
Advanced python programming

1
Ferdinand.Jamitzky@LRZ.de

● a list is defined by square brackets
● a list comprehension uses square brackets and “for in“
>>> x = [1,2,3,4,5]
>>> y = [i for i in x]

'
'.join([s.split('\n') for s in open("file.txt").readlines()])

out=""
for s in open("file.txt").readlines():

out = out + s.split('\n')

14.10.21 Leibniz-Rechenzentrum 2

comprehensions

● range(10000) would generate a list of 10000 number although
they would later on not be needed.

● generators to the rescue!!
● only generate what you really need
● new keyword: yield (instead of return)
>>> def createGenerator():
... mylist = range(3)
... for i in mylist:
... yield i*i
...
>>> a=createGenerator()
>>> next(a)
0

generators

● like list comprehensions, but computed only when needed
>>> a = (i**4 for i in range(8))
>>> next(a)
0
>>> next(a)
1
>>> list(a)
[16, 81]

>>> import random
>>> r=random.uniform
>>> np=100_000_000
>>> sum((r(0,1)**2+r(0,1)**2 < 1) for i in range(np))/np*4.
3.141244

generator comprehensions

dictionaries aka associative arrays aka key/value stores

>>> a={‘one’:1, ‘two’:2.0, ‘three’:[3,3,3]}

dictionary comprehensions:
>>> {i:i**2 for i in range(4)}
{0: 0, 1: 1, 2: 4, 3: 9}
>>> a.keys()
>>> a.values()

14.10.21 Leibniz-Rechenzentrum 5

dicts

● function names with leading and trailing underscores
are special in python ("magic methods")

>>> print(a)
is translated to:
>>> a.__print__()
and
>>> a+b
>>> a.__add__(b)
>>> f(x)
>>> f.__call__(x)

special functions

using try you can catch an exception that would normally
stop the program

x=range(10)
y=[0]*10
for i in range(10):

try:
y[i]=1./x[i]

except:
y[i]=0.

14.10.21 Leibniz-Rechenzentrum 7

try except

decorators are syntactic sugar for applying a function
and overwriting it.
@mydecorator
def myfunc():

pass

is the same as:

def myfunc():
pass

myfunc = mydecorator(myfunc)

14.10.21 Leibniz-Rechenzentrum 8

@decorators

The with statement allows for different contexts
with EXPR as VAR:

BLOCK

roughly translates into this:

VAR = EXPR
VAR.__enter__()
try:

BLOCK
finally:

VAR.__exit__()

14.10.21 Leibniz-Rechenzentrum 9

with statement motivation

You need a context manager (has enter and exit methods)
Examples:
● opening and automatically closing a file
with open("/etc/passwd") as f:

df=f.readlines()
● database transactions
● temporary option settings
● ThreadPoolExecutor
● log file on/off
● cd to a different folder and back
● set debug verbose level
● change the output format or output destination
with redirect_stdout(sys.stderr):

help(pow)

14.10.21 Leibniz-Rechenzentrum 10

with statement examples

● AOP is about separating out Aspects
● You can switch contexts (like log-file on/off)

from contextlib import contextmanager
@contextmanager
def tag(name):

print("<%s>" % name)
yield
print("</%s>" % name)

>>> with tag("h1"):
... print("foo")

<h1>foo</h1>

Aspect Oriented Programming in python

● better „if then else“ block
● wildcard _
● combine patterns with |

match status:
case 400:

print(“Bad request“)
case 401 | 403 | 404:

print(“not found“)
case _:

print(“something is wrong with the internets“)

Pattern Matching in python

async def ticker(delay,to):
for i in range(to):

yield i
await asyncio.sleep(delay)

defines an asynchronous function, which waits for delay.
It can be called in the following way:

async for i in ticker(1,10):
print(f'tick {i}')

Asynchronous execution

