
Building Transformer-Based Natural Language Processing
Applications
(Part 3)

PRODUCTION DEPLOYMENT

2

Part 1: Machine Learning in NLP
Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a translation task using the
Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond
Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Part 3: Production Deployment
Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton

FULL COURSE AGENDA

3

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

4

YOUR NETWORK IS
TRAINED

5

YOUR NETWORK IS TRAINED
Now what?

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

6

MEETING REQUIREMENTS
OF YOUR BUSINESS

7

NLP MODELS ARE LARGE
The Inference cost is high

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

8

THEY DO NOT LIVE IN ISOLATION
Example of a conversational AI application

9

THEY DO NOT LIVE IN ISOLATION
Real Time Applications Need to Deliver Latency <300 ms

10

THEY DO NOT LIVE IN ISOLATION
Real Time Applications Need to Deliver Latency <300 ms

11

THEY DO NOT LIVE IN ISOLATION
Application bandwidth = Cost

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/

12

AND THEY NEED TO EVOLVE OVER TIME
A lot of processes are not stationary

https://en.wikipedia.org/wiki/Stationary_process

13

THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Nonfunctional requirements

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning
systems. In Advances in neural information processing systems (pp. 2503-2511).

14

THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Nonfunctional requirements

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning
systems. In Advances in neural information processing systems (pp. 2503-2511).

15

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

16

MODEL SELECTION
Not all models are created equally

NLP Image Classification Object detection

17

MODEL SELECTION
Not all models respond in the same way to knowledge distillation, pruning and quantization

https://bair.berkeley.edu/blog/2020/03/05/compress/
Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

https://bair.berkeley.edu/blog/2020/03/05/compress/

18

MODEL SELECTION
And very large models are and will continue to be prevalent in NLP

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.

19

DIRECT IMPLICATIONS

20

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION
E.g. Train Large then compress

https://bair.berkeley.edu/blog/2020/03/05/compress/
Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

https://bair.berkeley.edu/blog/2020/03/05/compress/

21

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION
Hardware acceleration for reduced precision arithmetic and sparsity

A100
SPARSE
TF32

A100
SPARSE
FP16

A100
FP64

A100
TF32

A100
FP16

20

155

310

V100
FP32

V100
FP16

16

V100
FP64

8 125

310

625

20X

10X

A100
INT8

V100
INT8

60

625

A100
SPARSE
INT8

1250

Re
la

ti
ve

 C
om

pu
te

22

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

23

QUANTIZATION
The idea

24

QUANTIZATION
The rationale

25

QUANTIZATION
The rationale

26

QUANTIZATION
The results (speedup and throughput)

TensorRT optimized models executed on Tesla T4, input size 224x224 for all apart from the Inception networks for which the input size was 299x299

27

QUANTIZATION
Beyond INT8

INT4 quantization for resnet50
"Int4 Precision for AI Inference"

28

IMPACT ON ACCURACY
In a wide range of cases minimal

29

IMPACT OF MODEL DESIGN
Not all neural network mechanisms quantize well

30

IMPACT OF MODEL DESIGN

• GeLU produces highly asymmetric range

• Negative values between [-0.17,0]

• All negative values clipped to 0

• GeLU10 allows to maintain negative values

Model alterations required

31

LOSS OF ACCURACY

Outlier in the tensor:

• Example: BERT, Inception V4

• Solution: Clip. Tighten the range, use bits more efficiently

Not enough precision in quantized representation

• Example: Int8 for MobileNet V1

• Example: Int4 for Resnet50

• Solution: Train/fine tune for quantization

Reasons

32

LEARN MORE

• S9659: Inference at Reduced Precision on GPUs

• S21664: Toward INT8 Inference: Deploying Quantization-Aware Trained Networks using TensorRT

GTC Talks

33

QUANTIZATION TOOLS

34

NVIDIA TENSORRT
From Every Framework, Optimized For Each Target Platform

35

INT8 QUANTIZATION EXAMPLE
TF-TRT

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

36

PRUNING

37

PRUNING
The idea

The opportunity:

• Reduced memory bandwidth

• Reduced memory footprint

• Acceleration (especially in presence of
hardware acceleration)

Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271.

38

DIFFICULT TO GET TO
WORK RELIABLY

39

STRUCTURED SPARSITY

40

SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores

• 50% fine-grained sparsity

• 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

• Accuracy: maintains accuracy of the original, unpruned network

• Medium sparsity level (50%), fine-grained

• Training: a recipe shown to work across tasks and networks

• Speedup:

• Specialized Tensor Core support for sparse math

• Structured: lends itself to efficient memory utilization

= zero value

2:4 structured-sparse matrix

41

PRUNING
Structured sparsity

42

RELIABLE APPROACH

43

PRUNING
Model performance

44

PRUNING
Model performance

45

PRUNING
Model performance

46

IMPACT ON NLP

47

NETWORK PERFORMANCE
BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance
Some operations remain dense:

Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, …)
GEMMs without weights to be pruned – Attention Batched Matrix Multiplies

48

TRAINING RECIPE

49

2) Prune for 2:4 sparsity

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

1) Train (or obtain) a dense network

Dense weights

2:4 sparse weights

Retrained 2:4 sparse
weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

3) Repeat the original training procedure
• Same hyper-parameters as in step-1

• Initialize to weights from step-2

• Maintain the 0 pattern from step-2: no need to recompute the mask

50

EXAMPLE LEARNING RATE SCHEDULE

Le
ar

ni
ng

 R
at

e Dense Training Sparse Retraining

Step 1 Step 3Step 2

51

BERT SQUAD EXAMPLE
SQuAD Dataset and fine-tuning is too small to compensate for pruning on its own

Le
ar

ni
ng

 R
at

e

Phase 1:
Pretrain language model

Le
ar

ni
ng

 R
at

e

Phase2:
Finetune for SQuAD

Phase 1: Sparse
Pretrain language model

Phase2: Sparse
Finetune for SQuAD

Phase 1:
Pretrain language model

Step 1 Step 3Step 2

52

APEX: AUTOMATIC
SPARSITY

53

TAKING ADVANTAGE OF STRUCTURED SPARSITY

54

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

55

QUANTIZATION
Approaches

Quantization-aware training (QAT)Post-training quantization(PTQ)

56

EXTREME MODEL COMPRESSION
Training with quantization noise

Polino, A., Pascanu, R., & Alistarh, D. (2018). Model compression via distillation and quantization. arXiv preprint arXiv:1802.05668.

57

“We used Quant-Noise to compress Facebook AI’s
state-of-the-art RoBERTa Base model from 480 MB
to 14 MB while achieving 82.5 percent on MNLI,
compared with 84.8 percent for the original model.”

58

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

59

KNOWLEDGE DISTILLATION
The idea

60

KNOWLEDGE DISTILLATION
DistillBERT

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

61

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

62

NOT ALL MODELS HAVE
THE SAME CODE QUALITY

63

COMPUTE MATTERS
But so does code quality

Monthly DL Framework Updates & Optimizations Drive Performance

ResNet-50 v1.5 Training | 8x V100 | DGX-1

0

2000

4000

6000

8000

10000

12000

17,08 18,02 18,12 19,12

Im
ag
es
/S
ec
on

d

MxNet

0

1000

2000

3000

4000

5000

6000

7000

8000

17,08 18,02 18,12 19,12

To
ke
ns
/S
ec
on

d

PyTorch

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

17,08 18,02 18,12 19,12

To
ke
ns
/S
ec
on

d

TensorFlow

64

NGC: GPU-OPTIMIZED SOFTWARE HUB
Simplifying DL, ML and HPC Workflows

Pre-trained Models
NLP, Classification, Object Detection & more

Model Training Scripts
NLP, Image Classification,
Object Detection & more

NGC
Helm Charts

AI applications, K8s cluster, Registry
Containers
DL, ML, HPC

Industry SDKs
Medical Imaging, Intelligent Video Analytics

65

PRETRAINED MODELS & MODEL SCRIPTS

PRE-TRAINED MODELS

• Deploy AI quickly with models for industry specific use cases

Covers everything from speech to object detection

Integrate into existing workflows with code samples

• Easily use transfer learning to adapt to your bespoke use case

MODEL SCRIPTS

• Reference neural network architectures across all domains and popular
frameworks with latest SOTA

• Jupyter notebook starter kits

Build AI Solutions Faster

Healthcare (~30 models) BioBERT (NLP), Clara (Computer Vision)

Manufacturing (~25 Models) Object Detection, Image Classification

Retail (~25 models) BERT, Transformer

70 TensorRT Plans Classification/Segmentation for v5, v6, v7

Natural Language Processing 25 Bert Configurations

Recommendation Engines Neural Collaborative Filtering, VAE

Speech Jasper, Tacotron, WaveGlow

Translation GNMT

66

THIS APPLIES NOT ONLY
TO TRAINING BUT

INFERENCE AS WELL

67

CODE QUALITY IS KEY
Dramatic differences in model performance

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

3-layer BERT with 128 sequence length

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

68

OPTIMIZING INFERENCE
WITH TENSORRT

69

NVIDIA TENSORRT
From Every Framework, Optimized For Each Target Platform

70

TENSORRT
Optimizations

developer.nvidia.com/tensorrt

7171

TensorRT ONNX PARSER

Optimize and deploy models from ONNX-supported
frameworks to production

Apply TensorRT optimizations to any ONNX
framework (Caffe 2, Microsoft Cognitive Toolkit,
MxNet & PyTorch)

Import TensorFlow and Keras through converters
(tf2onnx, keras2onnx)

Use with C++ and Python apps

20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

High-Performance Inference for ONNX
Models

developer.nvidia.com/tensorrt

https://github.com/onnx/onnx-tensorrt/blob/7.0/operators.md

72

TENSORRT
Tight integration with DL frameworks

Pytorch -> TRTorch TensorFlow -> TF-TRT

73

WIDELY ADOPTED
Accelerating most demanding applications

74

IMPACT ON NLP

75

TENSORRT
BERT Encoder optimizations

76

CUSTOM PLUGINS

• Naïve implementation would require a large
number of TensorRT elementary layers

• For k layers, the naïve implementation would
require k-1 memory roundtrips

• The skip and layer-normalization(LN) layers occur
twice per Transformer layer and are fused in a
single kernel

Optimized GeLU as well as skip and layer-normalization operations

Result = x^3
Result = c * Result
Result = x + Result
Result = b * Result
Result = tanh(Result)
Result = x * Result
Result = a * Result

gelu(x) = a * x * (1 + tanh(b * (x + c * x^3)))

77

CUSTOM PLUGINS
Self-attention layer

78

IMPLICATIONS
Significant impact on latency and throughput (batch 1)

Using a Tesla T4 GPU, BERT optimized with TensorRT can perform inference in 2.2 ms for a QA task similar to available in SQuAD with batch size =1 and sequence length = 128.

79

IMPLICATIONS
Significant impact on latency and throughput

80

BEYOND BERT

81

FASTER TRANSFORMER

• Encoder:
• 1.5x compare to TensorFlow with XLA on FP16

• Decoder on NVIDIA Tesla T4
• 2.5x speedup for batch size 1 (online translating scheme)
• 2x speedup for large batch size in FP16

• Decoding on NVIDIA Tesla T4
• 7x speedup for batch size 1 and beam width 4 (online translating scheme)
• 2x speedup for large batch size in FP16.

• Decoding on NVIDIA Tesla V100
• 6x speedup for batch size 1 and beam width 4 (online translating scheme)
• 3x speedup for large batch size in FP16.

Designed for training and inference speed

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer#feature-support-matrix

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer

82

CONSIDER USING
TENSORRT

83

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

84

INEFFICIENCY LIMITS INNOVATION
Difficulties with deploying data center inference

Single Framework OnlySingle Model Only Custom Development

Some systems are overused while
others are underutilized

Solutions can only support
models from one framework

Developers need to reinvent the
plumbing for every application

ASR NLP
Rec-

ommender

!

85

NVIDIA TRITON INFERENCE SERVER
Production data center inference server

Maximize real-time inference
performance of GPUs

Quickly deploy and manage multiple
models per GPU per node

Easily scale to heterogeneous GPUs
and multi GPU nodes

Integrates with orchestration
systems and auto-scalers via latency
and health metrics

Now open source for thorough
customization and integration

Tr
ito

n
In

fe
re

nc
e

Se
rv

er

NVIDIA
T4

NVIDIA
T4

Tr
ito

n
In

fe
re

nc
e

Se
rv

er

Tesla
V100

Tesla
V100

Tr
ito

n
In

fe
re

nc
e

Se
rv

er Tesla P4

Tesla P4

86

Concurrent Model Execution
Multiple models (or multiple instances of same
model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference
requests on the CPU

Metrics
Utilization, count, memory, and latency

Custom Backend
Custom backend allows the user more flexibility
by providing their own implementation of an
execution engine through the use of a shared
library

Model Ensemble
Pipeline of one or more models and the
connection of input and output tensors between
those models (can be used with custom
backend)

Dynamic Batching
Inference requests can be batched up by the
inference server to 1) the model-allowed
maximum or 2) the user-defined latency SLA

Multiple Model Format Support
PyTorch JIT (.pt)
TensorFlow GraphDef/SavedModel
TensorFlow and TensorRT GraphDef
ONNX graph (ONNX Runtime)
TensorRT Plans
Caffe2 NetDef (ONNX import path)

CMake build
Build the inference server from source making it
more portable to multiple OSes and removing
the build dependency on Docker

Streaming API
Built-in support for audio streaming input e.g.
for speech recognition

FEATURES

87

DYNAMIC BATCHING SCHEDULER

Framework Backend

Dynamic
Batcher

Runtime

Context

Context

Batch-1 Request
Batch-4 Request

Triton Inference Server

88

DYNAMIC BATCHING SCHEDULER

ModelY Backend

Dynamic
Batcher

Runtime

Context

Context

Preferred batch size and wait
time are configuration options.

Assume 4 gives best utilization in
this example.

Grouping requests into a
single “batch” increases
overall GPU throughput

Triton Inference Server

89

DYNAMIC BATCHING

Triton Inference Server groups
inference requests based on
customer defined metrics for
optimal performance

Customer defines 1) batch size
(required) and 2) latency
requirements (optional)

Example: No dynamic batching
(batch size 1 & 8) vs dynamic
batching

2.5X Faster Inferences/Second at a 50ms End-to-End Server Latency Threshold

90

CONCURRENT MODEL EXECUTION - RESNET 50

Time

6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

Common Scenario 1

One API using multiple copies of the
same model on a GPU

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.
10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server
instance is achieved.

Inference
Requests

Triton Inference Server

ResNet
50

Request
Queue

T4 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

RN50 Instance 5 CUDA Stream

RN50 Instance 6 CUDA Stream

RN50 Instance 8 CUDA Stream

RN50 Instance 7 CUDA Stream

10
concurrent
requests

91

Common Scenario 1

One API using multiple copies of the
same model on a GPU

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.
10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server
instance is achieved.

CONCURRENT MODEL EXECUTION - RESNET 50
6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

92Time

Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Inference
Requests

Triton Inference Server

Resnet
50

Request
Queue

T4 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

DeepRec Instance 1 CUDA Stream

DeepRec Instance 2 CUDA Stream

DeepRec Instance 4 CUDA Stream

DeepRec Instance 3 CUDA Stream

5 concurrent
requests

Deep
Rec

Request
Queue

5 concurrent
requests

93

Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

94

● One model per GPU
● Requests are steady across all models
● Utilization is low on all GPUs

● Spike in requests for blue model
● GPUs running blue model are being fully utilized
● Other GPUs remain underutilized

Before Triton Inference Server - 5,000 FPSBefore Triton Inference Server - 800 FPS

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

95

● Load multiple models on every GPU
● Load is evenly distributed between all GPUs

● Spike in requests for blue model
● Each GPU can run the blue model concurrently
● Metrics to indicate time to scale up

○ GPU utilization
○ Power usage
○ Inference count
○ Queue time
○ Number of requests/sec

After Triton Inference Server - 15,000 FPSAfter Triton Inference Server - 5,000 FPS

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

96

STREAMING INFERENCE REQUESTS

Corr 2Corr 2

Corr 3Corr 3

Corr 1Corr 1Corr 1Corr 1

Corr 2Corr 2Corr 3Corr 3

DeepSpeech2

Wave2Letter

Per Model Request Queues

Corr 1Corr 1Corr 1Corr 1

DeepSpeech2 Sequence Batcher

Wav2Letter Sequence Batcher

Corr 1Corr 1Corr 1Corr 1 Corr 2 Corr 2 Corr 3 Corr 3

New Streaming API

Based on the correlation ID, the
audio requests are sent to the
appropriate batch slot in the

sequence batcher*

*Correct order of requests is
assumed at entry into the endpoint
Note: Corr = Correlation ID

Inference Request

Framework
Inference
Backend

NEW

NEW

9797

MODEL ENSEMBLING

• Pipeline of one or more models and the
connection of input and output tensors between
those models

• Use for model stitching or data flow of multiple
models such as data preprocessing → inference
→ data post-processing

• Collects the output tensors in each step,
provides them as input tensors for other steps
according to the specification

• Ensemble models will inherit the characteristics
of the models involved, so the meta-data in the
request header must comply with the models
within the ensemble

9898

perf_client TOOL

• Measures throughput (inf/s) and
latency under varying client loads

• perf_client Modes

1. Specify how many concurrent
outstanding requests and it
will find a stable latency and
throughput for that level

2. Generate throughput vs
latency curve by increasing
the request concurrency until
a specific latency or
concurrency limit is reached

• Generates a file containing CSV
output of the results

• Easy steps to help visualize the
throughput vs latency tradeoffs

99

ALL CPU WORKLOADS SUPPORTED

99

Deploy the CPU workloads used today and benefit from Triton Inference
Server features (TRT not required)

Triton relies on framework backends (Tensorflow, Caffe2,
PyTorch) to execute the inference request on CPU

Support for Tensorflow and Caffe2 CPU optimizations using Intel
MKL-DNN library

Allows frameworks backends to make use of multiple CPUs and
cores

Benefit from Triton features:
• Multiple Model Framework Support
• Dynamic batching
• Custom backend
• Model Ensembling
• Audio Streaming API

100For a more detailed explanation and step-by-step guidance for this collaboration, refer to this GitHub repo.

TRITON INFERENCE SERVER COLLABORATION
WITH KUBEFLOW

What is Kubeflow?

• Open-source project to make ML workflows on Kubernetes simple, portable, and
scalable

• Customizable scripts and configuration files to deploy containers on their chosen
environment

Problems it solves

• Easily set up an ML stack/pipeline that can fit into the majority of enterprise
datacenter and multi-cloud environments

How it helps Triton Inference Server

• Triton Inference Server is deployed as a component inside of a production workflow
to

• Optimize GPU performance

• Enable auto-scaling, traffic load balancing, and redundancy/failover via
metrics

https://github.com/kubeflow/kubeflow/tree/master/kubeflow/nvidia-inference-server

101

TRITON INFERENCE SERVER HELM CHART

Helm: Most used “package manager” for Kubernetes

We built a simple chart (“package”) for the Triton
Inference Server.

You can use it to easily deploy an instance of the server.
It can also be easily configured to point to a different
image, model store, …
https://github.com/NVIDIA/tensorrt-inference-
server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server

Simple helm chart for installing a single instance of the NVIDIA Triton Inference Server

https://github.com/NVIDIA/tensorrt-inference-server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server

102

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

103

APPLICATION != SINGLE
MODEL

104

THE APPLICATION
Typically composed of many components

Audio Feature Extraction Acoustic Model Decoder

Language Model

Machine Translation

Query Search

Autocorrect

Visual Search

Search Ranking

Speech SynthesisVoice EncoderAudio

ASR

TTS

NLU

“What date is the
Chinese New Year?”

105

RIVA

106

NVIDIA RIVA
Fully Accelerated Framework for Multimodal Conversational AI Services

End-to-End Multimodal Conversational AI Services

Pre-trained SOTA models-100,000 Hours of DGX

Retrain with NeMo

Interactive Response – 150ms on A100 versus 25sec on CPU

Deploy Services with One Line of Code

RETRAIN

video

audio

Multi-Speaker
TranscriptionNVIDIA GPU CLOUD NVIDIA AI TOOLKIT

Transfer Learning

NeMo

Service Maker

TRITON INFERENCE SERVER

Dialog Manager

ChatbotMulti-Speaker
Transcription Look to Talk

Gesture
Recognition

Speech

Vision

NLU

Riva

107

PRETRAINED MODELS AND AI TOOLKIT
Train SOTA Models on Your Data to Understand your Domain and Jargon

100+ pretrained models in NGC

SOTA models trained over 100,000 hours on NVIDIA DGX™

Retrain for your domain using NeMo & TAO Toolkit

Deploy trained models to real-time services using Helm charts
Riva

108

MULTIMODAL SKILLS
Use speech and vision for natural interaction

Multimodal application with multiple users
and contexts

Build new skills by fusing services for ASR, NLU, TTS, and CV

Reference skills include:

• Multi-speaker transcription

• Chatbot

• Look-to-talk

Dialog manager manages multi-user and multi-context scenarios

Riva

109

BUILD CONVERSATIONAL AI SERVICES
Optimized Services for Real Time Applications

Build applications easily by connecting
performance tuned services

Task specific services include:

• ASR

• Intent Classification

• Slot Filling

• Pose Estimation

• Facial Landmark Detection

Services for streaming & batch usage

Build new services from any model in ONNX format

Access services for gRPC and HTTP endpoints

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis

Riva Client
Applications

Riva

Riva Services

Dialog Manager

ASR

Intent

TTS

...

Dialog Manager

Riva AI services

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis

110

DEPLOY MODELS AS REAL-TIME SERVICES
One Click to Create High-Performance Services from SOTA Models

Deploy models to services in the cloud, data
center, and at the edge

Single command to set up and run the entire Riva application

through Helm charts on Kubernetes cluster

Customization of Helm charts for your setup and use case.

Riva SERVICES

One click deployment

Speech
Synthesis

Voice
Encoder

Decoder Feature
Extraction

Acoustic
Model

NLU &
Recommenders

Speech

Vision

NLU

Language
Model

TensorRT
Triton Inference Server

Riva API Server

Helm command to deploy models to production

111

Look To Talk Virtual Assistant

RIVA SAMPLES

Visual Diarization

112

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model

