
Performance Optimization of Smoothed Particle
Hydrodynamics and Experiences on Many-Core Architectures

Dr. Luigi Iapichino luigi.iapichino@lrz.de

Dr. Fabio Baruffa

Leibniz Supercomputing Centre

Intel MIC Programming Workshop & Scientific Workshop "HPC for natural
hazard assessment and disaster mitigation", LRZ, June 28th, 2017

mailto:luigi.iapichino@lrz.de

2

Work contributors

● Member of the Intel Parallel
Computing Center (IPCC) @
LRZ/TUM

● Expert in performance
optimization and HPC systems

● Member of the Intel Parallel
Computing Center (IPCC) @
LRZ/TUM

● Expert in computational
astrophysics and simulations

Dr. Fabio Baruffa
Sr. HPC Application Specialist
Leibniz Supercomputing Centre

Dr. Luigi Iapichino
Scientific Computing Expert
Leibniz Supercomputing Centre

Email contacts: fabio.baruffa@lrz.de luigi.iapichino@lrz.de

mailto:fabio.baruffa@lrz.de

3

Outline of the talk

This work: https://arxiv.org/abs/1612.06090 (IEEE Xplore,accepted)

● Overview of the code: P-Gadget3 and SPH.

● Challenges in code modernization approach.

● Multi-threading parallelism and scalability.

● Enabling vectorization through:
Data layout optimization (AoS → SoA).
Reducing conditional branching.

● Performance results, takeaways from our KNL experience.

https://arxiv.org/abs/1612.06090

4

Gadget intro

● Leading application for simulating the formation of
the cosmological large-scale structure (galaxies and
clusters) and of processes at sub-resolution scale
(e.g. star formation, metal enrichment).

● Publicly available, cosmological TreePM N-body +
SPH code.

● First developed in the late 90s as
serial code, later evolved as an MPI
and a hybrid code.

● Good scaling performance up to
O(100k) Xeon cores (SuperMUC@LRZ).

Introduction

5

Smoothed particle hydrodynamics (SPH)

Introduction

● SPH is a Lagrangian particle method for solving the equations of fluid
dynamics, widely used in astrophysics.

● It is a mesh-free method, based on a particle discretization of the
medium.

● The local estimation of gas density (and all other derivation of the
governing equations) is based on a kernel-weighted summation over
neighbor particles:

6

Optimization strategy

Optimization strategy

● We isolate the representative code kernel subfind_density and run it in as
a stand-alone application, avoiding the overhead from the whole simulation.

● As most code components, it consists of two sub-phases of nearly equal
execution time (40 to 45% for each of them), namely the neighbour-finding
phase and the remaining physics computations.

● Our physics workload: ~ 500k particles. This is a typical workload per node of
simulations with moderate resolution.

● We focus on node-level performance, through minimally invasive changes.

● We use tools from the Intel® Parallel Studio XE (VTune Amplifier and Advisor).

Simulation details:
www.magneticum.org

7

Target architectures for our project

Intel® architectures

● E5-2650v2 Ivy-Bridge (IVB) @ 2.6 GHz,
8-cores / socket.
TDP: 95W, RCP (03/2017): $1116.

● AVX.

Intel® Xeon processor Intel® Xeon Phi™ coprocessor
1st generation

● Knights Corner (KNC) coprocessor 5110P
 @ 1.1GHz, 60 cores.
 TDP: 225W, RCP: N/D.

● Native / offload computing.

● Directly login via ssh.

● SIMD 512 bits.

8

Further tested architectures

Intel® architectures

● E5-2697v3 Haswell (HSW) @ 2.3 GHz,
14-cores / socket.
TDP: 145W, RCP (03/2017): $2702.

● AVX2, FMA.

● E5-2699v4 Broadwell (BDW) @ 2.2 GHz,
22-cores / socket.
TDP: 145W, RCP (03/2017): $4115.

● AVX2, FMA.

Intel® Xeon processors

● Knights Landing (KNL) Processor 7250
 @ 1.4 GHz, 68 cores.
 TDP: 215W, RCP (03/2017): $4876.

● Available as bootable processor.

● Binary-compatible with x86.

● High bandwidth memory.

● New AVX512 instructions set.

Intel® Xeon Phi™ processor
2nd generation

9

Initial profiling

Multi-threading parallelism

thread spinning

● Severe shared-memory
parallelization overhead

● At later iterations, the
particle list is locked and
unlocked constantly due
to the recomputation

● Spinning time 41%

10

Improved performance

Multi-threading parallelism

no spinning

● Lockless scheme: lock
contention removed
through “todo” particle
list and OpenMP
dynamic scheduling.

● Time spent in spinning
only 3%

11

Improved speed-up

Multi-threading parallelism

● On IVB @ 8 threads
● speed-up: 1.8x
● parallel efficiency: 92%

● On KNC @ 60 threads
● speed-up: 5.2x
● parallel efficiency: 57%

12

Obstacles to efficient auto-vectorization

for(n = 0, n < neighboring_particles, n++){

 j = ngblist[n];

 if (particle n within smoothing_length){

 inlined_function1(…, &w);

 inlined_function2(…, &w);

 rho += P_AoS[j].mass*w;

 vel_x += P_AoS[j].vel_x;

 …

 v2 += vel_x*vel_x + … vel_z*vel_z;

 }

Target loop

for loop over neighbors

check for computation

computing physics

Particles properties via

AoS (cache unfriendly!)

13

AoS to SoA: performance outcomes
● Gather+scatter overhead at

most 1.8% of execution time.
→ intensive data-reuse

● Performance improvement:
● on IVB: 13%, on KNC: 48%

● Xeon/Xeon Phi performance
ratio: from 0.15 to 0.45.

● The data structure is now
vectorization-ready.

Data layout

1/exec.time
higher is better

14

Vectorization: improvements from IVB to KNL

● Vectorization through localized
masking (if-statement moved
inside the inlined functions).

● Vector efficiency:
 perf. gain / vector length

 on IVB: 55%
 on KNC: 42%
 on KNL: 83%

Vectorization

- Yellow + red bar: kernel workload
- Red bar: target loop for vectorization

15

Node-level performance comparison between HSW,
KNC and KNL

Features of the KNL tests:
● KMP Affinity: scatter;

Memory mode: Flat;
MCDRAM via numactl;
Cluster mode: Quadrant.

Results:
● Our optimization improves the

speed-up on all systems.
● Better threading scalability up

to 136 threads on KNL.
● Hyperthreading performance is

different between KNC and KNL.

Performance results on Knights Landing

16

Performance comparison: first results including KNL
and Broadwell

● Initial vs. optimized including all
optimizations for subfind_density

● IVB, HSW, BDW: 1 socket w/o
hyperthreading.
KNC: 1 MIC, 240 threads.
KNL: 1 node, 136 threads.

● Performance gain:
● Xeon Phi: 13.7x KNC, 19.1x KNL.
● Xeon: 2.6x IVB, 4.8x HSW,

4.7x BDW.

Performance results

lower is better

17

Code optimization on KNL: lessons learnt (so far...)

Experiences on KNL

Optimization for KNL as a three-step process:

Step Effort Expected performance

Compilation “out of the
box”

1 hour Lower than Haswell (~
1.5x)

Optimization without
coding (use of AVX512,
explore configuration,
MCDRAM, MPI/OpenMP)

1 week Up to 2x over previous
step

Optimization with coding
(this project and beyond)

1-3 months (IPCC: 2
years)

Up to the level of
Broadwell

Freely adapted from Leijun Hu,
Inspur @ ISC 2017

18

Some more KNL wisdom

● Quad-cache is a good starting point, quad-flat with allocation on
MCDRAM is worth being tested, SNC modes are for very advanced
developers.

● It is unlikely to gain performance with more than 2 threads/core.

● Vectorize whenever possible, use compiler reports and tools to exploit
low-hanging fruits.

● Know where your data are located and how they move.

● If optimizations are portable, the effort pays off!

Experiences on KNL

19

Summary and outlook

● Code modernization as the iterative process for improving the performance of an
HPC application.

● Our IPCC example: P-Gadget3.
Threading parallelism
Data layout Key points of our work, guided by analysis tools.
Vectorization

● This effort is (mostly) portable! Good performance found on new architectures (KNL
and BDW) basically out-of-the-box.

● For KNL, architecture-specific features (MCDRAM, large vector registers and NUMA
characteristics) are currently under investigation for different workloads.

● Investment on the future of well-established community applications, and crucial for
the effective use of forthcoming HPC facilities.

This work: https://arxiv.org/abs/1612.06090 (IEEE Xplore,accepted)

https://arxiv.org/abs/1612.06090

20

Acknowledgements

● Research supported by the Intel® Parallel Computing Center program.
● Project coauthors: Nicolay J. Hammer (LRZ), Vasileios Karakasis (CSCS).

● P-Gadget3 developers: Klaus Dolag, Margarita Petkova, Antonio Ragagnin.
● Research collaborator at Technical University of Munich (TUM): Nikola Tchipev.

● TCEs at Intel: Georg Zitzlsberger, Heinrich Bockhorst.
● Thanks to the IXPUG community for useful discussion.

● Special thanks to Colfax Research for granting access to their computing facilities.

21

Back-up: removing lock contention

Subfind algorithm

todo_partlist = partlist;

while(partlist.length){
 error=0;
 #pragma omp parallel for schedule(dynamic)
 for(auto p:todo_partlist){
 if(something_is_wrog) error=1;
 ngblist = find_neighbours(p);
 sort(ngblist);
 for(auto n:select(ngblist,K))
 compute_interaction(p,n);
 }

//...check for any error
 todo_particles = mark_for_recomputation(partlist);
}

creating a todo particle list

iterations over the todo list
(private ngblist)

actual computation

No-checks for computation

22

Back-up: SoA implementation details

Data layout

struct ParticleSoA
{
 float *pos_x, … , *vel_x, …, mass;
}
Particle_SoA P_SoA;

P_SoA.pos_x = malloc(N*sizeof(float));

…

…

rho += P_AoS[j].mass*w;

vel_x += P_AoS[j].vel_x;

…

…

rho += P_SoA.mass[j]*w;

vel_x += P_SoA.vel_x[j];

…

struct ParticleAoS
{
 float pos[3], vel[3], mass;
}
Particle_AoS *P_AoS;
P_AoS = malloc(N*sizeof(Particle_AoS);

void gather_Pdata(struct Particle_SoA *dst, struct Particle_AoS *src, int N)
for(int i = 0, i < N, i++){
 dst -> pos_x[i] = src[i].pos[1]; dst -> pos_y[i] = src[i].pos[2]; …
}

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22

