

The experience of the HLST on Europes biggest KNL cluster

Tamás Fehér, Serhiy Mochalskyy, Nils Moschüring Roman Hatzky Intel MIC Programming Workshop LRZ

Marconi – KNL at CINECA, Bologna

Total number of KNL nodes: 3600

Partition dedicated to the EUROfusion community: 392 (144 flat / 248 cache mode)

-> about 1 Pflop/s

Photo: F.Pierantoni

Overview

- Memory Bandwidth benchmarks
- Latency benchmarks
- OpenMP Benchmarks
- Code Performance
- Summary

STREAM and IMB

MEMORY BANDWIDTH BENCHMARKS

STREAM Memory Bandwidth different architectures

Using the STREAM benchmark by John D. McCalpin, https://www.cs.virginia.edu/stream

STREAM Memory Bandwidth flat mode DDR4

STREAM Memory Bandwidth flat mode MCDRAM

STREAM Memory Bandwidth flat mode MCDRAM - alignment

Alignment also important for cache mode

STREAM Memory Bandwidth Array size

STREAM Memory Bandwidth

STREAM Memory Bandwidth over time

STREAM Memory Bandwidth over time

Intel MPI benchmark - bandwidth

LATENCY BENCHMARKS

Nils Moschüring

Latency

IMB – Ping Pong Test - Latency

IMB – Ping Pong Test - Latency

Inter node Marconi

Broadwell

Inter node HELIOS

Sandy Bridge

node0	CPU0	1.13
Latona	CPU0	
Latency (µS)		node1

Knights Corner

Knights Landing

OPENMP BENCHMARKS

Nils Moschüring

OpenMP overhead

- KNL overhead \approx 2x larger:
 - more threads
 - lower CPU frequency
- Exception: ATOMIC 5x longer, use CRITICAL instead
- Using EPCC OpenMP Microbenchmarks J.M. Bull et. al

OpenMP overhead + hyper-threading

CODE PERFORMANCE

Nils Moschüring

HPCG benchmark

- HPCG: sparse 3D problem with multigrid preconditioned conjugate gradient solver.
- The Intel optimized version of the HPCG benchmark was executed in one node.

Gysela execution time

- Test case: 127 x 256 x 64 x 63 (Nr x Ntheta x Nphi x Nvpar, Nmu=0)
- 1 node, 4 MPI tasks, 8 threads (Broadwell) / 16 threads (KNL)

UTL_TRIDIAG_R

Not vectorizable

٠

- Solve a tridiagonal • system
 - forward elimination _
 - back substitution

instruction	instruction	Broadwell latency	Broadwell throughput	KNL latency	KNL throughput		
3N	FMA	5	2	6	2		
2N-1	DIVSD	10-14	1/5-1/4	42	1/42		
2N-1	VDIVPD	19-23	1/16	32	1/32		
Source: A Fog Instruction tables. TH Denmark 2016. http://www.agner.org							

liun lanes. Tu cilliar

Nils Moschüring

SUMMARY

Nils Moschüring

Summary

- Good stuff:
 - MPI latency and OpenMP overhead comparable
 - KNL can match Broadwell performance without extensive tuning for most codes
 - Optimization on KNL helps on Broadwell and vice versa
- Bad Stuff:
 - Cache mode operation can be dubious
 - Peak performance hard to reach
 - Hyperthreading rarely useful

Summary

- KNL is equal to Broadwell if your code either
 - Has very good scalability (to make use of increased core count)
 - Has very good vectorization (to make use of more vector units)
 - Effectively uses only 16 GB (to make use of higher bandwidth)
- If more than one holds, you will probably get more performance than on Broadwell
- Memory mode Quadrant seems to be the best