Acceleration of the k-Wave toolbox on Xeon Phi

Jiri Jaros

Supercomputing Technologies Research Group

Faculty of Information Technology, Brno University of Technology Božetěchova 2, 612 66 Brno jarosjir@fit.vutbr.cz

High Intensity Focused Ultrasound

A way how to cook an egg in cold water

Thermal ablation, the most clinically advanced bioeffect of focused ultrasound, produces cell death in a targeted area with minimal damage to the surrounding tissue.

Jiri Jaros: Acceleration of the k-Wave toolbox on Xeon Phi

2

Thermal Ablations by Ultrasound

Jiri Jaros: Acceleration of the k-Wave toolbox on Xeon Phi

How to Create Accurate Treatment Plans

Acoustic Model

FIT FIT

- k-Wave Toolbox (<u>http://www.k-wave.org</u>)
 - 8000+ registered users
 - 3 base developers, 3 post-docs, 30 students
- Full-wave 3D acoustic model
 - including nonlinearity
 - heterogeneities
 - power law absorption
- Solves coupled first-order equations

$$\begin{bmatrix} \frac{\partial \mathbf{u}}{\partial t} = -\frac{1}{\rho_0} \nabla p \\ \frac{\partial \rho}{\partial t} = -(2\rho + \rho_0) \nabla \cdot \mathbf{u} \\ p = c_0^2 \left(\rho + \frac{B}{2A} \frac{\rho^2}{\rho_0} - \mathbf{L}\rho\right) \\ \mathbf{L} = \tau \frac{\partial}{\partial t} \left(-\nabla^2\right)^{\frac{y}{2}-1} + \eta \left(-\nabla^2\right)^{\frac{y+1}{2}-1}$$

momentum conservation

mass conservation

pressure-density relation

absorption term

$$\frac{\partial}{\partial\xi} u_{\xi}^{n+1} = \mathbb{F}^{-1} \left\{ \kappa i k_{\xi} \mathbb{F} \left\{ u_{\xi}^{n} \right\} \right\}$$

Operations executed in every time step

- 6 forward 3D FFTs
- 8 inverse 3D FFTs
- 3+3 forward and inverse 1D FFTs in the case of non-staggered velocity
- About 100 element wise matrix operations (multiplication, addition,...)

•Global data set

- •14 +3 (scratch) + *3 (unstaggering)* real 3D matrices
- •3+3 complex 3D matrices
- •6 real 1D vectors
- •6 complex 1D vectors
- •Sensor mask, source mask, source input
- •<0, 20> real buffers for aggregated quantities (max, min, rms, max_all, min_all)

Numerical Dispersion and Stability

Pulse of $\sin^3(2\pi f_s t)$ propagation with 10 PPW

Jiri Jaros: Acceleration of the k-Wave toolbox on Xeon Phi

Kidney and liver simulations (32 to 64 nodes)

Medium	Grid Size	Properties	х	t	fmax	Time	Mem	Compute	Time
		-	m	ns	MHz	Steps	MB	Cores	d:hh:mm
Kideny-ref	$1152 \times 1152 \times 1536$	homogeneous	143	27.7	5.32	10,134	1.4	1024	0:09:14
Kidney	$1152 \times 1152 \times 1536$	heterogeneous	143	9.43	5.32	30,604	4.1	1536	0:20:42
Liver-ref	$1344 \times 1344 \times 1792$	homogeneous	123	23.8	6.21	11,823	2.3	768	0:18:10
Liver	$1344 \times 1344 \times 1792$	heterogeneous	123	8.06	6.21	35,801	6.6	1536	2:01:33
Water-ref	$3072\times3072\times4096$	homogeneous	53.7	10.3	14.2	27,139	3.1	1024	8:21:32

Prostate simulations (6 or 9 nodes, 150 simulations)

	Homogeneous Simulations				Heterogeneous Simulations				
Grid-size	RAM^{a}	$Input^{b}$	Output ^b	Time^{c}	RAM^{a}	$\operatorname{Input}^{\mathrm{b}}$	$Output^{b}$	$\operatorname{Time}^{\mathbf{c}}$	
(pt^3)	(GB)	(MB)	(GB)	(dd:hh:mm)	(GB)	(GB)	(GB)	(dd:hh:mm)	
$S_1 = 384 \times 256 \times 512$	10.5	2.9	0.7	00:00:10	11.9	4.1	2.0	00:00:39	
$S_2 = 768 \times 512 \times 1024$	37.2	20.3	8.5	00:02:06	48.5	28.3	30.3	00:10:16	
$S_3 = 1152 \times 768 \times 1536$	108.4	70.0	37.1	00:12:01	141.7	95.8	144.9	02:13:23	
$S_4 = 1536 \times 1024 \times 2048$	246.4	165.2	108.4	01:16:07	331.9	225.9	445.9	08:11:38	
$S_5=2304\times1536\times3072$	830.7	554.6	508.7	06:19:51		—	—		

Profiling the Native Application on Xeon Phi

- Domain size: 256 x 256 x 256 ~ 2GB of RAM
- Original version, written in SSE 4.1 intrinsics

Hotspots viewpoint (<u>change</u>) ?								
🔄 🕀 Analysis Target 🛕 Ana	ilysis Type 🔛 Collection Log 🕅 Summ	ary 😪 Bot	tom-up 🚭 (Caller/Callee 🗣	Top-down			
Grouping: Module / Function / Call Stack								
	CPU Time 🗸	🛠 ≪						
Module / Function / Call Stack	Effective Time by Utilization	Spin Time	Overhead	Instructions Retired	CPI Rate			
	Idle Poor Ok Ideal Over	-	Time					
▶libiomp5.so	5236.892s	745.257s	735.428s	1,294,180,000,	5.461			
kspaceFirstOrder3D-OMP	4606.293s	0s	0s	333,530,000,000	14.529			
▶libmkl_core.so	2686.692s	0.447s (499,420,000,000	5.660			
▶vmlinux	487.690s	0s	0s	92,120,000,000	5.569			
▶libc-2.14.90.so	9.392s	0s	0s	1,930,000,000	5.119			
libmkl_intel_thread.so	4.163s	0s	0s	80,000,000	54.750			
▶intel_micveth	1.873s	0s	0s	70,000,000	28.143			
▶ld-2.14.90.so	1.492s	0s	0s	70,000,000	22.429			

Code Refactorisation for Xeon Phi

```
11. #pragma omp parallel
12. {
      // compute MAIN loop
13.
14.
      #pragma vector aligned
15.
      #pragma omp simd
      #pragma omp for schedule (static) nowait
16.
      for (size t i = 0; i < TotalElementCount1; i++)</pre>
17.
18.
        Register const float rho xyz el = rhox data[i] + rhoy data[i] + rhoz data[i];
19.
        RHO Temp Data[i]
                          = rho xyz el;
20.
21.
        BonA Temp Data[i] = ((BonA[i * BonA shift] * (rho xyz el * rho xyz el))
                                                                                       ١.
22.
                             / (2.0f * rho0 data[i * rho0 shift])) + rho xyz el;
23.
        SumDU Temp Data[i] = rho0 data[i * rho0 shift]
24.
                              * (dux data[i] + duy data[i] + duz data[i]);
25.
```

```
#pragma vector nontemporal
1.
    #pragma omp simd aligned (rhox data:64, rhoy data:64, rhoz data:64, rho0 data:64,
2.
                          BonA:64, dux data:64, duy data:64, duz data:64,
з.
                          RHO Temp Data:64, BonA Temp Data:64, SumDU Temp Data:64)
4.
5.
    #pragma omp for schedule (static)
    for (size t i = 0; i < RHO Temp.GetTotalElementCount(); i++)</pre>
6.
7.
   -
      register const float rho_xyz_el = rhox_data[i] + rhoy_data[i] + rhoz_data[i];
8.
      RHO_Temp_Data[i] = rho_xyz_el;
9.
10.
      BonA_Temp_Data[i] = ((BonA[i * BonA_shift] * (rho_xyz_el * rho_xyz_el))
                           / (2.0f * rho0_data[i * rho0_shift])) + rho_xyz_el;
11.
12.
      SumDU Temp Data[i] = rho0 data[i * rho0 shift]
                            * (dux data[i] + duy data[i] + duz data[i]);
13.
14. }
```

Profiling the Optimised Version on Xeon Phi

- Domain size: 256 x 256 x 256 ~ 2GB of RAM
- Optimised code, written in OpenMP 4.0 intrinsics

Protspots viewpoint (<u>change</u>) ?									
< 🚯 Analysis Target 🛕 Analysis Type 🗮 Collection Log 🛍 Summary 🚱 Bottom-up 🕏 Caller/Callee 🚭 Top-down Tree 🗮 Tasks and Frames									
Grouping: Module / Function / Call Stack									
	CPU Time 🕶	☆ ≪	Instructions Retired	CPI Rate					
Module / Function / Call Stack	Effective Time by Utilization	yn Sein Time							
	🔲 Idle 📕 Poor 📋 Ok 📕 Ideal 📕 Over	spinnine	Time						
▶libiomp5.so	2941.702s	180.257s	174.211s	628,730,000,000	5.515				
▶libmkl_core.so	2015.798s	0.342s	0s	488,820,000,000	4.339				
▼kspaceFirstOrder3D-OMP	637.785s	0s	0s	110,610,000,000	6.066				
TKSpaceFirstOrder3DSolver::Compute_rhoxyz_nonlinear\$omp\$parallel@1287	109.791s	0s	0s	11,340,000,000	10.185				
TKSpaceFirstOrder3DSolver::Compute_ddx_kappa_fft_p\$omp\$parallel@1011	107.462s	0s	0s	28,510,000,000	3.965				
TKSpaceFirstOrder3DSolver::Calculate_SumRho_BonA_SumDu\$omp\$parallel@1650	93.964s	0s	0s	4,390,000,000	22.517				
TKSpaceFirstOrder3DSolver::Compute_duxyz\$omp\$parallel@1097	86.027s	0s	0s	31,720,000,000	2.853				
TKSpaceFirstOrder3DSolver::Sum_Subterms_nonlinear\$omp\$parallel@1919	70.827s	0s	0s	2,210,000,000	33.715				
TKSpaceFirstOrder3DSolver::Compute_Absorb_nabla1_2	44.677s	0s	0s	17,540,000,000	2.680				
Tuxyz_sgxyzMatrix::Compute_ux_sgx_normalize	39.192s	0s	0s	2,850,000,000	14.467				
Tuxyz_sgxyzMatrix::Compute_uy_sgy_normalize	31.046s	0s	0s	2,110,000,000	15.479				
Tuxyz_sgxyzMatrix::Compute_uz_sgz_normalize	28.650s	0s	0s	2,530,000,000	11.913				

Performance Comparison

3D FFT Performance

Where We Are with GPU...

Maxwell TITAN-X 3.6x faster than a Salomon node

Native KNC on part with Matlab on Maxwell TITAN X

Jiri Jaros: Acceleration of the k-Wave toolbox on Xeon Phi

- KNC is not ready for k-Wave
- FFT-MKL performance is pretty poor for domain sizes of interest. Cache coherency problems?
- HDF5 I/O is terribly slow (forget about ZIP/SZIP compression)
- MPI implementation is always slower when KNC is enabled (both intranode and internode).
- Looking forward to KNL [©]

Comments and Questions

•The project is financed from the SoMoPro II programme. The research leading to this invention has acquired a financial grant from the People Programme (Marie Curie action) of the Seventh Framework Programme of EU according to the REA Grant Agreement No. 291782. The research is further co-financed by the South-Moravian Region. This work reflects only the author's view and the European Union is not liable for any use that may be made of the information contained therein.

•This work was also supported by the research project "Architecture of parallel and embedded computer systems", Brno University of Technology, FIT-S-14-2297, 2014-2016.

•This work was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and the national budget of the Czech Republic via the Research and Development for Innovations Operational Programme, as well as Czech Ministry of Education, Youth and Sports via the project Large Research, Development and Innovations Infrastructures (LM2011033).

•We acknowledge CINECA and PRACE Summer of HPC project for the availability of high performance computing resources.

•The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de).

Thank you for your attention! jarosjir@fit.vutbr.cz

