORE CODE

Using a multicore CPU with OpenACC

- OpenACC's generic model involves a combination of a host and a device
- Host generally means a CPU, and the device is some parallel hardware
- When running with a multicore CPU as our device, typically this means that our host/device will be the same
- This also means that their memories will be the same

PROFILING MULTICORE CODE

Compiling code for a specific parallel hardware

- The '-ta' flag will allow us to compile our code for a specific, target parallel hardware
- 'ta' stands for "Target Accelerator," an accelerator being another way to refer to a parallel hardware
- Our OpenACC code can be compiled for many different kinds of parallel hardware without having to change the code

```
$ pgcc -fast -Minfo=accel -ta=multicore laplace2d.c
calcNext:
    35, Generating Multicore code
    36, #pragma acc loop gang
```


PROFILING MULTICORE CODE

Compiling code for a specific parallel hardware

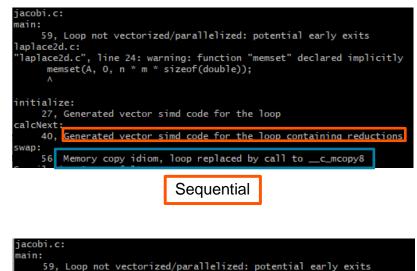
nsys profile -t nvtx --stats=true --force-overwrite true -o laplace_parallel ./laplace_parallel

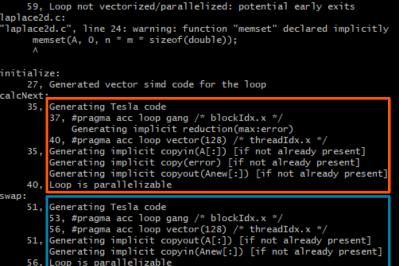
NVTX Push-Pop Range Statistics:

Time(%)	Total Time (ns)	Instances	Average	Minimum	Maximum	Range
49.9	24908340742	1	24908340742.0	24908340742	24908340742	while
26.4	13167317033	1000	13167317.0	9986457	52044034	calc
23.4	11711313301	1000	11711313.3	8693117	62627309	swap
0.4	175394843	1	175394843.0	175394843	175394843	init

Report file moved to "/home/openacc/labs/module2/English/C/laplace_parallel.qdrep" Report file moved to "/home/openacc/labs/module2/English/C/laplace_parallel.sqlite"

PROFILING OPENACC CODE

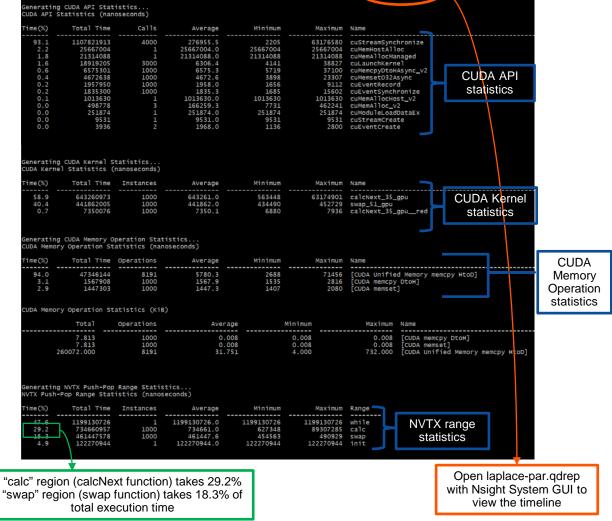

PARALLEL VS SEQUENTIAL


Compiler feedback

Have a close look at the PGI compiler feedback for both sequential and parallel implementation of the application.

It provides information about how your program was optimized or why a particular optimization was not made.

Note: Adding –Minfo flag or -Minfo=accel or -Minfo=all when compiling, will enable compiler feedback messages, giving details about the parallel code generated.




```
#include <math.h>
                                                                                                                            aved report file to "/home/mozhgank/Code/openacc-training-materials/labs/module4/English/C/solutions/parallel/laplace-par.qdrep"
#include <stdlib.h>
                                                                                                                            xporting 59427 events: [=====
                                                                                                                            xported successfully to
#define OFFSET(x, y, m) (((x)*(m)) + (y))
                                                                                                                            nome/mozhgank/Code/openacc-training-materials/labs/module4/English/C/solutions/paralle(/laplace-par.sqlite
                                                                                                                           Generating CUDA API Statistics...
void initialize(double *restrict A, double *restrict Anew, int m, int n)
                                                                                                                           UDA API Statistics (nanoseconds)
    memset(A, 0, n * m * sizeof(double));
                                                                                                                            ime(%)
                                                                                                                                       Total Time
    memset(Anew, 0, n * m * sizeof(double));
                                                                                                                             93.
                                                                                                                                       1107821913
                                                                                                                              2.2
1.8
1.6
0.4
0.2
0.2
0.1
0.0
0.0
0.0
0.0
                                                                                                                                         25667004
                                                                                                                                         21314088
    for(int i = 0; i < m; i++){</pre>
                                                                                                                                         18919205
        A[i] = 1.0;
                                                                                                                                          6575301
        Anew[i] = 1.0;
                                                                                                                                          4672638
                                                                                                                                          1957950
1835300
}
                                                                                                                                           498778
                                                                                                                                           251874
double calcNext(double *restrict A, double *restrict Anew, int m, int n)
                                                                                                                                            9531
3936
    double error = 0.0;
     #pragma acc parallel loop reduction(max:err)
    for( int j = 1; j < n-1; j++)</pre>
                                                                                                                            enerating CUDA Kernel Statistics...
                                                                                                                            UDA Kernel Statistics (nanoseconds)
    {
         #pragma acc loop
                                                                                                                            ime(%)
                                                                                                                                       Total Time
        for( int i = 1; i < m-1; i++ )</pre>
                                                                                                                             58.9
40.4
                                                                                                                                        643260973
                                                                                                                                        441862005
             Anew[OFFSET(j, i, m)] = 0.25 * ( A[OFFSET(j, i+1, m)] + A[OFFSET(j, i-1, m)]
                                                                                                                              0.7
                                                                                                                                          7350076
                                                + A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m)]);
             error = max( error, fabs(Anew[OFFSET(j, i, m)] - A[OFFSET(j, i, m)]));
    return error;
                                                                                                                            ime(%)
                                                                                                                             94.0
                                                                                                                                         47346144
                                                                                                                                          1567908
                                                                                                                              3.1
void swap(double *restrict A, double *restrict Anew, int m, int n)
                                                                                                                                          1447303
     #pragma acc parallel loop
                                                                                                                            UDA Memory Operation Statistics (KiB)
    for( int j = 1; j < n-1; j++)
                                                                                                                                        Total
    {
                                                                                                                                        _____
         #pragma acc loop
                                                                                                                                        7.813
        for( int i = 1; i < m-1; i++ )</pre>
                                                                                                                                        7.813
                                                                                                                                   260072.000
             A[OFFSET(j, i, m)] = Anew[OFFSET(j, i, m)];
}
                                                                                                                            me (%)
                                                                                                                                       Total Time
void deallocate(double *restrict A, double *restrict Anew)
                                                                                                                             47 6
                                                                                                                                       1199130726
                                                                                                                             29.2
                                                                                                                                        734660957
    free(A);
                                                                                                                                        461447578
    free(Anew);
                                                                                                                              4.9
                                                                                                                                        122270944
                              laplace2d.c
                 (Parallelised using OpenACC parallel
                   directives (pragmas highlighted)
```


==100%]

PARALLEL VS SEQUENTIAL SPEEDUP

Viewing captured NVTX events

Have a close look at the captured NVTX events for both serial and parallel implementations.

Time spent in "while" loop has significantly decreased.

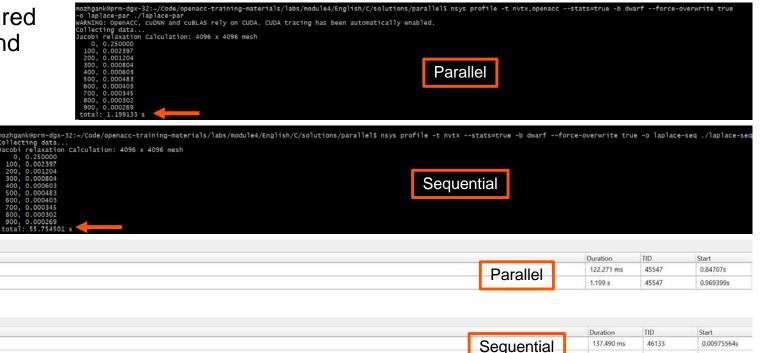
1

3

01

1 3

init [122.271 ms]


Name

while [1,199 s]

init [137.490 ms]

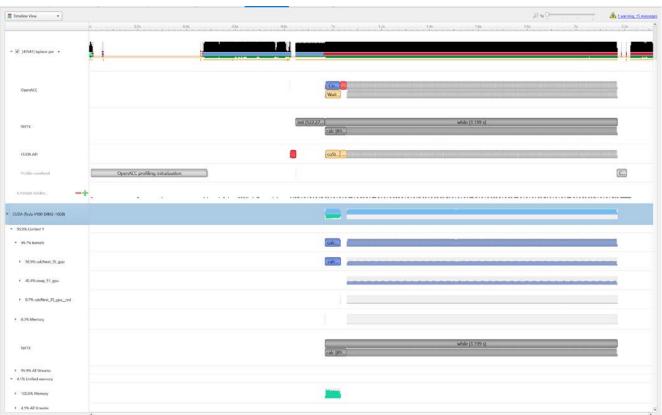
+ while (55 754 c)

Achieved speedup: ~47

55.754 s

46133

0.147279s


PROFILING PARALLEL CODE Viewing timeline via Nsight Systems

Contents of the tree-like hierarchy on the left depend on the project settings used to collect this report.

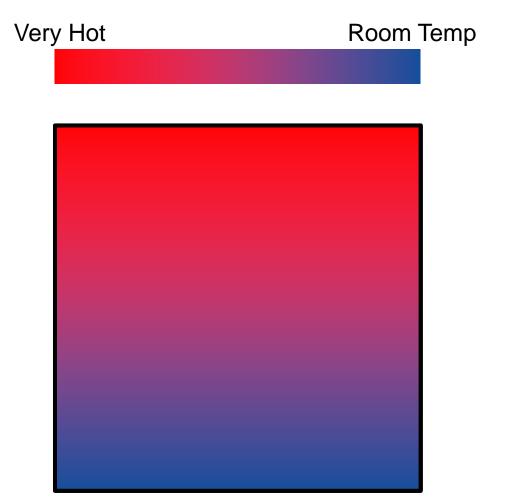
If a certain feature has not been enabled, corresponding rows will not be shown on the timeline.

In this example, we chose to trace NVTX and OpenACC while sampling.

Note: Kernel launches are represented by blue and memory transfers are displayed in green.

OpenACC More Science, Less Programming

LAB CODE



Introduction to lab code - visual

We will observe a simple simulation of heat distributing across a metal plate.

We will apply a consistent heat to the top of the plate.

Then, we will simulate the heat distributing across the plate.

Introduction to lab code - technical

The lab simulates a very basic 2-dimensional heat transfer problem. A We have two 2-dimensional arrays, A and Anew.

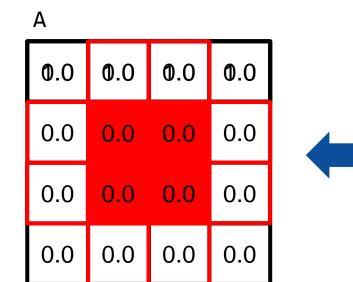
The arrays represent a 2dimensional, metal plate. Each element in the array is a **double** value that represents temperature.

We will simulate the distribution of heat until a minimum change value is achieved, or until we exceed a maximum number of iterations. OpenACC

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Anew

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0


Introduction to lab code - technical

We initialize the top row to be a temperature of 1.0

The **calcNext** function will iterate through all of the inner elements of array A, and update the corresponding elements in Anew

We will take the average of the neighboring cells, and record it in **Anew.**

The **swap** function will copy the contents of Anew to A

Anew

0.0	0.0	0.0	0.0
0.0	025	025	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Introduction to lab code

Α 1.0 1.0 1.0 1.0 0.0 0.25 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Anew

1.0	1.0	1.0	1.0
0.0	0.25	0.25	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

The **swap** function will copy the contents of Anew to A

KEY CONCEPTS

In this module we discussed...

- Compiling sequential and parallel code
- CPU profiling for sequential and parallel execution
- Specifics of our Laplace Heat Transfer lab code

LAB GOALS In this lab you will do the following...

- Build and run the example code using the NVIDIA's HPC compiler
- Use Nsight Systems to understand where the program spends its time

THANK YOU

