
Parallel and distributed programming

Why?
● You have many independent tasks (easy)
or
● You want to accerelate single complex task (hard)

Recipe:
Turn the single complex task into many independent
simple tasks, but how?

How-to go parallel

Why?
● You have many independent tasks (easy)
or
● You want to accerelate single complex task (hard)

Recipe:
Turn the single complex task into many independent
simple tasks, but how?

How-to go parallel

Why parallel programming?

End of the free lunch

Moore's law means
no longer faster
processors, only more
of them. But beware!

2 x 3 GHz < 6 GHz

(cache consistency,
multi-threading, etc)

Supercomputer scaling

Supercomputer Layout

Switch
IslandFat Tree

Pruned TreeSupercomputer
aka HPC Cluster

Accelerator: GPU, MIC
Core (4)
Socket (2)

Node

Latency (can kill your program)

Getting data from:

CPU register 1 ns

L2 cache 10 ns

memory 80 ns

network(IB) 200 ns

GPU(PCIe) 50.000 ns

harddisk 500.000 ns

Getting food from the...

fridge 10s

microwave 100s ~ 2min

pizza service 800s ~ 15min

city mall 2000s ~ 0.5h

mum sends cake 500.000s ~ 1 week

grown in garden 5.000.000s ~ 2 months

translates to

LRZ from the user perspective

User PC

Firewall

lxlogin[1-4].lrz.de https://www.rstudio.lrz.de https://cc.lrz.de https://datalab.srv.lrz.de

CoolMUC-2 CoolMUC-3teramem ML Res

$HOME
$WORK

$SCRATCH
DSS

DSAOpenStack
Cloud

Embarrassingly parallel

• many independent processes (10 - 100.000)
• no communication between processes
• individual tasklist for each process
• private memory for each process
• results are stored in a large storage medium

● Take as example the following script
myscript.sh:
#!/bin/bash
source ~/miniconda39/bin/activate py39
cd ~/mydir
python3 myscript.py

You can make it run interactively by:
$ chmod +x ./myscript.sh
then
$./myscript.sh

Embarrassingly parallel (step-by-step)

Please do not block the login nodes with production jobs, but run the
script in an interactive slurm shell:
$ salloc –pcm2_inter --ntasks=1 myscript.sh

Change the last line in the script:
#!/bin/bash
source ~/miniconda39/bin/activate py39
cd ~/mydir
srun python3 myscript.py

Embarrassingly parallel (step-by-step)

Run multiple copies of the the script in an interactive slurm shell:
$ salloc –pcm2_inter –-ntasks=4 myscript.sh
You will get 4 times the output of the same run.

To use different input files you can use the environment variable:
os.environ['SLURM_PROCID'] (it is set to 0,1,2,3,...)

Use this variable to select your workload.

Example:
$ salloc –pcm2_inter –ntasks=2 srun python –c "import os;
print(os.environ['SLURM_PROCID'])"
0
1

Embarrassingly parallel (step-by-step)

Run the script as slurm batch job:
$ sbatch -pcm2_inter --ntasks=4 myscript.sh

You can put the options inside the slurm file:

#!/bin/bash
#SBATCH -pcm2_inter
#SBATCH --ntasks=4
cd ~/mydir
srun python myscript.py

Embarrassingly parallel (step-by-step)

For serial (single node, multithreaded but not MPI) loads use the
serial queue and add options for the runtime:

#!/bin/bash
#SBATCH --clusters=serial
#SBATCH -n4 # 4 tasks
#SBATCH --time=01:00:00 # 1hour
source /etc/profile.d/modules.sh
module load python
cd ~/mydir
srun python myscript.py

$ sbatch myscript.slurm

Embarrassingly parallel (step-by-step)

If you want to send a large number of jobs then use Job
Arrays.

$ sbatch -array=0-31 myscript.slurm

The variable SLURM_ARRAY_TASK_ID is set to the
array index value. Get it in python via:

os.environ['SLURM_ARRAY_TASK_ID']

The maximum size of array job is 1000

SLURM Job Arrays

● List my jobs:
$ squeue –Mserial –u <uid>

● Cancel my job
$ scancel <jobid>

● Submit batch job
$ sbatch myscript.slurm

● Run interactive shell
$ salloc -n1 srun --pty bash -i

Important SLURM commands

Shared Memory (your laptop)

• a few threads working closely
together (10-100)

• shared memory
• single tasklist (program)
• cache coherent non-uniform

memory architecture aka ccNUMA
• results are kept in shared memory

● The standard Python interpreter (called CPython)
does not support the use of threads well.

● The CPython Python interpreter uses a “Global
Interpreter Lock” to ensure that only a single line of a
Python script can be interpreted at a time, thereby
preventing memory corruption caused by multiple
threads trying to read, write or delete memory in
parallel.

● Because of the GIL, parallel Python is normally based
on running multiple forks of the Python interpreter,
each with their own copy of the script and their own
GIL.

multithreading

● Multiprocessing allows your script running multiple
copies in parallel, with (normally) one copy per
processor core on your computer.

● One is known as the master copy, and is the one that
is used to control all of worker copies.

● It is not recommended to run a multiprocessing
python script interactively, e.g. via ipython or ipython
notebook.

● It forces you to write it in a particular way. All imports
should be at the top of the script, followed by all
function and class definitions.

-> advice: don't use it, it is a pain to debug

multiprocessing

all imports should be at the top of your script
import multiprocessing, sys, os
all function and class definitions must be next
def sum(x, y):

return x+y

if __name__ == "__main__":
You must now protect the code being run by
the master copy of the script by placing it

a = [1, 2, 3, 4, 5]
b = [6, 7, 8, 9, 10]

Now write your parallel code... etc. etc.

multiprocessing

Warning! No interactive usage (shell, jupyter,
IDLE,...)

Starting ipcluster with 3 workers:
$ ipcluster start -n 3

Then start ipython and connect to the cluster:
$ ipython
>>> from ipyparallel import Client
>>> cl = Client()
>>> cl.ids
>>> c=cl[:]
>>> c.apply_sync(lambda: "Hello world")
Out[2]: ['Hello world', 'Hello world', 'Hello world']

ipcluster

Run a string containing python code on the ipcluster:
>>> c.execute("import time")

Run a single function and wait for the result:
>>> c.apply_sync(time.sleep, 10)

Or return immediately:
>>> c.apply_async(time.sleep, 10)

Map a function on a list by reusing the nores of the cluster:
>>> c.map_sync(lambda x: x**10, range(32))

Usage of ipcluster

Define a function that executes in parallel on the
ipcluster:
In [10]: @c.remote(block=True)

....: def getpid():

....: import os

....: return os.getpid()

....:
In [11]: getpid()
Out[11]: [12345, 12346, 12347, 12348]

Defining parallel functions

The @parallel decorator defines parallel functions, that
break up an element-wise operations and distribute
them, reconstructing the result.
In [12]: import numpy as np
In [13]: A = np.random.random((64,48))
In [14]: @c.parallel(block=True)

....: def pmul(A,B):

....: return A*B

Usage of ipcluster with NumPy

Message Passing

• many independent processes (10 - 100.000)
• one tasklist for all (program)
• everyone can talk to each other (in principle)
• private memory
• needs communication strategy in order to scale out
• very often: nearest neighbor communication
• beware of deadlocks!

MPI

● cluster of workers
● message passing interface MPI
● mpirun starts the same program on all workers

$ mpirun –n workers myapp.exe

communication via
mpi protocol
(send/receive)

Get communicator:
>>> comm = MPI.COMM_WORLD

Get rank of worker:
>>> rank = comm.Get_rank()

Send Data (blocking):
>>> comm.send(data, dest=1)

Receive Data (blocking):
>>> data = comm.recv(source=0)

mpi4py - Communication

Rank 0 1 2 3

$ mpiexec -n 2 python myapp.py

from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = [2,4,7]
comm.send(data, dest=1, tag=11)

elif rank == 1:
data = comm.recv(source=0, tag=11)
print(data)

mpi4py

Rank send receive 2 3

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = [2,4,7]

else:
data = None

data = comm.bcast(data, root=0)

mpi4py - Broadcast

data

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

if rank == 0:
data = [(i+1)**2 for i in range(size)]

else:
data = None

data = comm.scatter(data, root=0)

mpi4py - Scatter

data[0] data[1] data[2]
data[3]

data

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

data_one = (rank+1)**2

data = comm.gather(data_one, root=0)

mpi4py - Gather

data_one data_one data_one
data_one

data

Worker queue

• many independent processes (10 - 100.000)
• central task scheduler (database)
• private memory for each process
• results are sent back to task scheduler
• rescheduling of failed tasks possible

dask

Familiar: Provides parallelized NumPy array and Pandas DataFrame objects
Flexible: Provides a task scheduling interface for more custom workloads and integration
with other projects.
Native: Enables distributed computing in Pure Python with access to the PyData stack.
Fast: Operates with low overhead, low latency, and minimal serialization necessary for
fast numerical algorithms
Scales up: Runs resiliently on clusters with 1000s of cores
Scales down: Trivial to set up and run on a laptop in a single process, even on a
smartphone running android
Responsive: Designed with interactive computing in mind it provides rapid feedback and
diagnostics to aid humans

● dask arrays are
composed of numpy
arrays.

● the subarrays can live
in the same process or
in another process on
a different node

● dask has a scheduler
which distributes the
work on a whole
cluster if needed

dask.array

>>> import dask.array as da
>>> a=da.random.uniform(size=1000, chunks=100)

https://docs.dask.org/en/latest/array-api.html

● like dask.arrays uses numpy arrays,
dask.dataframe uses pandas

● dask.dataframes can be distributed
over a cluster of nodes and operations
on them are scheduled by the dask
scheduler

>>> import dask.dataframe as dd
>>> df=dd.read_csv('2014-*.csv')

dask.dataframe

Dask can be used like Numpy (often)

Dask can be used like Pandas (often)

dask vs numpy and pandas

>>> a=da.random.uniform(size=1000,chunks=100)
>>> b=a.sum()
>>> c=a.mean()*a.size
>>> d=b-c
>>> d.compute()

the computation starts at the last command. If you have
a dask cluster then all computations can be distributed to
the cluster.

dask execution graph

● Start a scheduler which organizes the computing
tasks

$ dask-scheduler
● dask workers
$ dask-worker localhost:8786
$ dask-ssh host.domain
$ mpirun --np 4 dask-mpi
$ dask-ec2
$ dask-kubernetes
$ dask-drmaa

dask.distributed

● Start a client
>>> from dask.distributed import Client
>>> client = Client('localhost:8786')

now all dask operations will be
distributed to the scheduler which
distributes them to the cluster

dask.distributed

Dask DataFrame is used in situations where Pandas or
Numpy is commonly needed, usually when they fail due
to data size or computation speed:
● Manipulating large datasets, even when those

datasets don’t fit in memory
● Accelerating long computations by using many cores
● Distributed computing on large datasets with

standard Pandas operations like groupby, join, and
time series computations

When to use dask

Dask DataFrame may not be the best choice in the following
situations:
● If your dataset fits comfortably into RAM on your laptop, then

you may be better off just using Pandas. There may be simpler
ways to improve performance than through parallelism

● If your dataset doesn’t fit neatly into the Pandas tabular model,
then you might find more use in dask.bag or dask.array

● If you need functions that are not implemented in Dask
DataFrame, then you might want to look at dask.delayed which
offers more flexibility

● If you need a proper database with all that databases offer you
might prefer something like Postgres

When NOT to use dask

https://docs.dask.org/en/latest/bag.html
https://docs.dask.org/en/latest/array.html
https://docs.dask.org/en/latest/delayed.html
https://www.postgresql.org/

14.10.21 Leibniz-Rechenzentrum 43

Python numerical libraries

● superset of the Python programming
language

● designed to give C-like performance
● code is mostly written in Python
● compiled language that generates

CPython extension modules
● extension modules can then be loaded

and used by regular Python code using
the import statement

● Cython files have a .pyx extension

14.10.21 Leibniz-Rechenzentrum 44

cython

hello.pyx:
def say_hello():

print "Hello World!"

launch.py:
import hello
hello.say_hello()

14.10.21 Leibniz-Rechenzentrum 45

cython

14.10.21 Leibniz-Rechenzentrum 46

cython in ipython/jupyter notebooks

The End:
XKCD

Course Evaluation

Please visit
https://survey.lrz.de/index.php/6939

73
and rate this course!

Your feedback is highly appreciated!
Thank you!

