

A deep dive into structure preparation and analysis

Mila Krämer, Rita Podžuna LRZ, 2022

Project Setup for Day 2

File Edit Select Works	nace Scrints		O. In co	ase you're using a t	trackpad or	are used to Py	IMOL:
New Project Open Project Open Recent Project Save Project As Close Project	Ctrl+N Ctrl+O Ctrl+Shift+S Ctrl+W	➤ 1. Choose where project data should be saved	Customize acti Button 1 Button 2 Button 3 Button 1&2 Button 1&3 Button 2&3 Scroll Wheel	ons for: 3 buttons and scroll wheel No M 3 buttons and scroll wheel 3 buttons only 2 buttons and scroll wheel Pick 2 buttons and scroll wheel 2 buttons 2 buttons Trans PyMOL mode Trackpad 2 Zoom Clip	d otate (gesture ranslate (gesture	Ctrl Pick invert Z rotate Z translate Clipping (together/apart)	Shift+Ctrl Zoom Zoom PrimeX Isovalue (inc/dec
Import Structures Import Recent Structures Import From Merge Project Get PDB	Ctrl+I	 3. Fetch BACE-1 structure from the Pi 	Swap buttons:	1&2 1&3 2&3	Reset Defaults	PDB files in the	×
Export Structures Export to LiveDesign Change Working Directory	<i>y</i>	→ 2. Set to where Maestro should put results of calculations and other outp My recommendation: inside project fo	ut Ider	PDB IDs: 4DJX Chain name (opt Include: Diffra Fetching from: L	ional): action data / E ocal or Web	omatically import M ma ⊡ Biologica Change ▼ Cancel H	al unit

Schrödinger

What do I need to check before using a protein structure?

Function-related checks

Function-related checks

 Is the protein a monomer or a multimer?
 You can find this information in UniProt in the Interaction section.

The multimeric structure is often only available through crystallographic symmetry. You can access it by downloading the **biological unit** from the PDB.

□ If the protein is a multimer, is it a homomer or a heteromer?

Again, UniProt's Interaction section is the place to check.

Note: If the subunits of the multimer are encoded by different genes, then each subunit will have its own UniProt entry.

Interactionⁱ

Subunit structure

Heterotetramer of two alpha chains and two beta chains in adult hemoglobin A (HbA); two alpha chains and two delta chains in adult hemoglobin A2 (HbA2); two alpha chains and two epsilon chains in early embryonic hemoglobin Gower-2; two alpha chains and two gamma chains in fetal hemoglobin F (HbF).

(Microbial infection) Interacts with Staphylococcus aureus protein isdB.

4 1 Publication 👻

Reset filters

Binary interactions¹

Subcellular location 👻 Diseases

P69905 has binary interactions with 13 proteins

Hemoglobin subunit α UniProt ID: P69905

Adult hemoglobin A with bound oxygene (PDB ID: 1GZX).

W How to get to the biological unit?

W How to get to the biological unit?

There are two options to download and view biological units within Maestro from the PDB:

- File -> Get PDB
- Tasks -> Browse -> Protein Preparation and Refinement -> Protein Preparation Workflow (should also be in your Favourites toolbar under Protein Preparation)

		>
em.		
Download	Cancel	Help
	em.	em.

W How to get to the biological unit?

If you're working with an internal structure, you can still generate the biological unit using our **command line tools**.

However, your PDB file has to have the **REMARK350** fields containing the **BIOMT** symmetry operators.

The script* below takes a PDB file as input and creates a .mae file of the input PDB with the complete biological unit.

REMARK 350 BIOMOLECULE: 1 REMARK 350 AUTHOR DETERMINED BIOLOGICAL UNIT: TRIMERIC REMARK 350 SOFTWARE DETERMINED QUATERNARY STRUCTURE: TRIMERIC REMARK 350 SOFTWARE USED: PISA, PQS REMARK 350 TOTAL BURIED SURFACE AREA: 5860 ANGSTROM**2 REMARK 350 SURFACE AREA OF THE COMPLEX: 18080 ANGSTROM**2 REMARK 350 CHANGE IN SOLVENT FREE ENERGY: -36.0 KCAL/MOL REMARK 350 APPLY THE FOLLOWING TO CHAINS: A REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 0.00000 REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 0.00000 REMARK 350 BIOMT3 1 0.000000 0.000000 1.000000 0.00000 REMARK 350 BIOMT1 2 -0.500000 -0.866025 0.000000 233.52000 REMARK 350 -57.78121 BIOMT2 2 0.866025 -0.500000 0.000000 REMARK 350 0.00000 BIOMT3 2 0.000000 0.000000 1.000000 REMARK 350 BIOMT1 3 -0.500000 0.866025 0.000000 166.80000 BIOMT2 0.000000 173.34364 REMARK 350 3 -0.866025 -0.500000 REMARK 350 BIOMT3 3 0.000000 0.000000 1.000000 0.00000

> \$SCHRODINGER/run generate_biounit.py 4tsv.pdb 4tsv_biounits.mae

Function-related checks

□ Is the protein known for multiple conformational states?

Some enzymes can adopt **multiple conformational states** that can significantly differ from one to another in terms of RMSD.

Working with the wrong conformation of your target can be a **huge waste** of time and/or computational resources.

Unfortunately, UniProt has no sections that can help in this case.

Your **best options** are to:

- Check the literature to see if any such states have been identified - structural papers are especially valuable.
- Compare all available PDB structures and make sure that the site of interest is more or less the same (i.e., w/o any large conformational changes).

Kinases are rather notorious for the amount of conformational states they explore.

For example, DFG-in (PDB ID: 3S3I) and DFG-out (PDB ID: 1KV1) are conformations in which the phenylalanine of the DFG motif in the activation loop undergoes a large shift within the ATP binding site.

Kinase inhibitors are developed to specifically target one of these two states.

 $p38\alpha$ kinase in DFG-in and DFG-out conformations.

W How to align protein structures?

Protein structures can be difficult to align due to:

- low structural similarity
- low (or no) sequence identity
- a different number of residues
- different sequence numbering

There are two options to align protein structures within Maestro:

- Tasks -> Browse -> Protein Preparation and Refinement -> Protein Structure Alignment
- Tasks -> Browse -> Protein Preparation and Refinement -> Binding Site Alignment

W How to align protein structures?

Protein Structure Alignment uses **secondary structure elements** for the alignment to the **reference structure** (the one with the lowest entry number).

You can use ASL to define which residues are used for the alignment. Make sure they contain **at least one secondary structure** element to obtain a meaningful alignment.

Worksp	ace (inc	luded entries)	~		
eference r	esidues _				
all					E
✓ Pick:	Residu	es	~	Markers	
Use s Use s	same AS Separate	L as reference ASL:	residues		
Use s	same ASI separate sidues to	L as reference ASL: align	residues		
Use s	same ASI separate sidues to	L as reference ASL: align	residues	AL 4	1
Use s	same ASI separate sidues to Pick:	L as reference ASL: align Residues	residues	Alt 4	3

aligns selected residues even w/o sufficient similarity

IXV1 SSA 5 5	Structura	l align	nent:	
INVI SSA 5 5 -COCCCCCEEEECCEEEEEEEEEEEEEEEEEEEEEEEEE	100 000		++++.	
3531 SSA 0 4 COUCCEEECLOCECECLOCEEEECLOCCOLEEEECLE 3531 5 -RPTFYRQELWKTIWE VPERYQNLSPVGSGAYGSVCAAFD 3531 6 4 ERPTFYRQELWKTIWE VPERYQNLSPVGSGAYGSVCAAFD 1KV1 SSA 6 4 CCCCEEEEEEEECCCCCCHHHHHHHHHHHHHHHHHHHH	IKVI SSA	5 5	-UUUUUEEEUUEEEUUEEEEUUEEEEUUEEEEUUEEEEEE	
INVI SA 4 ERPTTRQELIKTINGUEVERYONLSPUSGAYCSUCAAED S331 6 4 ERPTTRQELIKTINGUEVERYONLSPUSGAYCSUCAAED IKVI SSA 6 4 CCCCEEEEEEEECCCCCCHHHHHHHHHHHHHHHHHHHH	1KV1	5 5		
IKVI SSA 5 44 CCCCEEEEEEEECCCCCCCHH#H#H#H#H#H#H#H#H#H#	3531	6 4	ERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFD	
IXVI SSA 5 44 CCCCEEEEEEEECCCCCCHHHHHHHHHHHHHHHHCCCCC IXVI SSA 5 44 CCCEEEEEEEECCCCCCCCHHHHHHHHHHHHHHHCCCCC IXVI SA 4 TKTGLRVAVKKLSRPFQSIIHAKRTYRELRLLKHKKHENV ISSI SSA 6 44 TKTGLRVAVKKLSRPFQSIIHAKRTYRELRLLKHKKHENV IXVI SSA 5 84 CEEEEEEECCCCCCCCCCCCEEEEECCCCHHHHHHHHHH			++++	
3531 SSA 6 44 CCCCEEEEEEECCCCCHHHHHHHHHHHHHHHHHHHHHH	1KV1 SSA	5 44	ССССЕЕЕЕЕЕЕССССССНННННННННННННННННСССЕС	
INV1 5 44 TKIGLKVAKKLSPEYESIILAKKITRELIKLIKHKKIEWV 3531 6 44 TKIGLKVAKKLSPEYESIILAKKITRELIKLIKHKKIEWV 1KV1 SSA 8 CEEEEEECCCCCCCCCCCCEEEEECCCCHHILHKIEWV 3531 58 84 CEEEEEECCCCCCCCCCCEEEEECCCCHHILKIEWV 3531 58 64 CEEEEEECCCCCCCCCCCEEEEECCCCCCHHILKIEWV 3531 58 64 GLEDVFTPARSLEEFNDVYLVTHLMGADLNNI -VT 3531 58.6 124 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	3531 55A	6 44		
3531 6 44 INVECTVARIAGENT (STREAM FOR TABLE IN THE INVECTION AND INTERPORT AND INT	3531	5 44	TKTCLDVAVKKI SDDEOSTTHAKDTYDELDLLKHMKHENV	
IXVI SSA 5 84 CEEEEEEECCCCCCCCCCCEEEEEECCCCCCH+H+H+CCCCC 3S3I SSA 6 84 CEEEEEECCCCCCCCCCCEEEEEECCCCCCH+H+H+CCCCC 1KVI SSA 6 84 IGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVXLT 3S3I SSA 6 124 H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+HCCCCCC	5551	0 44	TRIGERVAVRRESRFTQ3110ARRTIREEREERDIN	
3531 SSA 6 84 CEEEEEECCCCCCCCCCCCEEEEEECCCCCCHHHHHCCCCC 1541 64 IGLLDVFTPARSLEEFNDVYLVTHMGADLNNIVKCQKLT 15531 68 4 IGLLDVFTPARSLEEFNDVYLVTHMGADLNNIVKCQKLT 1541 124 HHHHHHHHHHHHHHHHHHHHHHHHHHHHKCCCCCCCCCEEEEECCC 15531 SSA 6 124 HHHHHHHHHHHHHHHHHHHHHHHKCCCCCCCCCEEEEECCC 1531 SSA 6 124 HHHHHHHHHHHHHHHHHHHHHHHHHKCCCCCCCCCCEEEEECCC 1541 124 HHHHHHHHHHHHHHHHHHHHHHHHKCCCCCCCCCCEEEEECCC 1521 124 DDHVQFLIYQILRGLKYHSADITHRDLKPSNLAVNEDCE 3531 SSA 6 124 DDHVQFLIYQILRGLKYHSADITHRDLKPSNLAVNEDCE 3531 6 124 DDHVQFLIYQILRGLKYHSADITHRDLKPSNLAVNEDCE 3531 SSA 6 164 EEECCCCCHHHHKCCCCCCCCCHHHHKCC-CCCC 1541 LKILDFGATRWTRAPEIMLN-WHYN 3531 6 164 LKILDFGATRWTRAPEIMLNM-HNN 1541 LKILDFG	1KV1 SSA	5 84	CEEEEEECCCCCCCCCCEEEEEECCCCEECCC-CCC	
1KVI 5 64 IGLLDVFTPARSLEEFNDV/LVTHLMGADLNNI-VLT 3S3I 6 84 IGLLDVFTPARSLEEFNDV/LVTHLMGADLNNI-VLT 3S3I 5 124 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	3S3I SSA	6 84	CEEEEEECCCCCCCCCEEEEECCCCCCCHHHHHHCCCCCC	
3531 6 84 IGLLDVFTPARSLEEFNDYYLVTHLMGADLNNIVKCQKLT 1KV1 SSA 5 124 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHKCCCCCC	1KV1	5 84	IGLLDVFTPARSLEEFNDVYLVTHLMGADLNNI - V LT	
IKVI SSA 5 124 HHHHHHHHHHHHHHHHHHHHHHHKHKCCCCCCCCCEEEEECCCE IKVI SSA 6 124 HHHHHHHHHHHHHHHHHHHHHKCCCCCCCCCCEEEEECCCE IKVI SSA 6 124 HHHHHHHHHHHHHHHHHHHHHKCCCCCCCCCCEEEEECCCE IKVI SSA 6 124 DHVVFLIYQILRGLKYIHSADIIHRDLKPSNLAWEDCE IKVI SSA 5 164 EEECCCCCHHHHCCCCCCCC-CCCCC IKVI SSA 5 164 EEEC-CC	3531	6 84	IGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQKLT	
ANAL SAM 5 124 High Hammannamamman		5 124		
IXVI 5 124 DDHVQFLIYQILAGLKYIHSADITHADLKPSNLAVNEDCE 3331 6 124 DDHVQFLIYQILAGLKYIHSADITHADLKPSNLAVNEDCE 1XVI SSA 124 DDHVQFLIYQILAGLKYIHSADITHADLKPSNLAVNEDCE 1XVI SSA 164 EEEECC C 1XVI SSA 164 EEEE-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	3531 55A	6 124		
3531 6 124 DDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCE 1KV1 SSA 164 EEEECCCHHMHHCCCCCCCC-CCCC 3531 SSA 164 EEEECCC	1KV1	5 124	DDHVOFI TYOTI RGI KYTHSADTTHRDI KPSNI AVNEDCE	
1KV1 SSA 5 164 EEECCC	3531	6 124	DDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCE	
IXVI SSA 5 164 EEEECCCHHHHHCCCCCCCCCCC IXVI SSI 164 EEEE-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			++++++	
3531 SSA 6 164 LEEE-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1KV1 SSA	5 164	EEECCCCCHHHHHCCCCCCCC-CCCCC	
IAVI SA 104 EXELO-CONCENTED TAWINGPEINLING WITHIN 3S31 6 164 LKIL-OFGLAAHTDOETGGVATRWRRPEINLING WITHIN IKVI SSA 5 202 CCHH4HHHHHHHHHHHHHHHHCCCCCCCCCHHHHHHHHH	3531 SSA	6 164	EEEE - CCCCCCCCCCCCCCCCCCCCHHHHHCCC - CCC	
IKVI SSA 5 202 CCHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCHHHHHHH	3S3I	6 164	LKIL-DFGLARHTDDEMTGYVATRWYRAPEIMLNWM-HYN	
IXVI SSA 5 202 CCHHHHHHHHHHHHHHHHHHHHCCCCCCCCCHHHHHHHH			+++.	
3531 SSA 6 202 CCHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCHHHHHH	1KV1 SSA	5 202	сснининининининссссссссснинининининсс	
IKVI 5 202 QIVDIWSVCCIMAELLIGNILHAUGI 3S3I 6 202 QIVDIWSVCCIMAELLIGNILHAUGI IKVI SSA 242 CCHHAHHCICCHHAHHAHHCICCCCCHHAHHAHHCICCCCHHAHHCICCCCHHAHHCICCCCHHAHHCICCCCHHAHHAHCICCCCHHAHHAHCICCCCHHAHHAHCICCCCHHAHAHCICCCCHHAHAHCICCCCHHAHAHCICCCCHHAHAHCICCCCHHAHAHCICCCCCHAAAAAAAA	3S3I SSA	6 202	ссннннннннннннсссссссснннннннннннсс	
IKVI SSA 5 242 CCHHHHHHCCHHHHHHHHHHHHHHHCCCCCCHHHHHCCCC	3S3I	5 202 6 202	QTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVGT QTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVGT	
IKVI SSA 5 242 CCHHIRHHICCCCHHIRHHIHHICCCCCHHIRHHICCCCCHHIRHHICCCCCHHIRHHICCCCCHHIRHHICCCCCHHIRHHICCCCCHHIRHHICCCCCHHIRHHICCCCCHHIRHHICCCCCHHIRHHICCCCCCHHIRHHICCCCCCHHIRHHICCCCCCCHHIRHHICCCCCCCC			++++	
3531 SSA 6 242 CHHHHHHHHCCCCCHHHHHHHHHCCCCCCHHCHIGHNEADVFIGANPLA 3531 5 242 PGAELLKKISSESARNYIQSLTQMPKMPEANVFIGANPLA 1KV1 SSA 6 282 HHHHHHHCCCCCCCCCCCCHHHHHHCCCCCCCCCCCC	1KV1 SSA	5 242	сснининисссининининссссссссинининссссини	
IXV1 5 242 PGAELLKKISSESARNYIQSLTQMPKMNFANVFIGAMPLA 3S31 6 242 PGAELLKKISSESARNYIQSLTQMPKMNFANVFIGAMPLA IXV1 SSA 5 282 HHHHHHHHCCCCCCCCCCCCHHHHHHCCCCCCCCCCC	3S3I SSA	6 242	СНННННННССННННННННКССССССНННННКССССННН	
IKVI SSA 5 282 HHHHHHHHCCCCCCCCCCCCHHHHHHCCCCCCCCCCC	3S3I	5 242 6 242	PGAELLKKISSESARNYIQSLIQMPKMNFANVFIGANPLA PGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLA	
IXVI SSA 5 282 HHHHHHHHCCCCCCCCCCCCHHHHHHCCCCCCCCCCC			++	
3531 SSA 6 282 HHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1KV1 SSA	5 282	НННННННССССССССНННННННССССССССССССССССС	
IXVI 5 282 VDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVAD 3S3I 6 282 VDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVAD IXVI SSA 5 322 CCCCHHIHHCCCHHIHHHHHHHHHHHHHHHCCCCC 3S3I SSA 6 222 CCCCCCCCCCCCCCCCHHIHHHHHHHHHHHHCCCCC 1XVI 5 322 CCCCCCCCCCCCCCCCCCHHIHHHHHHHHHHHCCCCC 3S3I 6 322 PYDQSFESRDLLLDEWKSLTYDEVISFVPP 3S3I 6 322 PYDQSFESRDLLIDEWKSLTYDEVISFVPP	3S3I SSA	6 282	ннннннссссссссннннннссссссссссссссссс	
3531 0 262 VULLEKMLVLUSUKKIIAAQALAHAYFAQYHDPDDEPVAD 1KVI SSA 5 322 CCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	1KV1	5 282	VDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVAD	
1KV1 SSA 5 322 CCCCHHIHHCCCHHIHHHHHHHHHHHHHHHHHHHHHHH	3531	6 282	VULLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVAD	
3S31 SSA 6 322 CCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHCCCCC	1KV1 554	5 322	ссссныныесссныныныныныныессс	
1KV1 5 322 PYDQSFESRDLLIDEWKSLTYDEVISFVPPP 3S31 6 322 PYDQSFESRDLLIDEWKSLTYDEVISFVPPP Alignment Score: 0.047 (smaller is better) RMSD: 1.087 Angstrom	3S3I SSA	6 322	ССССССССССННННННННННННССССС	
353I 6 322 PYDQSFESRDLLIDEWKSLTYDEVISFVPPP Alignment Score: 0.047 (smaller is better) RMSD: 1.087 Angstrom	1KV1	5 322	PYDQSFESRDLLIDEWKSLTYDEVISFVPPP	
Alignment Score: 0.047 (smaller is better) RMSD: 1.087 Angstrom	3531	6 322	PYDQSFESRDLLIDEWKSLTYDEVISFVPPP	
Alignment Score: 0.047 (smaller is better) RMSD: 1.087 Angstrom				
RMSD: 1.087 Angstrom	Alignment	Score:	0.047 (smaller is better)	
		RMSD:	1.087 Angstrom	

alignment scores above 0.7-0.8 indicate insufficient similarity

W How to align protein structures?

The binding site alignment algorithm first runs a **global structural alignment** and then automatically generates the list of $C\alpha$ atoms to use in a **pairwise alignment** from the selected residues.

> either detect the residues automatically based on the distance from the ligand or pick them yourself

determines which atoms are used for the pairwise alignment

skips the global alignment 🔸

skips the global alignment \swarrow and calculates Clpha RMSD

🕅 Align Binding Sites — 🗆 🗙
Use proteins from: Workspace (2 included entries) ~
Residues for alignment Automatically detect binding site residues Align residues within 5.0 Å from the ligand Detect ligand automatically Use molecule number: Pick ligand Manually select residues Align residues: Select residues
Pick a residue to include/exclude
Ignore atom pairs greater than 5.0 Å apart Structures are pre-aligned In-place (calculate RMSD only)
Job name: align_binding_sites_1 * Run Host=localhost:1, Incorporate=Append new entries as a new grc ?

Aligned binding sites of two PDB structures of p38 α kinase (white - PDB ID: 1KV1; blue - PDB ID: 3S3I). C α atoms used for the pairwise alignment are shown as white and blue spheres.

Function-related checks

What about atypical chemical forms?

When preparing enzymes, you should also consider whether any of the residues assume an **uncommon protonation/tautomerization** state as a part of the mechanism of action.

It's always best to **check relevant literature** to make sure that you are working with the correct form of the protein for the scientific problem you're trying to solve. (No helpful UniProt section).

While **empirical methods** are certainly getting better at predicting pKa values, they can still make mistakes, so always double check whether the desired protonation state has been assigned to relevant residues.

The protonation state of **Asp-dyads in aspartic proteases** (where one Asp is protonated and the other deprotonated) is crucial for their mechanism of action and has been driving the inhibitor design.

Function-related checks

Maybe there are some PTMs?

Post-translational modifications are **covalent modifications** of proteins that involve either a proteolytic cleavage or the addition of a modifying group to an amino acid.

More than 200 PTMs have been characterized up to date.

PTMs can modulate protein's activity state, localization, turnover, and interactions with other proteins. It's therefore imperative to know if PTMs are involved in your scientific question.

Actions Graph in p73 🙀 Add 🔧 BLAST	Description		Fosturo kov	
in p73 📾 Add 🔧 BLAST	Turner anatolia a 72		reature key	
	Turnor protein p73	1 - 636	Chain ¹ (PRO_0000185728)	
Actions Grap	Description	18 Position(s)	Amino acid modification Feature key	
eonine; by PLK1	Phosphothreonine; by	27	Modified residue ¹	
osine; by SRC and HCK	Phosphotyrosine; by 9	28	Modified residue ¹	
osine; by ABL1	Phosphotyrosine; by /	99	Modified residue ¹	
isopeptide (Lys-Gly) (interchain in SUMO); in isoform Alpha	Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO); in isoform Alpha		Cross-link ⁱ	
ation 👻	🗣 1 Publication 👻			
ation v is isopeptide (Lys-Gly) (interchain in SUMO2) ad sources v	 I Publication ▼ Glycyl lysine isopeptid with G-Cter in SUMO2 Combined sources 	627	Cross-link ⁱ	

Post-translational modification

Isoform alpha (but not isoform beta) is sumoylated on Lys-627, which potentiates proteasomal degradation but does not affect transcriptional activity. Phosphorylation by PLK1 and PLK3 inhibits the transcription regulator activity and pro-apoptotic function. \oint 1 Publication \checkmark

Tumor protein p73

UniProt ID: 015350

Higher levels of phosphorylation seen in the brain from patients with Huntington disease.

Polyubiquitinated by RCHY1/PIRH2; leading to its degradation by the proteasome. 🛛 2 Publications 🚽

While **phosphorylation** is without a doubt the most common PTM, the recent COVID pandemic has shone a light on **glycosylation** as N-glycans linked to the spike protein help the SARS-CoV2 virus stay hidden from the host immune system.

Thomas Splettstößer @ scistyle.com

W How to add PTMs?

Right-clicking on either a <u>single-atom</u> or a <u>multi-atom</u> selection will open a menu with 'Mutate Residue' option which allows you to **phosphorylate** Ser, Thr, or Tyr.

W How to add PTMs?

Schrödinger

- **3D builder** allows you can create any kind of custom residue.
- It's advisable to minimize the custom residue and its neighbors afterward.

minimization button

 Another option is to use the Nonstandard Residues panel from Biologics which allows you to build your own database of nonstandard residues and use it in Residue Scanning Calculations to introduce mutations.

Function-related checks

Are any metals involved?

Metalloproteins require metal ions for their function.

In order to properly model such proteins, it is important to consider the **oxidation state** of the metal ion.

Low-resolution X-ray or cryo-EM structures can contain metal ions whose **coordination** by surrounding residues hasn't been modelled properly.

Such issues might require some manual building during protein preparation.

Zinc finger motif where Zn ion is coordinated by 2 Cys and 2 His residues (PDB ID: 1A1L). **Does the protein bind any other cofactors?**

Cofactors are any **non-protein compounds** required for protein's activity.

Cofactori

Zn²⁺ \checkmark 22 Publications \checkmark , Co²⁺ \checkmark 1 Publication \checkmark

Note: Zinc. Can also use cobalt(II) with lower efficiency, but not copper(II), nickel(II) and manganese(II). <a>1 Publication -

UniProt doesn't list cofactors that are part of the **catalytic reaction** (e.g., NAD, FAD, ATP), so it's important to consult the literature to ensure you're modelling correct protein cofactors.

K-Ras has a pM affinity towards GTP/GDP (PDB ID: 4EPV) and there are almost no *apo* PDB structures of K-Ras.

The final checklist

Function-related checks

- U What's the subcellular location of the protein?
- Is the protein a monomer or a multimer?If a multimer, is it a homomer or a heteromer?
- □ Is the protein known for multiple conformational states?
- □ What about atypical chemical forms?
- □ Maybe there are some PTMs?
- □ Are any metals involved?
- Does the protein bind any other cofactors?

Is the whole protein there? Any missing (sub)domains?

Proteins very often get chopped up into smaller functionally relevant segments that are **easier to crystallise** than the full protein.

It's always a good idea to check UniProt and relevant literature to make sure you have the correct parts of the protein in your structure.

Topology		2			/
Feature key	Position(s)	Description	Actions	Graphical view	Length
Topological domain ⁱ	25 – 645	Extracellular 🕜 Sequence analysis	🏦 Add 🔧 BLAST		621
Transmembrane ⁱ	646 - 668	Helical 🛛 🛛 Sequence analysis	🗃 Add 🔧 BLAST		23
Topological domain ⁱ	669 - 1210	Cytoplasmic 🛛 Sequence analysis	🛱 Add 🔧 BLAST		542

EGER (UniProt ID: P00533)

Whether you need the complete protein will certainly depend on the problem you want to study:

- If you are only interested in running a structure-based virtual screen to find kinase domain inhibitors, then that domain is sufficient.
- If you want to study the effects of somatic mutations in the extracellular domain on the kinase activity, then you will need the full protein.

Schrödinger

Are you working with the correct sequence?

Your protein structure could contain mutations that have been introduced.

- For functional reasons, e.g. to solve the structure of an (in)activating mutation.
- To facilitate protein crystallisation.

It's always recommended to compare the sequence of your structure with the canonical one (obtained from UniProt's Sequence section) using sequence alignment.

MRPSGTAGAA LLALLAALCP ASRALEEKKV COGTSNKLTO LGTFEDHFLS 70 100 60 80 90 LORMFNNCEV VLGNLEITYV ORNYDLSFLK TIQEVAGYVL IALNTVERIP 110 120 130 140 150 LENLQIIRGN MYYENSYALA VLSNYDANKT GLKELPMRNL QEILHGAVRF 170 180 200 160 190 SNNPALCNVE SIQWRDIVSS DFLSNMSMDF QNHLGSCQKC DPSCPNGSCW

Mass (Da): 134,277 Last modified: November 1, 1997 -Checksum: D8A2A50B4EFB6ED2 ✓ GO

Proteins can have multiple **splice variants** which could be of therapeutic interest. For example, JNK kinases comprise 3 isoforms encoded by 3 distinct genes which can be spliced into 10 variants.

Sequences of splice variants are also available in UniProt's Sequence section.

Are there any "extras", e.g. signalling peptides or expression tags?

Sequence alignments to the canonical sequence will also reveal whether additional amino acids are present.

Proteins can contain a **signalling peptide** that determines their subcellular location and/or a **propeptide** part that is cleaved in the mature form of the protein.

NGF (UniProt ID: P01138)

PTM / Processing

Molecule processing				
Feature key	Position(s)	Description		Length
Signal peptide ⁱ	1 - 18	Sequence analysis	🏛 Add 🔧 BLAST	18
Propeptide ⁱ (PRO_0000019599)	19 - 121		📾 Add 🔧 BLAST	103
Chain ⁱ (PRO_0000019600)	122 - 241	Beta-nerve growth factor	🛱 Add 🔧 BLAST	120

Most often, short expression tags are added to the Nor C-terminus for protein purification. While in most cases **expression tags** are considered to be of no consequence for the protein structure, they can at times cause artifacts.

In p38α, a 20-aa-long His-tag found its way to the kinase interaction motif docking site and caused a large conformational change (PDB ID: 3PY3).

Are there any homologues?

Rat and mouse proteins tend to have a very high degree of similarity to human proteins.

It makes sense to calculate the sequence alignment across a few species as this could easily expand the starting pool of structures.

Step 1. Get the sequence of your structure from the PDB and the canonical one from UniProt.

10	20	30	40	50
MRPSGTAGAA	LLALLAALCP	ASRALEEKKV	CQGTSNKLTQ	LGTFEDHFLS
60	70	80	90	100
LQRMFNNCEV	VLGNLEITYV	QRNYDLSFLK	TIQEVAGYVL	IALNTVERIP
110	120	130	140	150
LENLQIIRGN	MYYENSYALA	VLSNYDANKT	GLKELPMRNL	QEILHGAVRF
160	170	180	190	200
SNNPALCNVE	SIQWRDIVSS	DFLSNMSMDF	QNHLGSCQKC	DPSCPNGSCW

Step 2. Use a multiple sequence alignment tool like Clustal Omega.

EMBL-EBI Services Research Training Industry A	bout us Q		EMBL-EBI	Hinxton -
lustal Omena				
nustai Onicga				
put form Web services Help & Documentation Bioinformatics	s Tools FAQ		Feedback	<share< th=""></share<>
s > Multiple Sequence Alignment > Clustal Omega				
ultiple Sequence Alignmer	ot.			
ultiple Sequence Alignmen	IL			
nore sequences. For the alignment of two sequences please inste	ead use our pairwise sequence alignm	e-profile techniques to generate alig ent tools.	nments betwe	en three
ortant note: I his tool can align up to 4000 sequences or a maxin	NUM THE SIZE OF 4 MB.			
STEP 1 - Enter your input sequences				
inter or paste a set of				
PROTEIN				*
equences in any supported format:				
Equences in any supported format:				
equences in any supported format:		se a example sequence Clear sequence	See more exa	mple inputs
equences in any supported format:	U	se a example sequence Clear sequence	See more exa	mple inputs
equences in any supported format: Dr, upload a file: Choose File No file chosen STEP 2 - Set your parameters	L	se a example sequence Clear sequence	See more exa	mple inputs
Equences in any supported format:	L	se a example sequence Clear sequence	See more exa	mple inputs
Equences in any supported format: Dr. upload a file: Choose File No file chosen STEP 2 - Set your parameters DUTPUT FORMAT ClustalW with character counts	L	se a example sequence Clear sequence	See more exa	mple inputs
Equences in any supported format: Dr. upload a file: Choose File No file chosen STEP 2 - Set your parameters DUTPUT FORMAT ClustalW with character counts	L	se a example sequence Clear sequence	See more exa	mple inputs
Equences in any supported format: Or, upleed a file: Choose File No file chosen STEP 2 - Set your parameters DUTPUT FORMAT ClustalW with character counts The default settings will fulfil the needs of most users.	L	se a example sequence Clear sequence	See more exa	mple inputs
equences in any supported format: Dr. upload a file: Choose File No file chosen STEP 2 - Set your parameters DUTPUT FORMAT ClustalW with character counts The default settings will fulfill the needs of most users. More options) (Click here, if you want to view or change the def	ult settings.)	se a example sequence Clear sequence	See more exa	mple inputs
STEP 2 - Set your parameters DUTPUT FORMAT ClustalW with character counts The default settings will fulfill the needs of most users. More options) (Click here, if you want to view or change the default	(ault settings.)	se a example sequence Clear sequence	See more exa	mple inputs
Step 2 - Set your parameters DUTPUT FORMAT ClustalW with character counts The default settings will fulfill the needs of most users. More options (Click here, if you want to view or change the def STEP 3 - Submit your Job	u 'auit settings.)	se a example sequence Clear sequence	See more exa	mple inputs
Equences in any supported format: Tr, upload a file: Choose File No file chosen STEP 2 - Set your parameters DUTPUT FORMAT ClustalW with character counts The default settings will fulfill the needs of most users. More options (Click here, if you want to view or change the def STEP 3 - Submit your job The notified by email (Trick this box if you want to be notified by email	fault settings.) if when the results are available)	se a example sequence Clear sequence	See more exa	mple inputs

Step 3. Result!

sp|P00 5Y9T_

sp P00533 EGFR_HUMAN 5Y9T_1 Chain	MRPSGTAGAALLALLAALCPASRALEEKKVCQGTSNKLTQLGTFEDHFLSLQRMFNNCEV	60 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	VLGNLEITYVQRNYDLSFLKTIQEVAGYVLIALNTVERIPLENLQIIRGNMYYENSYALA	120 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	VLSNYDANKTGLKELPMRNLQEILHGAVRFSNNPALCNVESIQWRDIVSSDFLSNMSMDF	180 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	QNHLGSCQKCDPSCPNGSCWGAGEENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGC	240 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	TGPRESDCLVCRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSFGATCVKKCPRNYV	300 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	VTDHGSCVRACGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEFKDSLSINATNIKHFK	360 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	NCTSISGDLHILPVAFRGDSFTHTPPLDPQELDILKTVKEITGFLLIQAWPENRTDLHAF	420 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	ENLEIIRGRTKQHGQFSLAVVSLNITSLGLRSLKEISDGDVIISGNKNLCYANTINWKKL	480 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	FGTSGQKTKIISNRGENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCN	540 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	LLEGEPREFVENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVM	600 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	GENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPSIATGMVGALLLLLVV	660 0
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	ALGIGLFMRRRHIVRKRTLRRLLQER LVEPLTPSGEAPNQALLRILKETEFKKIKVLGS GSHMASGEAPNQALLRILKETEFKKIKVLGS	720 31
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	GAFGTVYKGLWIPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASVDNPHVCRLLGI GAFGTVYKGLWIPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASVDNPHVCRLLGI	780 91
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	CLTSYVQLITQLMP-GCLLDYVREHKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAA CLTSYVQLIMQLMP-GCLLDYVREHKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAA	840 151
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	RIVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWSY RIVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKMMALESILHRIYTHQSDVMSY	900 211
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	GVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYMINVKCWMIDADSRPK GVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYMINVKCWMIDADSRPK	960 271
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	FRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYRALMDEEDMDDVVDADEYLIPQ FRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYRALMDEEDMDDVVDADEYLIPQ	1020 331
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	QGFF5SPSTSRTPLLSSLSATSNNSTVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTED QG	1080 333
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	SIDDTFLPVPEYINQSVPKRPAGSVQNPVYHNQPLNPAPSRDPHYQDPHSTAVGNPEYLN	1140 333
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	TVQPTCVNSTFDSPAHWAQKGSHQISLDNPDYQQDFFPKEAKPNGIFKGSTAENAEYLRV	1200 333
sp P00533 EGFR_HUMAN 5Y9T_1 Chain	APQSSEFIGA 1210 333	

Tasks -> Browse -> Protein Preparation and Refinement -> Multiple Sequence Viewer/Editor

Till Selet Ver A dep I Natural Ver A dep I Natural Find / Fetch: Till reference substrate of PM In I Monologs I Main I I Monologs I	😡 Multiple Sequence	Viewer/Editor									- 🗆 ×
• Writer • Writer Find / Fetch: metr streamen statisting or FAB ID: • Othernologs Imign • Other Tasks • • Market Matchewa statisting • O 20 30 40 50 60 70 40 40 40 40 60 60 70 40 70 40 70 40 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70	File Edit Select	: View Ali <u>c</u>	jn								
O Music Markade statuting of 100 Image Image <th< td=""><td>O Workspace</td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	O Workspace		+								
INTE GIN 10 20 30 40 10 10 10% SPYT A GS H M AS G E A P N Q ALL R I L K E T E F K K I K V L G S G A F G T V Y K G L W I P E G E K V K I P V A I K E L R E A T 100 </td <td>Always linked to W</td> <td></td> <td></td> <td>Find / Fetch:</td> <td></td> <td></td> <td></td> <td>▲ ▶ <</td> <td>CHomolog:</td> <td>s Align 🔻</td> <td>🕂 Other Tasks 🔻</td>	Always linked to W			Find / Fetch:				▲ ▶ <	CHomolog:	s Align 🔻	🕂 Other Tasks 🔻
System A ÓŚŚHWAŚŚCEAPNQALLRILKETEFKKI KYLLOŚCAFOTYYKOLWIPEGEKYKI PYAIKELREAT 100 70 80 80 100 100 100 70 80 80 100 100 100 8997 A SPKANKE I LDEAYYMASY DNPHYCRILLOICITSTYQLI MQLMPFGCILDYYREHKDNI GŚQY 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 200 200 200 100 200 200 200 200 300 300 200 200 200 200 300 300 300 100 200 200 200 200 200 300 300 100 200 200 200 200 200 300 300 100 200 200 300 300	TITLE	CHN		10		20	30	40	50		60 . ID %
70 80 90 100 10 120 SPX9T A SPKANKELLDEAYVMASUDNPHYCRLLGICLTSTVQLIMQLMPFECLLDYVREHKDNIGSQY 100 100 130 140 160 100 100 SPY9T A LLNWCVQIAKGMNYLEDRRLVHRDLAARNVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGOK 100 SPY9T A VPIKWMALESILHRIYTHQSDVWSYGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPP 100 SPY9T A VPIKWMALESILHRIYTHQSDVWSYGVTVWELMTFGSKPUGGIPASEISSILEKGERLPQPP 100 SPY9T A VPIKWMALESILHRIYTHQSDVWSYGVTVWELMTFGSKPUGGIPASEISSILEKGERLPQPP 100 SP9T A LCIDVYMIMVKCWMIDADSRPKFRELLIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYR 100 300 300 300 300 300 100 301 ALMDEEDMDDVVDADEYLIPQQG 300 100 100 303 ALMDEEDMDDVVDADEYLIPQQG 100 100 100 100 SSQUENCES 1 seketed 1 total REFERINCE SYT(A) 100 100 100	💉 5Y9T	А	GSHMA	SGEAPNQ	ALLRILK	ETEFKKI	KVLGSGA	FGTVYKGL	WIPEGEKVK	I P V A I K <mark>E</mark> L R	EAT 100
SPYPT A SPKANKELLDEAYVMASVDNPHVCRLLGICLTSTVQLMQLMPFGCLLDYVREHKDNGGSQY 100 130 140 150 160 100 130 140 150 160 100 100 100 100 100 100 101 100 200 200 200 200 200 100 100 200 200 200 200 200 200 100 100 200 200 200 200 200 200 100 100 200 200 200 200 200 300 300 100 200 200 200 200 200 300 300 100 200 200 200 300 300 100 100 100 3200 330 330 100 100 100 100 100 3200 330 100 100 100 100 100 100 3200 100 100 100 100 100 100 <				70	80		90	100	110	120	
130 140 150 140 170 180 100 200 210 220 230 240 100 200 210 220 230 240 100 200 270 280 290 300 310 250 200 270 280 290 300 310 100 320 330 330 300 300 310 250 200 270 280 290 300 310 320 330 330 330 300 300 300 320 330 330 330 300 300 300 320 330 330 300 300 300 300 320 330 330 300 300 300 300 320 330 330 300 300 300 300 320 330 300 300 300 300 300 320 320 300 300 300 3	💉 5ү9Т	А	SPKAN		Y V M A S V D	NPHVCRL	. L G I <mark>C</mark> L T S	TVQLIMQL	M P F G C L L D Y V	/ R E H K D N I G	SQY 100
SY9T A LLINWCVQIAKGMNYLEDRRLVHRDLAARNVLVKTPQHVKTTDFGLAKLLGAEEKEYHAEGOK 100 100 200 210 220 230 240 100 200 200 200 200 200 200 100 250 260 270 280 290 300 310 100 250 260 270 280 290 300 310 320 320 330 330 100 320 330 320 330 330 300 100 100 100 320 330 330 100 100 100 100 320 330 330 100 100 100 100 320 330 100 100 100 100 100 320 330 100 100 100 100 100 320 100 100 100 100 100 100 320 100 100 100 100 100 100 320 <td< td=""><td></td><td></td><td></td><td>130</td><td>140</td><td>15</td><td>0</td><td>160</td><td>170</td><td>180</td><td></td></td<>				130	140	15	0	160	170	180	
Stylin A Liting Coordinate Brack of Reference Syst(A) 100 190 200 210 220 230 240 190 200 210 220 230 240 V P I K WMALES I LHR I Y THOS DVWS YG V TVWELM TEGS K PYDG I PASE I S SI LEKGER LPOPP 100 250 260 270 280 290 300 310 250 260 270 280 290 300 310 100 1CT I D V YM I M V K CWM I DADS R P K F R EL I I E F S K M A R D P Q R Y L V I Q G D E R M H LP S P T D S N F Y R 100 320 330 30 30 30 30 320 330 30 30 30 30 30 320 330 30 30 30 30 30 30 320 330 30 30 30 30 30 30 30 320 320 330 30 30 30 30 30 30 320 320 30 30 30 30 30 30 30 30	S										
190 200 210 220 230 240 Syst A VPIKWMALESILHRIYTHQSDVWSYGVTVWELMTEGSKPYDGIPASEISSILEKGERLPQPP 100 250 240 220 280 290 300 310 IctiDVYMIMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYR 100 320 330 30 Syst A A A D Syst A A A D	- 5Y91	A		VQTAKOM	NTLEDRK		ARNVLVK				00 K 100
Syyt A VPIKWMALESILHRIYTHQSDVWSYGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPP 100 250 260 270 280 290 300 310 Syyt A ICTIDVYMIMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYR 100 320 330 330 100 100 Syyt A A LMDEEDMDDVVDADEYLIPQQG 100			190		· · · · · · ·		· · · · · · · · ·	<u> </u>		 	
250 260 270 280 290 300 310 I C T I D V Y M I M V K C WM I D A D S R P K F R E L I I E F S K M A R D P Q R Y L V I Q G D E R M H L P S P T D S N F Y R 100 320 330 A L M D E E D M D D V V D A D E Y L I P Q Q G 100 SY9T A SY9T A E E D M D D V V D A D E Y L I P Q Q G 100	5Y9T	A	VPIKW	MALESIL	HRIYTHQ	S D V W S Y G	V T V <mark>W E</mark> L M	TFGSKPYD	G I P A S <mark>E I S S</mark>	ILEKGERLP	Q P P 100
Sygt A ICTIDVYMIMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYR 100 320 330 Sygt A ALMDEEDMDDVVDADEYLIPQQG 100 Sequences 1 selected 1 total REFERENCE Sequences 1 selected			250	260		270	280	. 2	290	300	310
SEQUENCES 1 selected 1 total REFERENCE 5Y9T (A)	💉 5Ү9Т	А		У МІМУК		S R P K <mark>F R E</mark>	LIIEFSK	MARDPQRY	LVIQGDERMI	H L P S P T <mark>D</mark> S N	FYR 100
				320	3	330					
SEQUENCES 1 selected 1 total REFERENCE 5Y9T (A)	💉 5Ү9Т	A	ALMDE	E D M D D V V		PQQG					100
SEQUENCES 1 selected 1 total REFERENCE 5Y9T (A)											
SEQUENCES 1 selected 1 total REFERENCE 5Y9T (A)											
SEQUENCES 1 selected 1 total REFERENCE 5Y9T (A)											
SEQUENCES 1 selected 1 total REFERENCE 5Y9T (A)											
SEQUENCES 1 selected 1 total REFERENCE 5Y9T (A)											
SEQUENCES 1 selected 1 total REFERENCE 5Y9T (A)											
	SEQUENCES	1 selected	1 total		5Y9T (A)					6	
STRUCTURES 1 in Workspace (1 total) OTHER TABS 0 sequences (1 tab)	STRUCTURES :	1 in Workspac	ce (1 total)		0 sequences (1 tal	b)					

- MSV will automatically load the sequences of included entries (in this case, the EGFR kinase domain).
- The residues are coloured based on the side-chain properties, with the missing residues shown in darker shades.

recolouring button

Schrödinger

Tasks -> Browse -> Protein Preparation and Refinement -> Multiple Sequence Viewer/Editor

Multiple Sequence	Viewer/Editor			1						- 🗆 X
File Edit Select	View Ali	gn								
O Workspace	View 1	• +								
1 Always linked to We			Find / Fetch:	enter sequence substring c	or sequence code / name] < ◄ ►	CHomologs	Align 🔻	rt Other Tasks 🔻
TITLE	CHN		10 	20 		30 <u> </u>	40 	Find in Sequence Sequence Substring	60 I	ID %
5Ү9Т	А	GSHMA	S G E A P N Q 70	ALLRILKET 80	E F K K I K V L 90	GSGAFGT	V Y K G L W I	PROSITE Pattern	K E L R E /	
💉 5ү9Т	A	P K A N K	E I L D E A Y	V M A S V D N P H		LTSTVQL 160	İMQLMPF	PDB Structures UniProt or Entrez Sequence	N I G S Q	
5Y9T	A	N W C V Q	I A K G M N Y 200	LEDRRLVHR 210	DLAARNVL	V K T P Q H V 220	K I T D F G L 230	AKLLCAEEKE 240	YHAEGGK 2	50
💉 5Ү9Т	A	K W M A L	260	Y T H Q S D V W S 270	YGVTVWEL 280	M T F G S K P	Y D G I P A S			CTI 100
💉 5ү9Т	A	D V Y M I 320	м v к <mark>с w</mark> м i	DADSRPKFR 330	ELIIEFSK	MARDPQR	Y L V I Q G D	ĖRMHLPSPTDS	S N <mark>F Y</mark> R A L I	M D E 100
💉 5Ү9Т	Α	Ë D M D D	ý ý þ á þ é ý	e sequence using U						100
SEQUENCES 0 STRUCTURES 1	selected in Workspa	1 total ce (1 total)		5Y9T (A) 0 sequences (1 tab)						😃 💋 🕀

• You can fetch more sequences using UniProt/PDB ID.

24

Multiple Sequence Viewer/Editor				**					- 🗆 X
File Edit Select View Alig	gn								
C Workspace View 1	Workspace Copy	y × +							
Load from: Workspace	▼ ④		P00533		×		OHomologs	Align 🔻	ther Tasks 🔻
TITLE CHN		10	20		30	40	50	60	ID %
5Y9T A P00533[EGFR_HU	G S H M A <mark>M R P S G</mark>	S G E A P N Q T A G A A L L	ALLRILKE ALLAALCP	T <mark>E F K K I K V</mark> A S R A L <mark>E E</mark> K	LGSGAFGT KV <mark>C</mark> QGTSN	V Y K G L W I P K L T Q L G T F	E G E K V K I P V E D H F L S L Q R	A I K E L R E A T M F N N C E V V L	S 100 G 6
		70 	80	90 		100	110 	120	
5Y9T A P00533jEGFR_HU	PKANK NLEIT	E I L D E A Y Y Q R N Y D	V M A S V D N P L S F L K T I Q	H V <mark>C R</mark> L L G I E V A G <mark>Y</mark> V L I	C L T S T V Q L A L N T V E R I	I M Q L M P F G P L E N L Q I I	<mark>C L L D Y V R E H</mark> R G N M Y Y E N S	K D N I G S Q Y L Y A L A V L S N <mark>Y</mark>	L 100 D 6
	130		140	150 l <u>.</u> .	160 	170		80	
5Y9T A P00533 EGFR_HU	N <mark>W C</mark> V Q A N K T G	I A K G M N Y L K E L P M R	L E D R R L V H N L Q E I L H G	R D L A A R N V A V R F S N N P	L V K T P Q H V A L C N V E S I	K I T D F G L A Q W R D I V S S	K L L G A E E K E D F L S N M S M D	Y H A E G G K V P F Q N H L G S <mark>C</mark> Q	l 100 K 6
	190	200	2	10	220	230	240	250	
5Y9T A P00533JEGFR_HU	K W M A L C D P S C	ESILHRI PNGS <mark>CW</mark> G	Y T H Q S D V W A G E E N <mark>C</mark> Q K	S	LMTFGSKP Q <mark>C</mark> SGR <mark>C</mark> RG	Y D G I P A S E K S P S D C C H	I S S I L <mark>E K G E</mark> N Q <mark>C</mark> A A G <mark>C</mark> T G	R L P Q P P I <mark>C</mark> T P R <mark>E</mark> S <mark>D C</mark> L V <mark>C</mark>	1 100 R 6
		260	270	280)	290	300	310	
5Y9T A P00533JEGFR_HU	DVYMI KFRDE	M V K C W M I A T C K D T C	DADSRPKF PPLMLYNP	R E L I I E F S T T <mark>Y</mark> Q M D V N	K M A R D P Q R P E G K Y S F G	Y L V I Q G D E A T C V K K C P	R M H L P S P T <mark>D</mark> R N <mark>Y</mark> V V T <mark>D</mark> H G	S N F Y R A L M D S <mark>C</mark> V R A <mark>C</mark> G A D	E 100 S 6
	320)	330	340	350	3	60	370	
5Y9T A P00533JEGFR_HU	E D <mark>M</mark> D D Y E M E E	V V D A D E Y D G V R K C K	L I P Q Q G K <mark>C E</mark> G P <mark>C</mark> R K	V <mark>C N G I G I G</mark>	EFKDSLSI	NATNIKHF	K N <mark>C</mark> T S I S G D	L H I L P V A F R	- 100 <mark>G</mark> 6
	380	390		400	410	420	430	440	,
5Y9T A		• • • • • • • • • •	••••••••••						100
SEQUENCES 1 selected STRUCTURES 1 in Workspace	2 total ce (1 total)		5Y9T (A) 1 sequence (2 tabs)) 🧭 🕂

• Downloaded sequences need to be aligned.

😡 Multiple Sequence Viewer/Editor							_	
File Edit Select View Alig	n							
🗘 Workspace View 1 🗴	Workspace Copy	× +						
Load from: Workspace	• •	Find / Fetch:	P00533			Homologs	Align 🔻	ner Tasks 🔻
TITLE CHN		10 <u> l</u>	20	30	Align: Sequences	Structures	, 	ID %
5 5 19 7 A P00533 JEG FR_HU	G S H M A S M R P S G T	G <mark>E</mark> A P N Q A F A G A A L L A	A L L R I L K E T <mark>E F</mark> K A L L A A L <mark>C</mark> P A S R A	K K V L G S G A F L <mark>E E</mark> K K V C Q G 1	Using: Multiple sequence a	alignment	▼ ¢ A T S V L G	100 8
		70	80 I	90	Find globally conserved resid	ues (Pfam)		
5 5 19 T A P00533 JEG FR_HU	PKANKE NLEITY	I L D E A Y V V Q R N Y D I	/ M A S V <mark>D</mark> N P H V <mark>C</mark> R S <mark>F</mark> L K T I Q <mark>E</mark> V A G	L L G I <mark>C</mark> L T S T V <mark>Y</mark> V L I A L N T V E	Superimpose structures follo	wing alignment	Q Y L N Y D	100 8
S EVOT A					Selected only		Align	100
P00533[EGFR_HU	ANKTGL	KELPMR	N L Q E I L H G A V R F	S N N P A L C N V E		DFLSNMSMDF		8
	190 I	200 I	210 	220 	230	240	250 	
5Y9T A P00533JEGFR_HU	I K W M A L C D P S C F	ESILHR NGS <mark>CW</mark> GA		V T V W E L M T F G I C A Q Q C S G R C	S K P Y D G I P A S R G K S P S D C C H	E I S S I L E K G E N Q C A A G C T G P	R L P Q P P I C T R <mark>E S D C L V C R</mark>	100 8
		260	270	280	290	300	310	
					P Q R Y L V I Q G D	ERMHLPSPTD RNYVVTDHGS	S N F Y R A L M D	100
10033EGR_10	320		330	340	350	360 3	70	
5Ү9Т А		V V D A D E Y	<mark>/ L I P Q Q G</mark>		1	1	1 	100
P00533 EGFR_HU	YEMEED	D G V R K <mark>C</mark> K H	C E G P C R K V C N G	IGIGEFKDSL	S I N A T N I K H F	K N <mark>C</mark> T S I S G D L	HILPVAFRG	
	380	390	400	410	420	430	440	
SEQUENCES 1 selected 2 STRUCTURES 1 in Workspac			5Y9T (A) 1 sequence (2 tabs)				🔊 😃	\checkmark \oplus

• Downloaded sequences need to be aligned.

😡 Multiple Sequence Viewer/Editor							- 🗆 X
File Edit Select View Aligr	n						
🔿 Workspace View 1 🙁	Workspace Copy	× +					
Load from: Workspace 🔻	' •	Find / Fetch:	P00533		* 🕹 🔷 🕨	CHomologs	Align ▼
		640	650	660	670	680	690
S EVOT A							
P00533[EGFR_HU	PGLEG	C P T N G P K	I P S I A T G M V G	ALLLLVVAL	GIGL <mark>F</mark> MRRRHI	V R K R T <mark>L R R L L</mark> Q	ERELVEPLT 98
		700	710	720	730	740	750
S 5Y9T A	ASGEA	PNQALLR	ILKETEFKKI	K V L G S G A F G T	VYKGLWIPEGE	KVKIPVAIKEL	REATSPKAN 100
P00533[EGFR_HU	PSGEA	PNQALLR	I L K E T E F K K I	K V L G S G A F G T	V Y K G L W I P E G E	E K V K I P V A I K E L	REATSPKAN 98
	760		770	780	790	800 810	
🐔 5Ү9Т А	KEILD	EAYVMAS	V <mark>D</mark> N P H V <mark>C</mark> R L L	. Ġ I <mark>Ċ</mark> Ĺ Ť Ś Ť V Q Ĺ	I M Q L M P F G C L I	DYVREHKDNIG	ŚQYLLNWCV 100
P00533[EGFR_HU	KEILD	EAYVMAS	V <mark>D N P H V C</mark> R L L	. G I <mark>C</mark> L T S T <mark>V</mark> Q L	ITQLMPFGCLI	<mark>DYVREHKDNIG</mark>	SQYLLNWCV 98
	320	830	840	850	860	870	880
💉 5Ү9Т А	QIAKG		RLVHRDLAAF	N V L V K T P Q H V	K I T D F G L A K L I	GAEEKEYHAEG	GKVPIKWMA 100
P00533 EGFR_HU	QIAKG	MNYLEDRI	RLVHR <mark>D</mark> LAAF	N V L V K T P Q H V	K I T D F G L A K L I	. G A E E <mark>K E Y H A E G</mark>	GKVPIK <mark>W</mark> MA 98
		890	900	910	920	930	940
SY9T A	LESIL	H R I Y T H Q S	S <mark>D V W</mark> S <mark>Y</mark> G V T V	WELMTFGSKP	Y D G I P A S E I S S	BILEKGERLPQP	PICTIDVYM 100
P00533 EGFR_HU	LESIL	H R I <mark>Y</mark> T H Q S	S <mark>D V W</mark> S <mark>Y</mark> G V T V	WELMT <mark>FG</mark> SKP	Y D G I P A S E I S S	BILEKGERLPQP	PICTIDVYM 98
	950		960	970	980	990 1	000
SY9T A	IMVKC	WMIDADSI	RPKFRELIIE	FSKMARDPQR	YLVIQGDERMI	H L P S P T D S N F Y R	ALMDEEDMD 100
P00533 EGFR_HU		WMIDADS	RPKFRELIIE	F S K M A R D P Q R	YLVIQGDERMI	ILPSPTDSNFYR	ALMDEEDMD 98
	1010	1020	103	50 104	0 1050	1060	1070
SY9T A	DVVDA	DEYLIPQ					
P00533[EGFR_HU			2 <mark>0 F F S S P S I S</mark>				
SEQUENCES 2 selected 2	total		5Y9T (A)				
STRUCTURES 1 in Workspace	e (1 total)		1 sequence (2 tabs)				

• It's still hard to see where the differences are.

Schrödinger

- Now it's obvious the sequence differences come from a point mutation and the addition of an expression tag at the N-terminus.
- Note that the missing residues are shown by darker colour shades.

Multiple Sequence Viewer/Editor					1			-	
File Edit Select View Align	0								
O Workspace View 1 🗙	Workspace Copy	* +							
Load from: Workspace 🔻	۲	Find / Fetch:	P00	533		× 🕹 < Þ 🌣	,OHomologs	Align 🔻 📫 Oth	er Tasks 🔻
		630		640	650	660	670	680	
5Y9T A		I . 		1 · · · · · · ·	I 		1 1 	• • • • • • • • • •	100
P00533 EGFR_HU	НРМСТУ	GCTGP	GLEGCPTN	GPKIPSI	A T G <mark>M V G A L</mark>	LLLVVALGI	GLFMRRRHIV	RKRTLRRL	98
		690	700		710	720	730	740	
S EVOT A		GSHM			. I		V K G L W L P E G E		100
P00533 EGFR_HU	LQEREL		PSGEAPNQ	ALLRILK	ЕТЕГККІК	V L G S G A F G T V	YKGLWIPEGE	KVKIPVAI	98
	75	50	760	770		780	790	800	
S rugt				V V M A S V D					100
P00533 EGFR HU	KELREA	ATSPKA	NKEILDEA	YVMASVD	NPHVCRLL	GICLTSTVQL	I T Q L M P F G C L	LDYVREHK	100 98
	810		820	830	840	850	860		
P00533JEGER HU	DNIGSC	2 Y L L N W I D Y L L N W I	CVQIAKGM CVQIAKGM	NYLEDRR	LVHRDLAA LVHRDLAA	RNVLVKTPQH	V K I T D F G L A K V K I T D F G L A K	LLGAEEKE	100 98
	870	8	80	890	900	910	920	930	
			••• 						
SY9T A	YHAEGO	3 K V P I K \ 3 K V P I K \	WMALESIL WMALESIL	HRIYTHQ	S D V W S Y G V S D V W S Y G V	TVWELMTEGS	K P Y D G I P A S E K P Y D G I P A S E	I S S I L E K G	100
P00555[Edi K_110				050		070			90
	<u></u>	I .	.	950 	I	970 	980 1 <u> </u>	990	
5Y9T A	ERLPQF			CWMIDAD	SRPKFREL	IIEFSKMARD	PQRYLVIQGD	ERMHLPSP	100
P00533[EGFK_HU	LKLFQF	FICTI		CWMTDAD	SKFKFKEL	TTEFSKMARD	FQRIEVIQUE		98
		1000 I	0101 		1020	1030 I	1040 I		
SY9T A	TDSNFY	Y R A L M D	EEDMDDVV	DADEYLI	PQQG · · · ·				100
PUUS33JEGFR_HU	I D S N F Y			DADETET		FUIDRIPLLD	3 L 3 A I 3 N N 3 I	VACIDENG	98
SEQUENCES 1 selected 2 t	total		5Y9T (A)						
STRUCTURES 1 in Workspace	(1 total)		S 1 sequence (2 ta	os)					

- We will use the sequence from the PDB structure as the reference because it contains just the kinase domain, while the UniProt sequence contains the whole protein.
- If the PDB structure contains multiple copies of the same molecule, you can also fetch their structures.

Multiple Sequence Viewer/Editor		,				- 🗆 X
File Edit Select View Align						
🗘 Workspace View 1 💌	Workspace Copy 🔹 🕂					
Load from: Workspace 🔻	Find / Fetch:	P00533		* 🛃 🖊 🕨	OHomologs	Align 🔻 🗂 Hother Tasks 🔻
5199T A P00533]EGFR_HU	630 	640 G L E G C P T N G P K 700	650 	660 	670 	680
	200 200 200 200 200 200 200 200 200 200	$\begin{array}{c} A \\ S \\ C	RILKETEFKK RILKETEFKK Search for Homo —	I K V L G S G A F I K V L G S G A F I K V L G S G A F	GTVYKGLWIPEG GTVYKGLWIPEG 790	EKVKIPVAI EKVKIPVAI 98 800
5191 A P00533 EGFR_HU	KELREATSPKA KELREATSPKA 810	N K E I L D E A Y V N K E I L D E A Y V 820 See	ference sequence: 5Y9T:A gorithm: BLAST ** arch in database: Algorithm:		VQLIMQLMPFGC VQLI <mark>T</mark> QLMPFGC 850 E	LLDYVREHK LLDYVREHK 98
5191 A P00533 EGFR_HU	DNIGSQYLLNW DNIGSQYLLNW 870	C V Q I A K G M N Y C V Q I A K G M N Y 180 E	Allow multiple ch Similarity Matrix:	Use local server only BLOSUM80 ~	PQHVKITDFGLA PQHVKITDFGLA 10 920	K L L G A E E K E K L L G A E E K E 98 930
5191 A P00533 EGFR_HU	Ү Н А Е G G K V P I K Y Н А Е G G K V P I K 940	WMALESILHRIY WMALESILHRIY 950	Y T H Q S Y T H Q S Y T H Q S Extending:		E G S K P Y D G I P A S F G S K P Y D G I P A S 980	EISSILEKG EISSILEKG 98
5191 A P00533 EGFR_HU	È R L P Q P P I C T I E R L P Q P P I C T I 1000	D V Y M I M V K C W M D V Y M I M V K C W M 1010	DADS Word size: DADS Expect (E) value threshold:		A R D P Q R Y L V I Q G A R D P Q R Y L V I Q G 1040 	DERMHLPSP 100 DERMHLPSP 98 1050
5Y9T A P00533 EGFR_HU	T D S N F Y R A L M D T D S N F Y R A L M D	E E D M D D V V D A D I E E D M D D V V D A D I	EYLIP Additional PSI-BLA: EYLIP Iterations:	ST options:	LSSLSATSNNS	TVACIDRNG 98
SEQUENCES 1 selected 2 f	total REFERENCE (1 total) OTHER TAE	SY9T (A) S 1 sequence (2 tabs)	Inclusion thre	eshold: 0.01	XM X	

Multiple Sequence Vi	ewer/Editor							>
File Edit Select	View Aligr	n						
O Workspace	Workspace Co	ру 🕱 🕂						
Load from: Wor	rkspace 🔻			d / Fetch:		P0053	з 🔹 < ⊳ 🌣 🖉 Мотоlogs IIIIAlign ▼ 🚺	Other Tasks 🔻
5Ү9Т	🚺 Homolo	og Search Results -	5Y9T:A)			×	< 100
P00533 EGFR_	ŀ						Results of search run from: Workspace Copy V	98
								-
5Ү9Т	Reference Se	equence: 5Y91:A				Algorit	Inn: BLASI	100
P00533 EGFR	_F Select one o	r more homologs to i	import in	to viewer:			Choose top: 10 Select	98
	Name	E-value	Score	Identity %	Positive %	Gaps %	Description	^
5Y9T	5Y9T_A	0	1669	100	100	0	Crystal Structure of EGFR T790M mutant in complex with naquotinib [Homo sapiens]	100
P00533 EGFR	_F 1M14_A	0	1664	99.6997	99.6997	0	Tyrosine Kinase Domain from Epidermal Growth Factor Receptor [Homo sapiens]	98
	6TFU_A	0	1663	99.6997	99.6997	0	Crystal Structure of EGFR T790M/V948R in Complex with Covalent Pyrrolopyrimidine 14d [Homo sapiens]	
-	6589_A	0	1647	98.7988	98.7988	0	Crystal Structure of EGFR-T790M/C797S in Complex with Covalent Pyrrolopyrimidine 19g [Homo sapiens]	
5Y9T	4124_A	0	1644	99.696	99.696	0	Structure of T790M EGFR kinase domain co-crystallized with dacomitinib [Homo sapiens]	100
PUUSSSJEGER	A	0	1644	100	100	0	Crystal structure of EGFR kinase domain T790M mutation in complex with AEE788 [Homo sapiens]	98
	3IKA_A	0	1642	100	100	0	Crystal Structure of EGFR 696-1022 T790M Mutant Covalently Binding to WZ4002 [Homo sapiens]	
5Ү9Т	4TKS A	0	1642	99.3939	99.3939	0	Native-SAD phasing for human EGFR kinase domain. [Homo sapiens]	100
P00533 EGFR	H 4G5P A	0	1640	100	100	0	Crystal structure of EGFR kinase T790M in complex with BIBW2992 [Homo sapiens]	98
	5CAV A	0	1638	99, 3921	99,3921	0	FGER kinase domain with compound 41a [Homo samiens]	
S EVOT		0	1628	00 2021	00 2021	0	crystal structure of EGEP kinase domain in complex with Mitogen inducible game 6 protein [Hemo samians]	100
P00533[EGFR	+ 4122 A	0	1630	00, 2021	00, 2021	0	Crystal structure of Edik Kinase dominin in complex with Hitogen-Inducible gene o protein [nomo sapiens]	98
	4125_A	0	1630	99.3921	99.5921	0	<pre>crystat structure of the with-type Fork kinase domain in complex with dacomitining (soaked) [Homo sapiens] </pre>	×
	Include s	structures when impo	orting PD	B sequences			Import into active tab (default is original search ta	<i>b)</i>
5Ү9Т		_						100
P00533[EGFR_	Export	 10 sequences se 	elected				Import Cancel	98
								?
5Y9T	А							100
SEQUENCES 0	selected 2				5Y9T (A)		
	in Workspace	e (1 total)				ence (1 tał		

- We can now select the entries we're interested in based on sequence identity and the provided description.
- We can also at the same time download their structures.
- You can always access the BLAST search results through: Other Tasks -> Homologs Search Results...

🔞 Multiple Sequence V	iewer/Editor						– 🗆 X	1
File Edit Select	View Align							
O Workspace	Workspace Copy 🛛 🗶 🕇							
Load from: Wo	rkspace 🔻 Đ		ind / Fetch		P0	33 \star 🛃 🏳 🏠 🖉 Homologs 🗰 Align 🔻	🕂 Other Tasks 🔻	
	M Homolog Search Results -	- 5Y9T:A					×	
💉 5Ү9Т						Results of search run from: Workspace Copy \sim	100	
P00533 EGFF	Reference Sequence: 5Y9T:A				Algorit	n: BLAST	98	
з 5 у9т	Select one or more homologs to	impor <mark>t</mark> in	to viewer:			Choose top: 10 🜲 Sel	ect 100	
P00533 EGFF	Name E-value	Score	Identity %	Positive %	Gaps %	Description	<u> 98 98 </u>	
	2RFD_A 0	1597	99.3769	99.6885	0	Crystal structure of the complex between the EGFR kinase domain and a Mig6 peptide [Homo sapiens]	10 C	
*	2RGP_A 0	1570	99.6825	99.6825	Θ	Structure of EGFR in complex with hydrazone, a potent dual inhibitor [Homo sapiens]		
SY9T	5GNK_A 0	1467	99.6599	99.6599	0	Crystal structure of EGFR 696-988 T790M in complex with LXX-6-34 [Homo sapiens]	100	
PUUSSSJEGFF	3LZB_A 0	1427	99.3056	99.3056	0	EGFR kinase domain complexed with an imidazo[2,1-b]thiazole inhibitor [Homo sapiens]	90	
	3PP0_A 0	1317	78.6585	89.3293	0.304878	Crystal Structure of the Kinase domain of Human HER2 (erbB2). [Homo sapiens]		
💉 5Ү9Т	3BBT_B 0	1314	77.5385	88.6154	0	rystal structure of the ErbB4 kinase in complex with lapatinib [Homo sapiens]	100	
P00533 EGFF	2R4B_A 0	1225	79.2642	88.2943	0	ErbB4 kinase domain complexed with a thienopyrimidine inhibitor [Homo sapiens]	98	
	60P9_A 3.20961e-122	872	59.0909	76.2238	0	HER3 pseudokinase domain bound to bosutinib [Homo sapiens]		
💉 5Ү9Т	3LMG_A 5.54179e-122	872	59.0909	76.2238	0	Crystal structure of the ERBB3 kinase domain in complex with AMP-PNP [Homo sapiens]	100	human homologues of EBTR
P00533 EGFF	4RIW_A 5.58861e-121	864	59.0106	76.3251	0	Crystal structure of an EGFR/HER3 kinase domain heterodimer [Homo sapiens]	98	
	3KEX_A 9.35255e-121	862	59.2199	76.5957	0	Trystal structure of the catalytically inactive kinase domain of the human epidermal growth factor recept	pr	
S EVOT	4RIX_A 2.97922e-120	859	58.6572	76.3251	0	Crystal structure of an EGFR/HER3 kinase domain heterodimer containing the cancer-associated HER3-Q790R m	100	
P00533 EGFF	<						> 98	
	Include structures when imp	orting PD	B sequences			Import into active tab (default is original sear	ch tab)	
	Export • 1 sequence sele	ected				Import Can	cel	
SY9T							100	
FUUSSSIEGIF							<u> </u>	
SEQUENCES 1	selected 2 total			CE 5Y9	T (A)			
STRUCTURES 1	in Workspace (1 total)				quence (1	b)		

- We once again have to align the downloaded sequences.
- We can also align the associated structures after the alignment based on the sequence alignment.

• The sequence gaps in other structures indicate missing residues.

Multiple Sequence Viewer/Editor							-	
File Edit Select View Ali	gn							
O Workspace Workspace C	Copy 🙁 🕂							
					i _			
Load from: Workspace	• •	Find / Fetch:	P00533		× -	CHomologs	Align V Other	lasks 🔻
TITLE CHN		10	20	3	0 40	50	60 IF) %
	GSHMA	SGEAPNO		E F K K I K V L (SGAFGTVYKG		AIKELREAT	100
1M14 A		GEAPNO	ALLRILKE ⁻	EFKKIKVLO	G S G A F G T V Y K G	LWIPEGEKVKIPV	AIKELREAT	99
6TFU A		• • • • • N C	ALLRILKE	EFKKIKVLO	S S A F G T V Y K G	LWIP	AIKELREAT	100
6589 A		EAPNO	ALLRILKE	EFKKIKVLO	G S G A F G T V Y K G	LWIPEGEKVKIPV	AIKELREAT	99
4124 A		NO	ALLRILKE ⁻	EFKKIKVLO	G S G A F G T V Y K G	LWIPEGEKVKIPV	AIKEL	100
2JIU A		GEAPNO	A L L R I L K E T	E F K K I K V L G	G S G A F G T V Y K G	LWIPEGEKVKIPV	AIKELREAT	98
BIKA A		GEAPNO	ALLRILKE ALIDIIKET	EFKKIKVLO	S G A F G T V Y K G			100
4G5P A		GEAPNO	ALLRILKE	EFKKIKVLO	G S G A F G T V Y K G	LWIPEGEKVKIPV	AIKELREAT	97
5CAV A		EAPNO	ALLRILKET	EFKKIKVLO	SGAFGTVYKG	LWIPEGEKVKIPV	AIKELREAT	99
4ZJV A			LLRILKE	EFKKIKVLO	G S G A F G T V Y K G	LWIPEGE VKIPV	AIKELREAT	100
		70	80	90	100	110	120	
					î			
бүрт А	SPKAN	K E I L D E A	A Y V M A S V D N F	HVCRLLGI	C L T S T V Q L I M Q	LMPFGCLLDYVRE	HKDNIGSQY	100
🚽 1M14 A	SPKAN	K E I L D E A	A Y V M A S V D N F	HVCRLLGI	C L T S T V Q L I <mark>T</mark> Q	LMPFGCLLDYVRE	HKDNIGSQY	99
6TFU A	SPKAN	KEILDE4	A Y V M A S V D N F	HVCRLLGI	CLTSTVQLIMQ	LMPFGCLLDYVRE	HKDNIGSQY	100
6589 A	SPKAN	KELLDEA KELLDEA	AYVMASVDNI AYVMASVDNI	HVCRLLGI (CLISIVQLIMQ CLISIVQLIMQ		HKDNIGSQY	99
4124 A	SPKAN	K E I L D E A		HVCRLLGI	CLISIVQLIMQ CLISIVOLIMO		HKDNIGSQY	100
	SPKAN	K E I L D E A	A Y V M A S V D N F	HVCRLLGI	CLTSTVQLIMQ	LMPFGCLLDYVRE	HKDNIGSQY	90 100
4TKS A	SPKAN	K E I L D E A	YVMASVDNF	HVCRLLGI	CLTSTVQLITQ	LMPFGCLLDYVRE	HKDNIGSQY	100
4G5P A	SPKAN	K E I L D E A	A Y V M A S V D N F	HVCRLLGI	CLTSTVQLIMQ	LMPFGCLLDYVRE	HKDNIGSQY	97
5CAV A	SPKAN	K E I L D E A	A Y V M A S V D N F	HVCRLLGI	CLTSTVQLITQ	LMPFGCLLDYVRE	HKDNIGSQY	99
azjv A	SPKAN	KEILDE4	A Y V M A S V D N F	HVCRLLGI	C L T S T V Q L I T Q	LMPFGCLLDYVRE	HKDNIGSQY	100
	1:	30	140	150	160	170	180	
		1						
БҮЭТ А	LLNWC	VQIAKGN	INYLEDRRL\	HRDLAARN	/ L V K T P Q H V K I	TDFGLAKLLGAEE	KEYHAEGGK	100
1M14 A		VQIAKGN		HRDLAARN V	/ L V K I P Q H V K I	I D F G L A K L L G A E E	K E Y H A E G G K	99
DIFU A		U Q I A K G K		HRULAARN				100
SEQUENCES 11 selected	11 total		E 5Y9T (A)					
STRUCTURES 11 in Worksp	ace (11 total)		BS 11 sequences (1 tab)					
		1				and the second se		

W How to find and compare homologues?

Note: These entries are individual chains taken from the original PDB models, i.e. out of the deposited crystal context, so certain X-ray quality checks cannot be performed on them.

Workspace before and after the sequence-based structural alignment.

W How to find and compare homologues?

The final checklist

Function-related checks

- □ What's the subcellular location of the protein?
- Is the protein a monomer or a multimer?If a multimer, is it a homomer or a heteromer?
- Is the protein known for multiple conformational states?
- □ What about atypical chemical forms?
- □ Maybe there are some PTMs?
- Are any metals involved?
- Does the protein bind any other cofactors?

Sequence-related checks

- □ Is the whole protein there? Any missing (sub)domains?
- Are you working with the correct sequence?
- □ Are there any "extras", e.g. signalling peptides or expression tags?
- □ Are there any homologues?

GLOBAL METRIC

□ Is the resolution high enough?

Video created by James Holton @ Berkley Lab showing how the electron density changes in the 0.5-5 Å resolution range. It's **not entirely realistic** as it's created w/o hydrogens and directly from the atomic model (so no errors, noise, etc.), but it's still highly illustrative. Resolution - the distance at which you can tell objects apart.

Lower the number, higher the quality.

proteopedia.org

Quick resolution guide from Proteopedia:

- 1.2 Å Excellent -- backbone and most side chains very clear.
 Some hydrogens may be resolved.
- 2.5 Å Good -- backbone and many side chains clear.
 - 3.5 Å OK -- backbone and bulky side chains mostly clear.
 - 5.0 Å Poor -- backbone mostly clear; side chains not clear.

□ Are the R and R_{free} factors reasonably low?

R factor is the **measure of error** between the observed intensities used in the refinement process and the ones calculated from the structural model.

R_{free} factor is calculated in the same manner, but on a subset of intensities that haven't been used in the refinement (5-10% of the data).
Thus, it is used to estimate model bias on the refinement process.

Lower the numbers, smaller the error and better the fit to experimental data. Rules of thumb:

- R factors < 0.2 are considered reliable.
- Random models give R factors in the 0.4-0.6 range.
- Lower the resolution, higher the R factors (i.e. higher the model errors).
- R factors shouldn't be > resolution/10.
- R_{free} R < 0.07

LOCAL METRIC

What are the B-factors like?

Uncertainty of the modelled atomic coordinates increases with the disorder present in the crystal.

There are two types of disorder - static (parts of the protein are stable, but present in different conformations) and **dynamic** (some parts of every protein copy are subject to **thermal motion**).

B-factors (temperature factors) reflect that disorder and are proportional to the mean square displacement of the atom.

Higher the number, higher the mobility/disorder of the atom.

Representation of calmodulin in which the higher B-factor values are shown using warm colours and thicker tube (PDB ID: 1EXR).

B-factors can be modelled as **isotropic** or **anisotropic**, based on whether the displacement is considered to be identical in all directions or not.

isotropic B-factors

phenix-online.org

Rules of thumb and caveats:

- B-factors < 30 Å² indicate reliable positions.
- B-factors > 60 $Å^2$ signify disorder.
- Crystal contacts can lower B-factors of otherwise mobile regions.
- High B-factors can also arise from model errors.
- Comparison of B-factors across different PDB structures is meaningless (unless they were obtained under identical experimental conditions and refinement process - highly unlikely!).

M How to view B-factors?

colour the selected

B-factors

Representation of calmodulin in which the higher B-factor values are shown using warmer colours (PDB ID: 1EXR).

LOCAL METRIC

X-ray quality checks

What about the RSCC values?

Real space correlation coefficient (RSCC) is a measure of similarity between an electron density map calculated from the experimental data and the one calculated directly from a structural model.

RSCC corresponds to the **sample Pearson correlation coefficient**, so the values range from -1 (perfect anti-correlation) to 1 (perfect correlation), where 0 indicates no correlation. In practice, the expected values range from 0 to 1 and typically everything below 0.8 is considered to indicate a **poor density fit**.

RSCC is calculated per residue and it's often plotted together with the B-factors to identify problematic regions.

The RSCC (in black) and B-factor (in blue) plot for the BotLCB protease in complex with synaptobrevin-II (PDB ID: 1F83). The left part of the plot corresponding to the protease indicates a good density fit, with the exception of three loops. However, the synaptobrevin-II peptide on the right has low RSCC values and excessive B-factors indicating a very problematic region that should be carefully examined. Example taken from https://www.ruppweb.org/Xray/tutorial/rscc.htm.

Are there any geometric outliers or clashes?

During the **refinement process**, the structural model is adjusted to produce a better fit to the experimental data, while typically keeping the geometry of the molecules as **close to ideal values** as possible.

However, **outliers still occur** and should be checked to make sure they're not affecting relevant protein sites.

Two types of **validation checks** are done during the deposition of structures to the PDB:

- Comparison of selected metrics to all the other PDB structures, both in the same resolution range and across all resolutions.
- Comparison of protein and ligand geometry to the ideal values.

Display Files -Ownload Files -40W0 X-Ray Structural and Biological Evaluation of a Series of Potent and Highly Selective Inhibitors of Human Coronavirus Papain-Like Proteases DOI: 10.2210/pdb4OW0/pdb Classification: HYDROLASE/HYDROLASE INHIBITOR Organism(s): SARS coronavirus Urbani Expression System: Escherichia coli BL21(DE3) Mutation(s): No 6 Full validation report Deposited: 2014-01-28 Released: 2014-04-23 Deposition Author(s): Baez-Santos, Y.M., Mesecar, A. Full Report Experimental Data Snapshot wwPDB Validation 6 3D Report Method: X-RAY DIFFRACTION Metric Percentile Ranks Resolution: 2.10 Å Rfree 0.206 R-Value Free: 0.204 Comparison to other Clashscore R-Value Work: 0.176 Ramachandran outliers R-Value Observed: 0.177 Sidechain outliers PDB structures RSR7 outliers 15.4% Percentile relative to all X-ray st ntile relative to X-ray structures of This is version 1.3 of the entry. See complete history

Protein geometry checks

- bond lengths
- bond angles
- chirality
- planarity (side chains, peptide bond, main chain)
- close contacts / clashes
- torsion angles
 - backbone (Ramachandran plot)
 - $\circ~$ side chains

Ligand geometry checks

- bond lengths
- bond angles
- chirality
- rings
- close contacts / clashes
- torsion angles

Outliers indicate possible model errors!

W How to check the protein structural quality?

You can access Protein Reliability Report via:

Tasks -> Browse -> Structure Analysis -> Protein Reliability Report

• Once you run the job, you can evaluate the quality of your structure across different categories based on the color and size of individual bubbles: Larger and redder the bubble, more issues are associated with that property.

use diffraction data if available (needs to be	© Protein Reliability Report pick which part of the structure you want to analyze	- 0 ×
	Analyze: Entire structure V	
pre-downloaded) 📃 🔨	Vuse diffraction data: C:\Users\kuzmanic\Documents\Schrodinger\3s3i.cv	Browse
	Display results for chain: A V Protein: 3531	
	~	
save the report as a		
	Save Report Save Image	
.txt file or an image		
	Job name: [prot_rel_3s sl.	Run Run
	Host=localhost:1, Incorporate=Append new entries as a new group	?
		on need to run the
		UN FILLY LU / UPL LPLL

W How to check the protein structural quality?

1 – Structure Quality in Binding Site

Ligand and Binding Site RSCC > 0.9 Packing - checks how different the environment of each fragment is compared to average environment in a curated dataset (calculated per residue as Z-score).

Binding and Non-Binding Site Packing report the number of consecutive residues with Z-score < -4 (possibly incorrectly built regions).

2 - Overall Structure Quality

Steric Clashes

Missing Loops/Atoms - lists loops missing from the structure and residues with missing heavy atoms in the analysed region.

Protein Packing reports whether the average protein Z-score falls below -1.2 which indicates a poorly built structure.

4 PDB Resolution	PDB RFree - R	Ligand RSCC	Binding Site RSCC	1 A:GLU 4 A:ARG 5 157.437 2 A:ASN 14 A:LYS 15 157.109 3 A:ILE 17 A:TRP 18 159.038 4 A:ALA 34 A:TYR 35 42.066	
3 Isolated Waters Clusters	2 Missing Loops	Protein Packing	Binding Site Packing	5 A:LYS 54 - A:LEU 55 158.094 6 A:LEU 55 - A:SER 56 53.448 7 A:ARG 57 - A:PRO 58 159.546 8 A:LEU 171 - A:ALA 172 149.668	
2 Non-Binding Site Packing	3 Buried unsatisfied donor	Buried unsatisfied acceptor	Waters with no HB partners		
Stoke Charles	Bond Length Deviations	Bond Angle Deviations	Backbone Dihedrals		
3 Sidechain Dihedrals	4 Unusual B-factors	Peptide Planarity	Sidechain Planarity		
Improper Torsions	2 Missing Atoms			v	

3 – Minor Structural Issues

Isolated Water Clusters - number of water clusters that are not hydrogen-bonded to anything else. Electron density possibly misidentified as water.

Number of **Buried unsatisfied HB donors and acceptors** or **Waters with no HB partners** can be indicative of modelling errors.

The same applies to a host of geometry checks: **Bond Length** and **Angle Deviations**, **Backbone** and **Sidechain Dihedrals**, **Peptide** and **Sidechain Planarity**, and **Improper Torsions**.

4 – Structure statistics

PDB Resolution < 2.5 Å PDB Rfree - R < 0.06 Unusual B-factors - number of residues whose average B-factor is > 100 Å².

What were the experimental conditions like?

Experimental conditions used to grow protein crystals can affect the protein conformation and even cause artifacts.

Pay close attention to:

- pH
- Salts and compounds used to facilitate crystallisation
- The method used for protein-ligand crystals (co-crystallisation vs soaking)

pH of the crystallisation buffer can cause residues to adopt **atypical protonation states** which could be functionally important.

Dependence of distance between DFG-Asp and ATP-coordinating Lys on the pH of the crystallisation buffer in *apo* Abl kinase structures. From Shan *et al.* PNAS 106 (1) 139-144 (2009). Short distance between Asp and the backbone carbonyl oxygen indicates that Asp is protonated in the DFG-out conformation of Abl kinase (PDB ID: 10PK).

What were the experimental conditions like?

Experimental conditions used to grow protein crystals can affect the protein conformation and even cause artifacts.

Pay close attention to:

- pH
- Salts and compounds used to facilitate crystallisation
- The method used for protein-ligand crystals (co-crystallisation vs soaking)

Crystallising agents can at times bind to proteins and alter their conformations. Such binding events can also reveal additional protein functionality. N-octyl-beta-glucopyranoside is a detergent that has accidentally contributed to the discovery of **lipid binding capability** of p38 α kinase, as well as its alternative mechanism of activation, when it was found bound to the MAPK insert (left, PDB ID: 2NPQ). However, in some structures, the tail of the same detergent can **displace DFG-Phe**, irrespective of the presence of an inhibitor, and lead to a conformation between DFG-in and DFG-out states (right, PDB ID: 3QUE).

What were the experimental conditions like?

Experimental conditions used to grow protein crystals can affect the protein conformation and even cause artifacts.

Pay close attention to:

- pH
- Salts and compounds used to facilitate crystallisation
- The method used for protein-ligand crystals (co-crystallisation vs soaking)

Crystals of protein-ligand complexes can be obtained either by directly growing crystals from a solution in which both protein and ligand are present (**co-crystallisation**) or by first creating protein crystals and then **soaking** them in a ligand solution.

While soaking requires less time and resources, it can lead to **misleading binding poses** as the ligand is added after the crystal lattice has been formed and the binding site might not be fully available.

PDE10A protein typically has two chains in the asymmetric unit. When such crystals are soaked, the ligand can usually bind only in one of the chains due to crystal contacts that block the other site (left, PDB ID: 3SNL). Occasionally, a ligand can access the other site too, but it assumes a different binding mode (right, PDB ID: 2WEY). The enlarged ligand binding sites are aligned for easier comparison.

Are there any parts of the structure that don't fit the electron density well?

Even in high-resolution structures, there could still be parts of the model that don't necessarily describe the experimental data well and their fit to the electron density is **poor**.

The density fit is **important to visualise** for sites of interest, **especially if they contain a ligand**, as any errors in such sites can lead the project in the wrong direction.

Most of the entries in the PDB contain the **diffraction data** that can be used together with the deposited model to create and view the electron densities.

If you observe any incorrect rotamers or poor density fits, you can either **consult a crystallographer**, try to **re-refine** the electron density map yourself (only if really desperate and/or confident in your skills), or check whether it has already been re-refined by the **PDB-REDO** project.

Electron density maps of the leukotriene A4 hydrolase binding site with a bound inhibitor (PDB ID: 3FTY). 2Fo-Fc map is shown in grey (contoured at 1 σ), while the Fo-Fc difference map (contoured at 3 σ) is shown in magenta (for density added by the model, but unsupported by diffraction data) and green (for density unaccounted for by the structural model).

3FTY

Value

0.251

Leukotriene A4 hydrolase in complex with fragment 3-(benzyloxy)pyridin-2-amine

Once you select a residue, the view shows its electron density, as well as the density of residues within a 5-Å range. You can also control the σ level for each of the maps.

Tasks -> Browse -> Other Applications -> PrimeX

You need to point PrimeX to your structural model and its sequence, as well as the reflection data (if using a PDB model, the reflections can be pre-downloaded through Get PDB File or Protein Preparation Wizard).

Schrödinger

Make sure both the 2Fo-Fc and the Fo-Fc coefficients are selected to create the corresponding maps.

54

Tasks -> Browse -> Other Applications -> PrimeX

If map results do not automatically appear in the workspace, you can import them manually

PrimeX Surf Table + Isovalue - Isovalue + Extent - Exten	ent Unit Cell						
Input Data Checkpoint Export							
Mutate Model to Sequence Reference Sequence							
Optimize H-Bond Networks R-Factor Calculation							
Real-space refinement		7					11
Poting Loope Prodict Side Chaine Minimize	Manag	e Survaces					
Ligand/Solvent Placement Water Placement	In	Limit	Entry		Volume Name	Vol	Surface
Ligand/Solvent Flacement		Linne			primey	0	Eo Ec
Reciprocal-space refinement			16: 4DJX		primex-	0	2Eo-Ec
Minimized and Divid Dedice Observation			10. 1007		printex		21010
Minimization Rigid Bodies Simulated Annealing	9						
Map-related	<		1				D: 1
Create Man Density Fit Density Blake	Impo	ort	uplicate	Jelete Split	Limit Expo	ort to Ma	p Displa
Create Map Density Fit Density Blobs	Isoval	ue:		8.9	2.98199	3.0	00 Sigma
		play at m	OSL 16	A*			
	(?)						
9, Ø~ =							
🔞 Import Surface / Volume File						×	-
← → · · ↑ 📕 « path/to/working_	directory			۹. ۵			
Organize 👻 New folder					E 🕶 🔲 🛛	2	
This PC Name	^	Date m	odified	Туре	Size		
3D Objects .mmproj-admi	in	12/12/2	022 11:51	File folder			
Desktop I .mmproj-scene	e	08/12/2	022 08:46	File folder		5	
Documents	~~ \	08/12/2	022 08:46	File folder			
Downloads	not_prepared	08/12/2	022 10:15	File folder			
Music	map-4djx-out-0.cns	08/12/2	022 10:39	CNS File	106.139 KB		1
Pictures	map-4djx-out-1.cns	08/12/2	022 10:39	CNS File	106.139 KB		
File name United			an Adia and O -	na" I Sunfar	Alaluma (* vic * alt * env		
File name: "primex-creater	map-4djx-out-1.cns" "prime	ex-createm	ap- <mark>4d</mark> jx-out-0.c	ns" V Surfac	e/Volume (*.vis *.plt *.cn:	-	

Style changes made to the electron density maps:

- Coloured the 2Fo-Fc map grey, set the style as solid, and the transparency of front/back surfaces to 75.
- Coloured the negative Fo-Fc map magenta, set the style as solid, and the transparency of front/back surfaces to 50.

Any alternate conformations of protein residues or ligands?

At times, residues within the crystal can be observed in two or more distinct conformations. Such cases are recorded in the **occupancy** field of the PDB file.

Occupancy reports the **fraction of molecules** which contain that specific conformation. For residues with a single conformation, the occupancy is 1.

Alternate locations of Glu109 in myoglobin (PDB ID: 1A6M).

Were some parts of the protein modelled in (0-occupancy atoms)?

In some cases, crystallographers model in parts of the protein (usually loops) that are not seen clearly in the electron density. Such atoms have an occupancy of 0.

Several side chains in bacterial SpollAA protein have been modelled in with the occupancy of 0 (PDB ID: 1H4X).

Make sure none of the relevant parts of your target have 0-occupancy atoms as their positions are not reliable.

What about the missing atoms/residues?

If parts of the protein are **flexible** and have space to move within the crystal lattice, it is usually not possible to reliably model them due to very weak electron density.

To avoid possible misinterpretations, crystallographers deposit structures to the PDB without these parts included. In the majority of cases, these are **N- and C-terminal tails or loops**.

You can easily find what's missing from the model in the header of PDB files under **REMARK 465** (missing residues) and **REMARK 470** (residues with missing heavy atoms).

```
REMARK 465 MISSING RESIDUES
REMARK 465 THE FOLLOWING RESIDUES WERE NOT LOCATED IN THE
REMARK 465 EXPERIMENT. (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN
REMARK 465 IDENTIFIER; SSSEQ=SEQUENCE NUMBER; I=INSERTION CODE.)
REMARK 465
REMARK 465
            M RES C SSSEOI
REMARK 465
              LEU A
                        73
REMARK 465
              ARG A
                        74
REMARK 470 MISSING ATOM
REMARK 470 THE FOLLOWING RESIDUES HAVE MISSING ATOMS (M=MODEL NUMBER;
REMARK 470 RES=RESIDUE NAME; C=CHAIN IDENTIFIER; SSEO=SEQUENCE NUMBER.
REMARK 470 I=INSERTION CODE):
REMARK 470 M RES CSSEQI
                          ATOMS
REMARK 470
              PRO A
                            CG
                                 CD
REMARK 470
              ILE A 14
                           CG1 CG2 CD1
```

To model or not to model missing parts?

Unfortunately, there are no clear-cut rules and it's up to the modeller to estimate whether the addition of the missing parts will cause more harm than good on the project.

Some tips:

- Adding missing loops around binding sites when running docking experiments with a rigid receptor is likely to cause artifacts.
- Any calculations based on MD simulations cannot run if there are any of the heavy atoms missing.
- If you decide not to add the missing loops back in, it's always a good idea to cap the terminal residues to avoid placing charges incorrectly.

W How to see the location of missing atoms/residues?

- Non-standard residues connected by geometry and/or CONECT records.
- Standard residue, but with missing atoms.
- Adjacent residue is missing.
- Standard residue with unrecognized atom names connected by geometry.
- Residue with an alternate location indicator.
- Standard residues connected by standard templates.

colour residues based on the PDB Conversion Status colour scheme

W How to see the location of missing atoms/residues?

- Multiple sequence viewer allows you to easily compare the sequence of your structure to the canonical sequence from UniProt.
- Note that the missing residues are shown by darker colour shades.
- Such visualisations help you to quickly gauge which missing regions could be difficult to model back in.

Could the crystal contacts have caused some artifacts?

Proteins in the crystal lattice are much more **tightly packed** than in solution. Such packing can stabilise conformational states that wouldn't necessarily be adopted in solution.

For example, in the crystal structure of the HDAC8 protein complexed with SAHA (PDB ID: 1T69), the ligand directly interacts with both the protein and the ligand of a crystal mate which brings the validity of its binding pose into question. It is highly recommended to generate **crystal symmetry mates** that can be found at 5 Å of the asymmetric unit cell and check whether any pertinent parts of the protein or ligand can be found at the **protein-protein interfaces**.

The majority of modern visualisation softwares can easily generate crystal symmetry mates at any desired distance range or even create whole **unit cells** or **supercells**.

Note: Crystal symmetry mates are generated based on the input coordinates and the symmetry operators. If you at any point alter the original coordinates (e.g. by aligning the model to a reference structure), the created symmetry mates will be **incorrect**.

W How to check the crystal contacts?

The structure must contain the **CRYST1** section with **the space group information** so that the appropriate symmetry operations can be applied to create **crystal mates**.

The asymmetric unit (ASU) is coloured purple (with ligand in orange), while its crystal mates are coloured grey (with ligands in green) (PDB ID: 3S3I).

The final checklist

Function-related checks

- □ What's the subcellular location of the protein?
- Is the protein a monomer or a multimer?If a multimer, is it a homomer or a heteromer?
- Is the protein known for multiple conformational states?
- □ What about atypical chemical forms?
- Maybe there are some PTMs?
- Are any metals involved?
- Does the protein bind any other cofactors?

Sequence-related checks

- □ Is the whole protein there? Any missing (sub)domains?
- Are you working with the correct sequence?
- Are there any "extras", e.g. signalling peptides or expression tags?
- □ Are there any homologues?

Schrödinger

X-ray related checks

- □ Is the resolution high enough?
- $\Box \quad \text{Are the R and R}_{\text{free}} \text{ factors low?}$
- □ What are the B-factors like?
- □ What about the RSCC values?
- Are there any geometric outliers or clashes?
- What were the experimental conditions like?
- Are there any parts of the structure that don't fit the electron density well?
- Any alternate conformations of protein residues or ligands?
- Were some parts of the protein modelled in (0-occupancy atoms)?
- What about the missing atoms/residues?
- Could the crystal contacts have caused some artifacts?

Recommended reading

REVIEW ARTICLE Di Free Access

Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures

Alexander Wlodawer, Wladek Minor, Zbigniew Dauter, Mariusz Jaskolski

First published: 06 December 2007 | https://doi.org/10.1111/j.1742-4658.2007.06178.x | Citations: 134

HHS Public Access

Author manuscript Postepy Biochem. Author manuscript; available in PMC 2017 September 24.

Published in final edited form as: Postepy Biochem. 2016 ; 62(3): 242–249.

The young person's guide to the PDB*

Wladek Minor^{1,®}, Zbigniew Dauter², and Mariusz Jaskolski^{3,4}

¹Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA ²Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA ³Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland ⁴Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland

• There are also quite a few slide decks online from Gerard J. Kleywegt aimed at non-crystallographers with lots of illustrative examples.

Protein Preparation Workflow

Tasks -> Browse -> Protein Preparation and Refinement -> Protein Preparation Workflow (can also be found in the Favourites toolbar under Protein Preparation)

You can use the **PDB Conversion Status** colour scheme to highlight possible issues:

- Non-standard residues connected by geometry and/or CONECT records.
- Standard residue, but with missing atoms.
- Adjacent residue is missing.
- Standard residue with unrecognized atom names connected by geometry.
- Residue with an alternate location indicator.
- Standard residues connected by standard templates.

Fieparation wo	kflow	Diagnostics	Substructu	ires		
Click a button to finish and ensu before requestin	o run a s re the co ng the no	tep. Wait for e prrect entry is i ext step.	each process in the Worksp	to II bace	NTERACTI	/E
1. Specify Protein						
Source: Works	b <mark>ace</mark> 5TZ9 (1)				Get PDB	
Review Structure				G	lobal Settings	•
3. Diagnose and Ana	lyze					
3. Diagnose and Ana Run diagnostic Check Structure	llyze s and re	view the struc	ture in the se	condary	tabs.	
A. Diagnose and Ana <i>Run diagnostic</i> Check Structure A. Optimize H-bond <i>J</i>	alyze s and re Assignmen	view the struc	ture in the se	condary	tabs.	
3. Diagnose and Ana Run diagnostic. Check Structure 4. Optimize H-bond / Optimize to add Optimize	lyze s and re Assignmen dress an	view the struc ts y overlapping - or -	ture in the se hydrogens.	Condary Assign v	settings	v S
3. Diagnose and Ana Run diagnostic. Check Structure 4. Optimize H-bond A Optimize to add Optimize 5. Minimize and Dele	Assignmen dress and ete Waters	view the struc ts y overlapping - or -	ture in the se hydrogens.	Condary Assign v	settings Settings	v S
A. Diagnose and Ana Run diagnostic: Check Structure A. Optimize H-bond <i>I</i> Optimize to add Optimize to add Optimize and Dele Run a restraine specified water Clean Up	Nyze s and re Assignmen dress an dress an ete Waters d minim s.	view the struc ts y overlapping - or - tization, then c	ture in the se hydrogens. optionally del	Assign v ete	settings Settings vith Constraint Settings	s

C

Check here before and after preprocessing to see:

- Unknown atom types.
- Missing side-chain atoms
- Overlapping atoms (typically hydrogens which will be corrected in the H-bond optimisation stage).
- Alternate positions (where you can choose which one you'd like to proceed with).

Preparation Workflow Diagnostic	s Substr	uctures		
eck Workspace Entry	Entry: 5	TZ9 - 2-prepro	cessed	(3)
ne issue was found. See Reports fo	r more infor	mation about t	he prote	in,
Valences Missing Overlapping	g Alterna	tes Reports		
/iew: Steric Clashes			$\neg \setminus$	
Selec Average B-factors	sponding ite	ems in the Wor	kspace:	
Peptide Planarity	Distance	Min Allowed	Delta	í
E:AC Sidechain Planarity	2.452	3.4	0.948	
E:AC C-alpha Stereochemistry	1.783	3.42	1.637	
E:AC Missing Atoms Protein Reliability Report	2.441	3.2	0.759	-
E:AC Ramachandran Plot	1.773	3.25	1.477	
E:ACE 390: CH3 - E:PHE 524: CA	2.593	3.4	0.807	
E:ACE 390: CH3 - E:PHE 524: C	2.595	3.42	0.825	
E:ACE 390: CH3 - E:PHE 524: O	2.126	3.2	1.074	
E:ACE 390: C - E:PHE 524: C	2.855	3.44	0.585	
E:ACE 390: C - E:PHE 524: O	1.815	3.22	1.405	
E:ACE 390: C - E:ASP 577: OD2	2.597	3.22	0.623	
E:ACE 390: O - E:PHE 524: O	1.79	3	1.21	
E:ACE 390: O - E:CYS 574: CB	2.64	3.2	0.56	
	2 500	2 77	0 621	1

Protein Reports allows you to check and export all the possible geometric outliers, steric clashes, missing atoms, and unusually large B-factors, while the **Ramachandran Plot** allows for a quick visual of backbone dihedrals.

?.

The PPW protocol is composed of 3 steps:

- Preprocess
- Optimize H-Bond Assignments
- Minimize

Assigns **bond orders** to all bonds in the structure based on a range of factors, including connectivity, bond length, bond angles and dihedral angles. For HET groups, it first checks Chemical Components Dictionary using SMARTS patterns. **Always check** the HET group assignments.

Hydrogens are typically missing in X-ray structures and must be added for any further calculation. It's usually a good idea to remove the original hydrogens as they're often added incorrectly and might cause compatibility issues with other suite applications.

Force fields treat metal compounds as ionic rather than covalent, so it's necessary to replace the existing bonds to metals with **zero-order bonds** (to keep the molecule intact) and correct the formal charge on the metal and the neighboring atoms to treat the bonds as ionic.

Forms a bond between **sulphur atoms** that are within 3.2 Å of each other. **Renames the CYS residues to CYX** if the bond is added. **Always check** which bonds have been formed and whether they are biologically relevant.

Protein Preparation Workflow (Interactive) - 5TZ9 - 2-preproc...

Preparation Workflow Diagnostics Substructures INTERACTIVE Click a button to run a step. Wait for each process to finish and ensure the correct entry is in the Workspace before requesting the next step. 1. Specify Protein Source: Workspace Get PDB.. Entry: 5TZ9 - 2-preprocessed (3) **Review Structure** Global Setti 2. Proprocess Cap termini V Fill in missing side chains More O Preprocess Align to:
First selected entry
PDB: Assign bond orders: 🗹 Using CCD database Diagnose and Analyze Replace hydrogens Run diagnostics and review the st Creater Zero-order bonds to metals Check Structure Disufide bonds Antibody annotation scheme: Kabat **Optimize H-bond Assignments** Optimize to address any overlap Renumber residues to match scheme Optimize Add terminal oxygens to protein chains Convert selenomethionines to methionines 5. Minimize and Delete Waters Delete waters beyond hets: 8.00 \$ Å Run a restrained minimization, the Fill in missing loops (using Prime) specified waters. Generate het states (with Epik): pH: 7.4 +/- 2.0 🖨 Max states to process automatically 1 Clean Up Workflow group: 5TZ9-proteinprep 1 C ?

X

It's **critical to carefully check** where the missing atoms and residues are and whether modelling them in incorrectly can have jeopardise further calculations.

Typically, **missing side chains** tend to be on the protein surface, so adding them back won't create issues. If they're in the ligand binding site, then you need to make sure they're correctly rebuilt.

If you've decided to **rebuild loops**, it's probably better to use more sophisticated tools to get a suitable conformation, such as Prime Homology Modelling, Prime Refine Loops, or even Molecular Dynamics.

If you've decided to leave the gaps in, make sure you **cap the termini**, so that no charges are introduced at wrong locations.

Water molecules are **better left untouched** during the preparation process as their presence is usually beneficial for advanced calculations, such as FEP+ and MD simulations. They can be easily removed at a later stage.

Runs **Epik** to generate probable ionization and tautomeric states in the specified pH range for all HET groups, as well as states prepared for binding to metals if the HET group is coordinated to a metal. Think carefully of the **pH range** you'd like to work with and **always check** if the results make sense. If still in doubt, you can always use **Jaguar** for more precise calculations.

Substructures tab allows you to **easily select and visualise** individual chains, water molecules, and HET groups and decide whether you want to keep them in the system.

HET table

For each of the HET groups, you can (and should) **review all the Epik-generated states** and decide which one you'd like to proceed with. The one with the lowest state penalty is automatically selected.

When you select a HET state, its **Epik state penalty** is shown together with the hbond count and total charge.

	W FIOtelli FI	reparation Workfl	ow (Interactive) -	51Z9 - 2-preproces	sed —		×	
	Preparat	ion Workflow	Diagnostics	Substructure	S			
	Reload from W	Vorkspace	-	Entr	y: 5TZ9 - 2-prepi	rocessed	(3)	
	Choose ite	ems below to v	view in Worksp	ace, copy, or del	ete.	Select T	.	
	Ligands, classificat Workspac	Metals, Othe tion, visit the L ce above.	r. The Lig colu igand Detectio	mn shows detec n settings, the	ted ligands. To cl n click <i>Reload fro</i>	hange the om	Ę	
	The Prep favorable keep.	state will be c	ay generate m hecked by defa	ultiple states for ault. Optionally c	your ligands. The hoose a different	e (likely) m state to	nost	
	Lig C	Chain Re	es Name + #	S1 S2				
	х е	7SD 70	01					
.h 🕇								
	A							
	Waters:			Chains:	Expand	to PDB cł	nain	
	Waters: Chain	Res N	ame + #	Chains:	Expand	to PDB cł	nain	
	Waters: Chain E	Res Na HOH 801	ame + #	Chains:	Expand Type Protei	to PDB cr	nain	
r table 🔺	Waters: Chain E E	Res N HOH 801 HOH 802	ame + #	Chains:	Expand Type Protei	to PDB cł	nain	- chain ta
r table \prec	Waters: Chain E E E	Res Na HOH 801 HOH 802 HOH 803	ame + #	Chains:	Expand Type Protei	to PDB cł	nain	- chain ta
r table \prec	Waters: Chain E E E	Res N HOH 801 HOH 802 HOH 803 HOH 804	ame + #	Chains: Chain E	Expand Type Protei	to PDB cł n	nain	chain ta
r table ≺	Waters: Chain E E E E	Res N HOH 801 HOH 802 HOH 803 HOH 804	ame + #	Chains: Châin E	Expand Type Protei	to PDB cł n	nain	chain ta
r table \prec	Waters: Chain E E E I item selection	Res N HOH 801 HOH 802 HOH 803 HOH 804 ected Clear	ame + #	Chains: Chain E	Expand Type Protei Copy to New Entry	to PDB cł	nain	chain ta
r table \prec	Waters: Chain E E E E I item selu	Res N HOH 801 HOH 802 HOH 803 HOH 804 ected Clear	ame + #	Chains: Chain E	Expand Type Protei Copy to New Entry	to PDB cl n Delete from	nain Entry	chain ta
r table \prec	Waters: Chain E E E E I item sele	Res N HOH 801 HOH 802 HOH 803 HOH 804 ected Clear	ame + #	Chains: Chain E	Expand Type Protei Copy to New Entry < Diagnostics	to PDB cł	nain Entry	chain ta
r table \prec	Waters: Chain E E E E I item sele	Res N HOH 801 HOH 802 HOH 803 HOH 804 ected Clear leded Only.	ame + #	Chains: Chain E	Expand Type Protei Copy to New Entry < Diagnostics	to PDB cł n Delete from	nain	chain ta

The PPW protocol is composed of 3 steps:

- Preprocess
- Optimize H-Bond Assignments
- Minimize

Protonation states of protein residues are determined with **PROPKA** by default.

This **empirical method** typically works well, but it fails to correctly determine the pK_a in certain situations:

- **Missing/erroneous solvation** can results in a rather different environment for the residue which can be then assigned a rare protonation state (e.g. uncharged Lys).
- Small geometrical inaccuracies can also lead to different assessments of the area.
- Catalytic residues can adopt atypical protonation/tautomeric states as part of their mechanism of action which PROPKA might not assign correctly.

Always check PROPKA's results to make sure the results are as expected. If in doubt, try to prepare several structures and compare the results.

Schrödinger

🔮 Protein Preparation Workflow (Interactive) - 5TZ9 - 2-preprocessed 🦳 🗌 🗙

Preprocess		
🗹 Cap termini 🗹 Fill in missing sid	e chains	More Options 🔻
Preprocess	8 acti	ons selected Reset

3. Diagnose and Analyze

and creates a new entry

```
Run diagnostics and review the structure in the secondary tabs.
   Check Structure
  4. Optimize H-bond Assignments
   Optimize to address any overlapping hydrogens.
                                                                           Settings T
                                                                 Assign with Constraints
     Optimize
                                     - or -
    Minimize and Delete Waters
   Run a restrained minimization, then optionally delete specified waters. Settings v
     Clean Up
Workflow group: 5TZ9 - 2-preprocessed-proteinprep_1
                                            performs the restrained
                                             minimization and creates
performs H-Bond
                                            a new entry
assignment automatically
```

You can (and should) use the Interactive Optimizer to **manually review and adjust** the residues.

Intora	etius II be	ad Optimizer		_		- v				
miera	cuve n-bo	nu optimizer			- L	- ~		1		-
Analys	sis						-			
pH: 7	.4		✓ Include cu	irrent or	ientatio	ons				11
⊻ Us	e PROPI	KA 🗌 Label pKa	Is Only treat	Worksp	ace se	election			-	
Analy	ze Netw	ork		ai symm	etry		4			
View	all spec	ies		3	00 spe	ecies tota	/			-
Cluste	er 5	J			r r cius	sters tota		1		
23 C	Optimize		Display re	sult: -1	\$ Scor	e: N/A				×
#	Lock	Species	State			^				1
1		E:ASN 474	No Flip	4	•					
2		E:ASN 481	No Flip	4	•				5	
3		E:HIS 434	HID	4	•				J	1
4		E:HIS 472	HID	4	•					1 5
5		E:HIS 482	HID	4	•				1	N.
6		E:THR 55	Initial	4	•				1	,
7		E:SER 57	Initial	•	•			1.1	1	/
8		E:SER 59	Initial	4	•	~		4	ñ N	
		Add Orienta	tion Sort by St	tate						
		Pick to	locate species	3						
			•					/		
Further post-PPW activities to explore

Depending on the envisioned modelling task, you might want to consider running additional analyses:

- **Comparing multiple prepared structures** If you're having doubts about the "correctness" of your prepared structure, preparing several others could help you identify potential problems.
- Metal coordination Make sure to check whether the metal cofactors have complete coordination shells around them. If any of the coordination sites are vacant, stability issues might arise in subsequent calculations and you should consider whether a water molecule or other complexing group should be bonded to the metal using zero-order bonds.
- Additional hydration Positions of water molecules in crystal structures are often unreliable which is why it's advisable to re-evaluate them, especially those in the ligand binding sites. Schrödinger's WaterMap application can be used to highlight regions of questionable solvation and, occasionally, areas where solvation is clearly missing from the original structure.

- Manual loop rebuilding It's always worth the effort to try to rebuild any missing loops using Schrödinger's Prime application, as you will get a better idea of what possible effects such modelled features could have on your system.
- **Stability assessment** Running a molecular dynamics simulation can often help estimate the overall stability of the system.
 - For example, if you've decided **not to rebuild loops** and just cap the termini, you can check if the regions around the chain breaks are stable throughout the simulation.
 - You can also check whether a ligand changes its binding pose in a **protein-ligand complex** which could indicate the original pose was stable due to the crystal environment.
 - In general, MD simulation should allow the protein to relax parts involved in crystal contacts. However, **large conformational changes** could also hint at issues with the original structure or even the force field.

Molecular Dynamics helps identify stable states

Simulation Interactions Diagram (MD HIS neutralpyr-out pl 1

Load... MD_HIS_neutralpyr-out_pl_1.eaf

74

– 🗆 🗙

Generate Report... Help..

The final checklist

Function-related checks

- □ What's the subcellular location of the protein?
- Is the protein a monomer or a multimer?If a multimer, is it a homomer or a heteromer?
- Is the protein known for multiple conformational states?
- □ What about atypical chemical forms?
- □ Maybe there are some PTMs?
- □ Are any metals involved?
- Does the protein bind any other cofactors?

Sequence-related checks

- □ Is the whole protein there? Any missing (sub)domains?
- Are you working with the correct sequence?
- Are there any "extras", e.g. signalling peptides or expression tags?
- □ Are there any homologues?

X-ray related checks

- □ Is the resolution high enough?
- $\square \quad \text{Are the R and R}_{\text{free}} \text{ factors low?}$
- □ What are the B-factors like?
- □ What about the RSCC values?
- Are there any geometric outliers or clashes?
- What were the experimental conditions like?
- Are there any parts of the structure that don't fit the electron density well?
- Any alternate conformations of protein residues or ligands?
- Were some parts of the protein modelled in (0-occupancy atoms)?
- What about the missing atoms/residues?
- Could the crystal contacts have caused some artifacts?

Preparation-related checks

- Are the bond orders assigned to HET groups correct?
- Are the protonation/tautomer states of HET groups reasonable?
- □ Any titratable residues of interest?
- Does the hydrogen bond network (incl waters) make sense?
- Have residues/loops been rebuilt correctly?
- Have non-standard residues or PTMs been treated correctly?
- □ Is the resulting structure stable?

See you after lunch!