

Introduction to Multiuser Cluster Systems at LRZ Panorama of Systems at LRZ & User perspective April, 10th 2024

HPC & BDAI Systems for Bavarian Universities

https://doku.lrz.de/linux-cluster-10745672.html https://doku.lrz.de/lrz-ai-systems-11484278.html https://doku.lrz.de/display/PUBLIC/Compute+Cloud

SuperMUC-NG

SUPERMUC-

Introduction to Multiuser Cluster Systems at LRZ | April, 8th 2024

Irz

A Miles

SuperMUC-NG Levels of Parallelism

- Accelerator Level (e.g., a Nvidia DGX A100 has 8 GPUs)
- Socket Level (*e.g.*, Linux Cluster Teramem has 4 sockets [with 24 cores each])
- **Core Level** (*e.g.*, Linux Cluster CoolMUC-3 nodes have 64 cores [on a single socket])
- **Thread Level** (e.g., Linux Cluster CoolMUC-2 nodes allow 2 threads per core)
- Vector Level (e.g., AVX-512 has 32 512-bit vector registers)

SuperMUC-NG theoretical peak performance: 6480 Nodes x 2 Sockets x 24 Cores x 32 Vectors x 2,7 GHz $= 26\ 873\ 856\ 000\ 000\ 000\ Flop/s$

Socket

Core

Thread

Vector

top500 list

SuperMUC-NG High-Level System Architecture

SuperMUC-NG Hardware Overview

Phase 1

Compute Nodes	Thin Nodes	Fat Nodes	Total (Thin + Fat)					
Processor Type	Intel Skylake Xeon Platinum 8174	Intel Skylake Xeon Platinum 8174	Intel Skylake Xeon Platinum 8174					
Cores per Node	48	48	48					
Memory per Node [GByte]	96	768	N/A					
Number of Nodes	6,336	144	6,480					
Number of Cores	304,128	6,912	311,040					
Peak Performance @ nominal [PFlop/s]	26.3	0.6	26.9					
Linpack [PFlop/s]	-	-	19.476					
Memory [TByte]	608	111	719					
Number of Islands	8	1	9					
Nodes per Island	792	N/A						
Filesystems								
High Performance Parallel Filesystem	50 PiB @ 500 GB/s							
Data Science Storage	20 PiB @ 70 GB/s							
Home Filesystem		256 TiB						
Infrastructure								
Cooling		Direct warm water cooling						
Waste Heat Reuse	For pro	ducing cold water with adsorpt	ion coolers					
Software								
Operating System	S	use Linux Enterprise Server (S	LES)					
Batch Scheduling System		SLURM						
High Performance Parallel Filesystem		IBM Spectrum Scale (GPFS	•)					
Programming Environment	Inte	el Parallel Studio XE, GNU con	npilers					
Message Passing		Intel MPI, (OpenMPI)						
			inc					

lrz

(Pha	ase 2)
No	odes
Processor	Intel Sapphire Rapids Intel Xeon Platinum 8480+
CPUs per Node	2
Cores per Node	112
Memory per Node	512 GByte DDR5
GPUs	Intel Porte Vecchio Intel Data Center GPU Max 1550
GPUs per Node	4
Memory per GPU	128 GByte HBM2e
Number of Nodes	240 (incl. 4 login nodes)
Total CPU Cores	26,880
Total Memory	122.88 TByte DDR5
Total GPUs	960
Total GPU Memory	122.88 TByte HBM2e
PEAK (tp64; PFlop/s)	27.96 PFlop/s
Linpack (fp64; PFiop/s)	17.19 PFlop/s
Comput	e network
Fabric	NVIDIA/Mellnox HDR Infiniband (200 GBit/s)
Topology	fat tree
Interconnects per Node	2
Number of Islands	
Filesy	ystems
HPPFS (same as Phase 1)	50 PB @ 500 GByte/s
DSS (same as Phase 1)	20 PB @ 70 GByte/s
Home Filesystem	256 TByte
DAOS	1 PB @ 750 GByte/s
Infrast	tructure
Cooling	Direct warm water cooling
Soft	tware
Operating System	Suse Linux (SLES)
Batch Scheduling System	SLURM
High Performance Parallel Filesystem (HPPFS)	IBM Spectrum Scale (GPFS)
Programming Environment	Intel OneAPI
Message Passing	Intel MPI, (OpenMPI)

Introduction to Multiuser Cluster Systems at LRZ | April, 8th 2024

SuperMUC-NG SNG Phase 1: Getting access

There are three (well, four) ways to apply for using SuperMUC-NG:

- 1. GCS test project: rolling call, fast review (short abstract), < 300.000 core-h
- 2. GCS regular project: rolling call, technical & scientific review, < 45m core-h
- 3. GCS large scale project: biannual, technical & scientific review, > 45m core-h
- 4. (biannual PRACE calls for academic users from any European country)

For further details, see https://doku.lrz.de/x/XAAbAQ

LRZ User Management System The complete Perspective

Linux Cluster

Introduction to Multiuser Cluster Systems at LRZ | April, 8th 2024

Name	CPU	Cores/Node	RAM/Node (GB)	Nodes (total)	Cores (total)
CoolMUC-2	Intel Xeon E5-2690 v3 ("Haswell")	28	64	812	22736
CoolMUC-3	Intel Xeon Phi ("Knights Landing")	64	96	148	9472
Teramem	Intel Xeon E7-8890 v4 ("Broadwell")	96	6144	1	96
CoolMUC-4	-	-	-	-	-

https://doku.lrz.de/linux-cluster-10745672.html

Linux Cluster User Perspective: Environment & Workspace

- These are systems shared by many users, i.e. other people will be working on the same (login) node at the same time.
- Be aware of your surroundings and considerate of your fellow colleagues!

••• • T#1	ssh Ixlogin1.lr	z.de ~		飞第1	ssl	h Ixlogin1.lrz.	de ~) で第1	(ssh Ixlogin1.lrz.de ~
12 ·	ଝ ssh ∙ -fish	© 09.10., 6:50 PM	4		វៃ ssh	🔹 -fish	© 09	.10., 6:50 PM	м	9				វៃ ssh • -fish			🖸 8% 🔟 9.4 GB
di67pif@cm2login1	:/dss/dsshome1/lxc00> w	1994	di67pif@cm2	login1:/ds	s/dsshome1	/lxc00> ls				root	27591	0.0	0.0 0			Sep28	0:00 [kworker/10:0]
18:50:22 up 27 d	lays, 8:55, 46 users, la	oad average: 4.51, 5.31, 5.81	a2832ba	di39yol	di82sos	ga84coc2	gu92dot2	ra43cob	ru47quh	di93qiz	27648	0.0	0.0 22688	2436 ?	Ss	Oct06	0:00 tmux
USER TTY	FROM LOGIN®	IDLE JCPU PCPU WHAT	atlas001	di46jof	di82tun	ga84coc3	gu92vih2	ra46jim	ru48fak2	root	52566	0.0	0.0 0	0 ?		0ct07	0:03 [kworker/23:0]
ra35fud pts/6	th-ws-7010m59.th Thu15	10:38m 2:00m 23:23 /dss/ds	atlas051	di46puy	di98tap	ga84wug2	gu951un2	ra52fef2	ru54vax2	di93sig	52918	0.0	0.0 23116	672 ?		Sep12	0:00 tmux
ra35fud pts/13	th-ws-7010m59.th Thu15	10:40m 1:45m 21:15 /dss/ds	atlas055	di46sap	dteam007	ga86ket2	h039uaa	ra52hen	ru57maj	di93sig	52919	0.0	0.0 30908	8 pts/39	Ss+	Sep12	0:00 -bash
di57ril pts/14	dynamic-002-215- Sun10	51:02 5.90s 5.90s -bash	atlas066	di46taf	ga26buq2	ga92wes2	h039uac	ra52mer	ru58guj2	root	53091	0.0	0.0 127464	8332 ?		18:35	0:00 sshd: di67pif [priv]
ra78wan2 pts/19	244-152-163-10.1 Sat23	43:46m 0.27s 0.27s -bash	atlas096	di49jat	ga27rug2	ga92wof2	h039y36	ra52wos	ru62guf	di67pif	53105	0.0	0.0 127464	5124 ?		18:35	0:00 sshd: di67pif@pts/73
ra35fud pts/28	th-ws-7010m59.th 020ct23	3 4days 1:41m 0.36s /dss/ds	atlas103	di49mir	ga34hed2	ga92yuh2	h039y45	ra56dut	ru64nib	di67pif	53107	0.0	0.0 31844	10812 pts/73		18:35	0:00 -bash
ga26kes2 pts/33	10.152.188.171 26Sep23	3 3days 60.96s 2.35s -tcsh	atlas104	di49qup	ga34kat2	ga95nik2	ka85bup	ra56yol	ru64waf2	root	53656	0.0	0.0 0	0 ?		18:37	0:00 [kworker/29:0]
t388110 pts/36	f166.tum.vpn.lrz 18:22	59.00s 0.11s 0.11s -bash	atlas107	di49suf	ga34nox2	ga95xaf2	ka97kuh	ra57biv	ru67ban	di93xej	53747	0.0	0.0 68700	3592 ?		11:24	0:00 dbus-daemonnoforkprint-address 4session
ge72xes2 pts/38	10.162.92.110 Fri17	2:45m 1.38s 0.26s bash	atlas115	di49tom	ga35hiw2	ga98dig2	1mu29425	ra57laj2	ru67yuf	root	53995	0.0	0.0 0	0 ?		Sep14	0:00 [kworker/19:2]
t388110 pts/41	f166.tum.vpn.lrz 18:22	14:24 0.32s 0.32s -bash	atlas130	di52doh	ga35piw2	ge23jiq2	lu26mur2	ra57lon	ru68quw	ga26kes2	2 53997	0.0	0.0 59296	0 pts/80		Sep27	0:00 dbus-launchautolaunch 473632f0f9e04159814ae522ae309
ge49hid2 pts/42	onat.frm2.tum.de 18Sep23	3 20days 0.14s 0.14s -bash	atlas135	di52doz2	ga38coq2	ge24por2	lu28fam	ra75kuw	ru73jas	ga26kes2	2 53998	0.0	0.0 68712	80 ?		Sep27	0:00 /usr/bin/dbus-daemonsyslog-onlyforkprint-pid
ra68mop pts/44	10.163.213.247 Sun11	4:02m 1.04s 1.04s -bash	atlas137	di52mit	ga38lix2	ge25don2	lu28tej	ra75pan	ru74jac	di93qiz	54001	0.0	0.0 8340	4 pts/70		Sep27	0:00 less run_norm.slurm
ga38qon3 pts/47	129.187.45.149 Fri12	2:48m 42:20 42:03 /dss/ds	atlas139	di52qaw	ga39dig2	ge29xac2	lu43fup2	ra78wuh	ru74mon	root	54254	0.0	0.0 0	0 ?		11:26	0:00 [mmkproc]
ge52wid2 pts/58	ip139188.forst.w 26Sep23	3 25:24m 2.15s 2.15s -bash	atlas175	di67hal	ga42jol2	ge29yig2	lu57gup9	ra96buy	ru76qiq	di39tel	54554	0.0	0.0 31952	8 ?		Sep20	0:00 SCREEN -S Tim
ga92ziv3 pts/17	hirusako.aer.ed. Wed14	1:30m 0.31s 0.31s -bash	atlas192	di67pif	ga46luh2	ge34ket3	lu65cug	ra98cit	ru76tap	di39tel	54555	0.0	0.0 32100	8 pts/46		Sep20	0:00 /bin/bash
di68miy pts/8	pd9fe2ea2.dip0.t 28Sep23	3 4:49m 0.85s 0.85s -bash	atlasprd	di68tek	ga48zoj2	ge35pom2	lu79hip3	ri32bet	ru78zob	ga26kes2	2 54650	0.0	0.0 298400	13048 pts/99	S1+	0ct06	0:00 emacs -nw PPP.PCF
ga84qec2 pts/10	10.162.204.183 22Sep23	3 6:23m 1.24s 1.24s -bash	biokurs102	di68vad	ga49cen2	ge37tiq2	Lu79hun2	ri32bor	ru83pey2	root	54765	0.0	0.0 127472	0 ?		Sep26	0:00 sshd: ge52wid2 [priv]
ga26kes2 pts/54	10.152.188.171 020ct23	3 7days 0.66s 0.66s -tcsh	biokurs110	di69heg	ga53vuj2	ge38qox2	Lu96mah6	ri35xob	ru84xox	root	54944	0.0	0.0 127472	3508 ?		Oct06	0:00 sshd: ga38qon3 [priv]
di98mug2 pts/66	p4fca8d79.dip0.t 18:24	19:34 0.16s 0.16s -bash	biokurs125	di69pun	ga54ger2	ge39duw2	mnmda009	ri42bof2	ru85kil2	ga38qon3	3 54951	0.0	0.0 129296	3508 ?		0ct06	0:00 sshd: ga38qon3@notty
di67kah pts/68	10.153.163.46 09:07	9:20m 0.14s 0.14s -bash	biokurs157	di72mer	ga58qes2	ge45cix2	mnmda012	ri47pih	ru86wed	ga38qon3	3 54952	0.0	0.0 35220	2020 ?		0ct06	0:00 /usr/lib/ssh/sftp-server
di67pif pts/73	i59f7e60d.versan 18:35	3.00s 0.13s 0.02s w	biokurs197	di72run	ga58roj3	ge45set2	mnmqc011	ri58huc	ru87cir4	ge52widz	2 54955	0.0	0.0 128784	1912 ?		Sep26	0:20 sshd: ge52wid2@pts/58
ga38qon3 pts/74	129.187.45.149 Fri13	2:44m 44:27 44:26 /dss/ds	biokurs220	di72zuy2	ga58sur2	ge46tov2	ne53qez2	ri58mey	ru94puk	ge52wida	2 54956	0.0	0.0 34212	2760 pts/58	Ss+	Sep26	0:02 -bash
di93xej pts/75	10.156.37.219 13:48	5:01m 4.56s 4.43s /usr/bi	biokurs257	di73gov	ga58yec2	ge47wus2	ne65nib2	ri65cal	ru95mof	di93sig	55169	0.0	0.0 15912			Sep12	0:00 ssh-agent
ga26kes2 pts/80	10.152.188.171 26Sep23	3 3days 8.30s 1.94s -tcsh	biokurs283	di73wor3	ga58zer2	ge69sid2	ne85lif2	ri83xep	t388110	di93xej	55253	0.0	0.0 68700	0 ?		0ct04	0:00 dbus-daemonnoforkprint-address 4session
ga38qon3 pts/82	129.187.45.149 Fri13	2:47m 39:39 39:39 /dss/ds	di25mip2	di73wux	ga59mer2	ge73woy2	ngscourse03	ri85voq	t5112ae	di93qiz	55305	0.0	0.0 8340	4 pts/70		Sep27	0:00 less run_norm.slurm
ra57dut pts/84	lmbidp1-wxrob08. 25Sep23	3 9:17m 0.18s 0.18s -bash	di25qeq	di73yux	ga62kuy2	ge86gis2	ngscourse12	ri96kit	t5431ad	di93qiz	55512	0.0	0.0 102064	0 pts/69	τı	Sep27	0:00 sallocclusters=serialpartition=serial_stdmem=
ra98fif pts/77	10.153.191.141 16:38	3:50 0.30s 0.30s -bash	di25wuw	di75gem	ga62sed2	ge89sih2	ngscourse14	ru23qir2	t7846ac	root	55602	0.0	0.0 0	0 ?		Sep21	0:20 [kworker/54:2]
di67kah pts/88	10.153.163.46 09:07	4:33m 0.79s 0.79s -bash	di29wad	di75nef	ga62tan2	ge96bej2	ngscourse15	ru27qod	uh101ai	root	56155	0.0	0.0 0	0 ?		Oct02	0:43 [mmkproc]
ka64lot pts/89	gw-acdg1.net.fh- 22Sep23	3 12days 0.51s 0.51s -bash	di29waj	di76dan	ga63yep2	ge98hun2	ngscourse26	ru32kel2	uh341ae	root	56536	0.0	0.0 0	0 ?		Sep29	0:14 [kworker/20:1]
di39dux pts/90	10.153.163.218 09:09	6:01m 2.80s 2.80s -bash	di34god	di76dax	ga67dij2	ge98sig2	ra35pim	ru32yiv	uh351bp	root	56585	0.0	0.0 0			Sep28	3:07 [mmkproc]
di67kah pts/92	10.153.163.46 09:19	7:08m 0.58s 0.58s -bash	di34jag	di76ral	ga68jov6	genomics06	ra36jip	ru36mij	uj311ci	di93xej	57065	0.0	0.0 68700	3536 ?	S	15:05	0:00 dbus-daemonnoforkprint-address 4session

Linux Cluster User Perspective: Environment & Workspace

You don't have administrative rights on these systems, i.e. no root access.

You will not be able to use the sudo command

You're prohibited from making system-wide modifications

Disk access is restricted to your home directory (and possibly other storage areas accessible to your account, e.g., your DSS containers)

 \rightarrow That said, your home (directory) is your castle – there, anything goes!

Linux Cluster User Perspective: Environment & Workspace

- If available on the system, modules allow for the dynamic modification of environment variables, e.g., they provide a flexible way to access various applications and libraries available on the system
- List the currently active modules (loaded by default):\$ module list
- Search for available modules:
 \$ module available <module> or
 \$ module av <module>
- Get more information about a specific module: \$ module show <module>
- Use \$ module load <module> to apply the changes of a module to the environment

Linux Cluster User Perspective: Package Managers and Binaries

- Conda (https://conda.io) is "a package, dependency and environment management for any language Python, R, Ruby, Lua, Scala, Java, JavaScript, C/ C++, FORTRAN, and more".
- pip (https://pip.pypa.io) is "the package installer for Python. You can use it to install packages from the Python Package Index and other indexes".
 Make sure to install packages to the home directory instead of the system-wide default location:

```
~$ pip install --user <package>
```

- wget a binary from the internet (be careful!)
 - ~\$ wget http://free-software.ru/download/not-malware.bin
- Compile yourself
 - ~\$ git clone <u>https://github.com/ggerganov/whisper.cpp</u>
 - ~\$ cd whisper.cpp
 - ~\$ make

Type	\mathbf{Nodes}	CPUs (Node)	Memory (Node)	GPUs (Node)	Memory (GPU)
CPU Nodes	9	up to 20	up to 850GB	-	_
HPE P100 Node	1	64	$256~\mathrm{GB}$	4x P100	16 GB
V100 Nodes	4	40	$368 \mathrm{GB}$	$2 \mathrm{x} \mathrm{V100}$	16 GB
DGX-1 P100	1	80	$512~\mathrm{GB}$	8x P100	16 GB
DGX-1 V100	1	80	$512~\mathrm{GB}$	8x V100	16 GB
DGX A100/40	1	256	1 TB	8x A100	40 GB
DGX A100/80	4	256	2 TB	8x A100	80 GB

(BD)AI Systems: Hardware Overview

- 3 NVIDIA A100 rack mounted at the Argonne National Lab
- 143 kg / node
- 8 GPUs / node
- 400 W
- (not actually made of gold)

□ - < © ⊙ ≫ □	📊 datalab3.srv.irz.de 🔒 🛛 👄	© +
I Systems Web UI (TEST INSTANCE) Files + Job	s * Clusters * Interactive Apps * 💣 My Interactive Sessions	② Help ▼ _2 Logged in as di87pi
Very important notice: The pr	evious home directories have been superseded by the default Linux Cluster home directories. Please see	
https://doku.irz.de/display/PU	BLIC/LR2+AI+Systems	* Documentation: https://help.ubuntu.com * Management: https://landscape.canonical.com
Home / My Interactive Sess	ions / Jupyter Notebook	* Support: https://ubuntu.com/advantage
Interactive Apps	Jupyter Notebook	System information as of Mon 10 Oct 2022 11:04:31 PM CEST
Servers	Jupyter Notebook Access.	System load: 0.25 Processes: 1243 Usage of /: 90.2% of 39.99GB Users logged in: 29
Jupyter Notebook	Choose the partition where the job will run	Memory usage: 69% IPv4 address for eth0: 10.156.116.8
RStudio Server	Irz-dgx-1-v100x8 ¢	3 mup usuge, 00
	Check available partitions https://doku.irz.de/x/sQCuAw	=> / 15 using 90.2% of 39.9908
	in the next field	######################################
	Tensorflow v2 \$	# *** VERY IMPORTANT NOTICE ***: # #
	Check https://tinyurl.com/3uscc23c to configure your Nvidia NGC access Number of hours	<pre># The previous home directories have been superseded by the default Linux # # Cluster home directories. Please see: #</pre>
	6 0	<pre># # # https://doku.lrz.de/display/PUBLIC/LRZ+AI+Systems # # #</pre>
	Desired number of GPUs for your job	#
	8 0	***************************************
	Comma separated list of mounts to perform from the host inside the container in the format <path-in-home>:<path-in-container></path-in-container></path-in-home>	<pre># LRZ AI System # # # For Help/Support please see: # # # https://doku.lrz.de/display/PUBLIC/LRZ+AI+Systems # #</pre>
	Make it Jupyter Lab! If selected a Jupyter Lab will be started; otherwise a Jupyter Notebook will start	<pre># Some notes: # # - Please stop calling the 'sudo' command, it will never work. # # - When submitting a job, you must specify the number of GPUs #</pre>
	Launch	<pre># you are planing to use, i.egres=gpu:XX . # # Otherwise the job will stay in the state pending, look for # # ST = (PD) and REASON = (QOSMinGRES) when calling 'squeue'. # #</pre>
		Last login: Fri Oct 7 15:51:46 2022 from 129.187.49.87 di67pif@datalab2:-\$ sinfo PARITION AVAIL TIMELIMIT NODES STATE NODELIST lrz-v100x2* up 14-00:00:0 2 mix gpu-[002-003] lrz-v100x2* up 14-00:00:0 1 alloc gpu-[001,005] lrz-hpe-p100x4 up 14-00:00:0 1 alloc dgx-001 lrz-dgx-1-p100x8 up 14-00:00:0 1 alloc dgx-002 lrz-dgx-a100-80x8 up 14-00:00:0 4 mix lrz-dgx-a100-[001-002,004-005] lrz-dgx-a100-80x8 up 14-00:00:0 1 idle lrz-dgx-a100-[001-002,004-005] lrz-cpu up 14-00:00:0 2 mix cpu-[005,007] lrz-cpu up 14-00:00:0 5 alloc cpu-[001-004,006] mcml-dgx-a100-40x8 up 14-00:00:0 5 mix mcml-dgx-[001-003,006-007] mcml-dgx-a100-40x8 up 14-00:00:0 5 idle mankai[01-05] test-v100x2 up 14-00:00:0 5 idle mankai[01-05]

User Perspective: OS-level Virtualization, Containers

- Isolated **user space** instances, called containers, allow programs running inside to only see the container's contents and devices assigned to the container.
- Thus, the environment inside a container can essentially be modified freely, typically **providing (encapsulated) root privileges**
- The most prominent container runtime, Docker, is typically not available on multiuser systems, but you will encounter alternatives
 - Charliecloud (https://hpc.github.io/charliecloud/)
 - Enroot (https://github.com/NVIDIA/enroot)
- Containers imposes no noticeable overhead, i.e. there should be no performance impact and parallelization, GPU access, etc. should if set up correctly work as expected
- Containers are UDSS: User Defined Software Stacks: you're basically independent from the environment created by system administrators, but you will only receive limited support for the environment created instead (inside the container).

Demo

.....

(BD)AI Systems: Hardware Overview

Cerebras CS-2 Wafer Scale Engine (WSE2) in Numbers

2.6 Trillion Transistors 46,225 mm² Silicon

A Systems Approach to Deep Learning "Cluster-scale acceleration on a single chip"

	Cerebras WSE-2	NVIDIA A100	WSE 2 Advantage
Chip Size	46,225 mm ²	826 mm ²	56 X
Cores	850,000	6,912 + 432	123 X
On Chip memory	40 Gigabytes	40 Megabytes	1,000 X
Memory B/W	20 Petabytes/sec	1,555 Gigabytes/sec	12,862 X
Fabric B/W	220 Petabits/sec	4.8 Terabytes/sec	45,833 X

Data Source: https://www.cerebras.net/whitepapers/

IS THE R	m - I		I IIII			
	Lenovo	Lenovo				Lenovo
		J				
LRZ Cor	mpute Cl	oud	·····			цана и на
				H H H		
Introduction to Multiuser Clus	ster Systems at LRZ April, 8t	h 2024			19-13	22

LRZ Compute cloud: Hardware Overview

1-7

Compute	200 Nodes 192 GB to 1024 GB RAM Intel® Xeon® ~2.40 GHz
	32 x 2 GPUs Nodes 2x Nvidia Tesla V100 16 GB/node 768GB RAM/node
Storage	15 nodes 2 PB Raw Storage
Networking	100G Intel OmniPath
Software	OpenStack & CEPH

Access to more than 10 vCPUs and/or other restricted resources can be requested by contacting the cloud support team: https://servicedesk.lrz.de/ql/create/105

40000 vCPU capacity with overcommitment 2000 users and 1500 active VMs

Compute Cloud: Hardware Overview

Get access: https://doku.lrz.de/display/PUBLIC/FAQ#FAQ-HowtogetaccesstotheComputeCloud?

Introduction to Multiuser Cluster Systems at LRZ | April, 8th 2024

25

https://doku.lrz.de/display/PUBLIC/Data+Science+Storage Data Storage: Overview

- lrz
- The LRZ HPC/HPDA/HPAI Infrastructure is backed by the Data Science Storage (DSS)
 - Long-term storage solution for potentially vast amounts of data
 - Directly connected to the LRZ computing ecosystem
 - Flexible data sharing among LRZ users
 - Web interface for world-wide access and transfer
 - Data sharing with external users (invite per e-mail, access per web interface)
- Additionally, we also provide a new type of Data Archive, based on the DSS Solution stack, called Data Science Archive (DSA) (this basically relates to DSS like AWS Glacier relates to AWS S3).
- Disk space and access is managed (as DSS projects and containers) by data curators. This can be LRZ personnel (e.g., Linux Cluster \$HOME directories) or PIs/master users/dedicated data curators (e.g., project storage).

lrz

- **\$HOME** (DSS-backed home directory, managed by LRZ)
 - 100GB per user
 - Access: /dss/dsshome1/lxc##/<user>
 - Automatic tape backup and file system snapshots (see "/dss/dsshome1/.snapshots/" directory)
 - All your important files/anything you invested a lot of work into should be here
 - BUT Not suitable for heavy and/or high-frequency I/O operations, i.e. most machine learning applications. Use the AI Systems DSS instead.

https://doku.lrz.de/display/PUBLIC/2.+Storage+on+the+LRZ+AI+Systems Data Storage: AI Systems

• AI DSS

- Up to 5 TB per project **upon request**, shared among project members
- Access: \$ dssusrinfo all
- Configuration (e.g., exports, quota) to be managed by data curator
- Use this for e.g., high bandwidth, low latency $\mathrm{I/O}$
- Can not (yet) be accessed from Linux Cluster

https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster Data Storage: Linux Cluster

- DSS project storage
 - Up to 10 TB per project **upon request**, shared among project members
 - Access: \$ dssusrinfo all
 - Configuration (e.g., exports, backup, quota) to be managed by data curator
 - Use this for e.g., large raw data (and consider backup options)
 - Can be accessed from the AI systems

https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster Data Storage: Linux Cluster

lrz

- Legacy **\$SCRATCH** (scratch file system, "temporary file system")
 - 1.4 PB, shared among all users
 - Access: /gpfs/scratch/<group>/<user>
- New **\$SCRATCH_DSS** (not yet available on CoolMUC-2 compute nodes)
 - 3.1 PB, shared among all users
 - Access: /dss/lxclscratch/##/<user>
- No backup (!) and sliding window file deletion, i.e. old files will eventually be deleted (!!)

 a data retention time of approx. 30 days may be assumed, but is not guaranteed
- This is the place for e.g., very large, temporary files or intermediate results, directly feeding into additional analyses
- Data integrity is not guaranteed. Do not save any important data exclusively on these file systems! Seriously, don't do it!

https://doku.lrz.de/display/PUBLIC/DSS+documentation+for+users Data Storage: Compute Cloud

- The storage backend of the Compute Cloud is used to host the virtual disks belonging to the VMs in the cloud. It is not meant to store large data sets. No backups are created.
- DSS containers can be made available for VMs running in the LRZ Compute Cloud without the need to copy data into the VM.
 - The data curator of the data project, to which the relevant container belongs, needs to export the container to the IP address used by your VM via NFS.
 - You should only export DSS containers to IPs that are statically assigned to and trusted by you. NFS exports follow a "host based trust" semantic, which means the DSS NFS server will trust any IP/system to which a DSS container is exported. There is no additional user authentication between NFS server and client enforced.

