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Outline of the talk

This work: https://arxiv.org/abs/1612.06090 (IEEE Xplore,accepted)

● Overview of the code: P-Gadget3 and SPH.

● Challenges in code modernization approach.

● Multi-threading parallelism and scalability.

● Enabling vectorization through:
Data layout optimization (AoS → SoA).
Reducing conditional branching.

● Performance results, takeaways from our KNL experience.

https://arxiv.org/abs/1612.06090


4

Gadget intro

● Leading application for simulating the formation of 
the cosmological large-scale structure (galaxies and 
clusters) and of processes at sub-resolution scale 
(e.g. star formation, metal enrichment).

● Publicly available, cosmological TreePM N-body + 
SPH code.

● First developed in the late 90s as                         
serial code, later evolved as an MPI                             
and a hybrid code.

● Good scaling performance up to                       
O(100k) Xeon cores (SuperMUC@LRZ).

Introduction
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Smoothed particle hydrodynamics (SPH)

Introduction

● SPH is a Lagrangian particle method for solving the equations of fluid 
dynamics, widely used in astrophysics.

● It is a mesh-free method, based on a particle discretization of the 
medium. 

● The local estimation of gas density (and all other derivation of the 
governing equations) is based on a kernel-weighted summation over 
neighbor particles:



6

Optimization strategy 

Optimization strategy

● We isolate the representative code kernel subfind_density and run it in as
a stand-alone application, avoiding the overhead from the whole simulation.

● As most code components, it consists of two sub-phases of nearly equal 
execution time (40 to 45% for each of them), namely the neighbour-finding 
phase and the remaining physics computations. 

● Our physics workload: ~ 500k particles. This is a typical workload per node of 
simulations with moderate resolution.  

● We focus on node-level performance, through minimally invasive changes. 

● We use tools from the Intel® Parallel Studio XE (VTune Amplifier and Advisor).
 

Simulation details: 
www.magneticum.org
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Target architectures for our project

Intel® architectures

● E5-2650v2 Ivy-Bridge (IVB) @ 2.6 GHz, 
8-cores / socket.       
TDP: 95W, RCP (03/2017): $1116.

● AVX. 

Intel® Xeon processor Intel® Xeon Phi™ coprocessor
1st generation

● Knights Corner (KNC) coprocessor 5110P 
    @ 1.1GHz, 60 cores.             
    TDP: 225W, RCP: N/D.

● Native / offload computing.

● Directly login via ssh.

● SIMD 512 bits.
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Further tested architectures

Intel® architectures

● E5-2697v3 Haswell (HSW) @ 2.3 GHz, 
14-cores / socket.   
TDP: 145W, RCP (03/2017): $2702.

● AVX2, FMA. 

● E5-2699v4 Broadwell (BDW) @ 2.2 GHz,     
22-cores / socket.
TDP: 145W, RCP (03/2017): $4115.

● AVX2, FMA. 

Intel® Xeon processors

● Knights Landing (KNL) Processor 7250 
    @ 1.4 GHz, 68 cores.            
    TDP: 215W, RCP (03/2017): $4876.

● Available as bootable processor.

● Binary-compatible with x86.

● High bandwidth memory.

● New AVX512 instructions set.

Intel® Xeon Phi™ processor
2nd generation
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Initial profiling

Multi-threading parallelism

thread spinning

● Severe shared-memory 
parallelization overhead

● At later iterations, the 
particle list is locked and 
unlocked constantly due 
to the recomputation

● Spinning time 41%
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Improved performance

Multi-threading parallelism

no spinning

● Lockless scheme: lock 
contention removed 
through “todo” particle 
list and OpenMP 
dynamic scheduling. 

● Time spent in spinning 
only 3%
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Improved speed-up

Multi-threading parallelism

● On IVB @ 8 threads 
● speed-up: 1.8x
● parallel efficiency: 92%

● On KNC @ 60 threads
● speed-up: 5.2x 
● parallel efficiency: 57%
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Obstacles to efficient auto-vectorization

for(n = 0, n < neighboring_particles, n++ ){

    j = ngblist[n];   

           

    if (particle n within smoothing_length){   
                        

       inlined_function1(…, &w);

       inlined_function2(…, &w);

       rho   += P_AoS[j].mass*w;

       vel_x += P_AoS[j].vel_x;

       …

       v2 += vel_x*vel_x + … vel_z*vel_z;      

   }

Target loop

for loop over neighbors

check for computation

computing physics

Particles properties via

AoS (cache unfriendly!)
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AoS to SoA: performance outcomes
● Gather+scatter overhead at 

most 1.8% of execution time.   
→ intensive data-reuse

● Performance improvement: 
● on IVB:  13%, on KNC: 48%

● Xeon/Xeon Phi performance 
ratio: from 0.15 to 0.45.

● The data structure is now 
vectorization-ready.

Data layout

1/exec.time
higher is better
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Vectorization: improvements from IVB to KNL

● Vectorization through localized 
masking (if-statement moved 
inside the inlined functions).

● Vector efficiency:  
       perf. gain / vector length

   on IVB:  55%
   on KNC: 42% 
   on KNL: 83%

Vectorization

- Yellow + red bar: kernel workload
- Red bar: target loop for vectorization
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Node-level performance comparison between HSW, 
KNC and KNL

Features of the KNL tests:
● KMP Affinity: scatter; 

Memory mode: Flat; 
MCDRAM via numactl; 
Cluster mode: Quadrant. 

Results:
● Our optimization improves the 

speed-up on all systems.
● Better threading scalability up 

to 136 threads on KNL.
● Hyperthreading performance is 

different between KNC and KNL.

Performance results on Knights Landing
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Performance comparison: first results including KNL 
and Broadwell 

● Initial vs. optimized including all 
optimizations for subfind_density

● IVB, HSW, BDW: 1 socket w/o 
hyperthreading.                                   
KNC: 1 MIC, 240 threads.                     
KNL: 1 node, 136 threads.

● Performance gain: 
● Xeon Phi: 13.7x KNC, 19.1x KNL.
● Xeon: 2.6x IVB, 4.8x HSW, 

4.7x BDW.

Performance results

lower is better



17

Code optimization on KNL: lessons learnt (so far...) 

Experiences on KNL

Optimization for KNL as a three-step process:

Step Effort Expected performance

Compilation “out of the 
box”

1 hour Lower than Haswell (~ 
1.5x)

Optimization without 
coding (use of AVX512, 
explore configuration, 
MCDRAM, MPI/OpenMP)

1 week Up to 2x over previous 
step

Optimization with coding 
(this project and beyond)

1-3 months (IPCC: 2 
years)

Up to the level of 
Broadwell

Freely adapted from Leijun Hu, 
Inspur @ ISC 2017
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Some more KNL wisdom

● Quad-cache is a good starting point, quad-flat with allocation on 
MCDRAM is worth being tested, SNC modes are for very advanced 
developers.

● It is unlikely to gain performance with more than 2 threads/core.

● Vectorize whenever possible, use compiler reports and tools to exploit 
low-hanging fruits.

● Know where your data are located and how they move.

● If optimizations are portable, the effort pays off! 

Experiences on KNL
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Summary and outlook

● Code modernization as the iterative process for improving the performance of an 
HPC application.

● Our IPCC example: P-Gadget3.
Threading parallelism
Data layout                             Key points of our work, guided by analysis tools. 
Vectorization

● This effort is (mostly) portable! Good performance found on new architectures (KNL 
and BDW) basically out-of-the-box.

● For KNL, architecture-specific features (MCDRAM, large vector registers and NUMA 
characteristics) are currently under investigation for different workloads.

● Investment on the future of well-established community applications, and crucial for 
the effective use of forthcoming HPC facilities.  

This work: https://arxiv.org/abs/1612.06090 (IEEE Xplore,accepted)

https://arxiv.org/abs/1612.06090
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Back-up: removing lock contention

Subfind algorithm

todo_partlist = partlist;

while(partlist.length){
  error=0;
  #pragma omp parallel for schedule(dynamic)
  for(auto p:todo_partlist){
    if(something_is_wrog) error=1;
    ngblist = find_neighbours(p);
    sort(ngblist);
    for(auto n:select(ngblist,K)) 
       compute_interaction(p,n);
  }

//...check for any error
  todo_particles = mark_for_recomputation(partlist);
}

creating a todo particle list

iterations over the todo list 
(private ngblist)

actual computation

No-checks for computation
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Back-up: SoA implementation details

Data layout

struct ParticleSoA
{
  float *pos_x, … , *vel_x, …, mass;
}
Particle_SoA P_SoA;

P_SoA.pos_x = malloc(N*sizeof(float));

…

       

…

rho   += P_AoS[j].mass*w;

vel_x += P_AoS[j].vel_x;

…

       

…

rho   += P_SoA.mass[j]*w;

vel_x += P_SoA.vel_x[j];

…

       

struct ParticleAoS
{
  float pos[3], vel[3], mass;
}
Particle_AoS *P_AoS;
P_AoS = malloc(N*sizeof(Particle_AoS);

    

void gather_Pdata(struct Particle_SoA *dst, struct Particle_AoS *src, int N )
for(int i = 0, i < N, i++ ){
    dst -> pos_x[i] = src[i].pos[1]; dst -> pos_y[i] = src[i].pos[2]; … 
}   
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