

Introduction to
GNU/Linux – Part 1
April 8th, 2024 | M. Ohlerich *)

*) Slides vastly prepared by J. Albert-von der Gönna

Session Information

• Aim: provide an intro to GNU/Linux

• You will probably benefit the most if you’re not yet familiar
with GNU/Linux, but if you plan to work on the AI, HPC
and/or Compute Cloud infrastructure provided by LRZ
-> by the end of this introduction, you should have a basic
understanding of GNU/Linux-based systems

• If you have questions, please ask them at any time

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 4

What is GNU/Linux?

• Free, open-source, secure/stable, flexible operating system
(available on all kinds of hardware)

• Alternative to
Microsoft Windows, Apple macOS, Google Android …

• Generally consists of the Linux kernel, libraries and tools,
(possibly) a desktop environment and various applications
(e.g. web browser, office suite, …)

• Different distributions:
Arch Linux, Debian/Ubuntu, Fedora/RHEL, openSUSE/SLES, …
(differences in kernel version, package manager, application and system
package versions and availability)

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 6

https://en.wikipedia.org/wiki/List_of_Linux_distributions

https://www.youtube.com/watch?v=oS4UWgHtRDw
https://distrowatch.com/
https://en.wikipedia.org/wiki/List_of_Linux_distributions

The powerful versatility of free and open-source software is rooted
in their licenses, such as the GNU General Public License (GPL).
This license grants four essential freedoms or rights to the users of
the software:
• The freedom to “use a program as they wish, for any purpose",
• the right to "study how the program works, and change it so it

does the computing as they wish",
• the freedom to "share and redistribute copies so they can help

their neighbor" and finally
• the right to "improve the software and to distribute copies of their

modified versions to others".
These rights are key for e.g. tuning software on a one-of-a-kind
supercomputer, but also, more generally, in an environment where
the goal is to create reproducible research and open science.

7Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

GNU General Public License (GPL)
https://www.gnu.org/licenses/quick-guide-gplv3

Popular Desktop Environments

8Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Ubuntu
Desktop

KDE Plasma

GNOME Shell … and several more.

https://eylenburg.github.io/de_comparison.htm

9Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Linux and High Performance Computing (HPC)
https://www.zdnet.com/article/linux-totally-dominates-supercomputers/

It’s time to get started!

• GNU/Linux: choose your favorite terminal application
• macOS: launch Terminal
• Windows:

• Windows 10/11: SSH to remote Linux System
‘Command Prompt’ (cmd) and ‘Powershell’ if SSH installed

• Windows 10/11: Windows Subsystem for Linux (WSL)

• Alternatively (specifically older Windows):
• Git BASH (part of Git for Windows) or MSYS2
• MobaXterm (Home Edition)
• ...

Explore a shell
environment!

10Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

https://docs.microsoft.com/en-us/windows/wsl/install
https://gitforwindows.org/
https://www.msys2.org/
https://mobaxterm.mobatek.net/

A Unix-like Shell in a Terminal Application

13Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

prompt

File System Hierarchy Standard (FHS)

• On Unix-like systems – everything == file or directory
• All files and directories appear (somewhere) under root directory

“/”, even if stored on different – possibly remote – devices.
There are no drive letters like on Windows

• Use pwd to get name of present (current) working directory
• Use ls to list all files and directories in the current directory
• Use ls / to list all files and directories in the root directory
• Use ls /any/other/dir to list all files and directories in the

specified directory
• Note: separate directory hierarchy with slash “/”!!

On Unix-like
systems:
try the commands
introduced on the
left.

14Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Exploring the File System

/bin*: command binaries (e.g. ls)
/etc: configuration files
/home: (regular) users’ home directories
/lib*: libraries (for binaries in /bin et al.)
/media: mount points for removable media
/mnt: mounted filesystems
/root: home directory of the root user
/sbin*: system binaries
/usr: secondary hierarchy for read-only user data
/var: variable, i.e. changing files

* On modern systems, these (and /libXX) are only symlinks/shortcuts. Their former contents
have been merged into their respective /usr/… counterparts, which they then point to.

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 15

Detailed Listing of All Files

Use the l and a options with ls (i.e. ls -la) to get a
detailed listing of all files in your current (home) directory
(we will cover most of this information later).

Can you spot the differences to the previous listing
(using just ls)?

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 16

General Command Syntax

This command syntax can serve as general example to distinguish different components:

$ ls –la /home

ls is the command
with the (short) options (also switches or flags) –la and
the argument /home

Options generally start with either a single dash - (short, as above),
or two dashes -- (long).

17Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Getting Help

• There are at least two common local ways you can try to find out how a command works
and which options it accepts…
(many additional resources online, e.g https://www.mankier.com/ or https://tldr.sh/

or Linux Command Handbook or ...)

1. Pass --help option to command:
$ ls --help

2. Read a command’s manual (man pages), using the man command:
$ man ls
(use the arrow keys to move up and down, press q to quit the man page)

• What effect may the -h option have on the ls command?
• Can you spot other interesting options?
• Did you try man man?

18Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

https://www.mankier.com/
https://tldr.sh/
https://www.freecodecamp.org/news/the-linux-commands-handbook/

At the outset…

• At this point, you should have an initial understanding of what a GNU/Linux operating
system is, you should have access to a (Unix-like) shell environment on your local
machine.

• First steps were taken to explore a GNU/Linux system. You have encountered the very
first commands to interact with the shell environment and you know how to get additional
help for such commands.

• These are already the very basic skills that allow you to start working on remote systems
using the Secure Shell (SSH).

• You will continue – and gain more experience – working with GNU/Linux systems in one
of our later sessions (navigate the file system, file manipulation and ownership,
characteristics of the shell environment, useful commands & concepts, …).

19Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Introduction to
GNU/Linux – Part 2
April 8th, 2024 | M. Ohlerich

Directories

• Create a new directory in your current (home) directory
called „my_dir“:
$ mkdir my_dir

• Change your current working directory to this folder:
$ cd my_dir

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 23

Unix-like Commands (Addendum)

• There are real programs and bash commands, e.g.

$ which ls
/usr/bin/ls

$ which cd # Ooops!

$ help cd # bash‘s “man page“ (help help)

• What about clashes? … (Keep that in mind. Things are vastly more complicated.)

Bash Reference Manual

24Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

https://www.gnu.org/software/bash/manual/bash.html

Navigating Directories

Notice the changing prompt…

What does the “~” symbol represent?

cd .. move back to parent directory
single dot . represents the current, two dots .. the parent directory

absolute vs. relative paths:
specifying a location with leading slash / indicates start at root the file system
(absolute), omitting it relative to current directory

Tip: use the tab key for auto-completion!

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 25

File Manipulation

• Make sure you‘re located in the my_dir directory created earlier

• Create a new (text) file by “touching” it:
$ touch my_file

• Can you spot the newly created file in a file listing?
• What‘s the content of this new file? How can you tell?

26Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

File Manipulation (Editors)

Can you spot the size of this
(empty) file?

On most systems, you can
use editors like e.g. nano,
vi(m) or emacs to edit text
files directly in the console.

Use nano to edit the existing file (write something to it):
$ nano my_file
Note the shortcuts along the bottom of the nano screen; “^” represents the Control (CTRL) key

Use nano to create another file and write a couple of lines:
$ nano another_file.txt

Be aware of (missing) file extensions: In contrast to other operating systems, GNU/Linux does not rely on file extensions to specify the type of a file.
For interoperability and clarity, file extensions can still be used, of course.

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 27

File Manipulation and Redirection

• There is a tool called cat. What does it do?
• “Concatenate FILE(s) to standard output.

With no FILE, or when FILE is -, read standard input.”
• Use cat to display the contents of my_file
$ cat my_file

• The shell allows for input/output redirection using > (and <)
• Use cat to write something to nice_file.txt and display it afterwards

$ cat > nice_file.txt
write something nice here
and add another line
<CTRL+D>
$ cat nice_file.txt

28

Refer to the cat
manpage for
additional
information.

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

File Manipulation and Redirection

• Files can be appended using >>
$ echo "yet another line of text" >> nice_file.txt
$ cat nice_file.txt

• Using << allows for the creation of here documents (input stream literals),
the general format is:
command << delimiter # (commonly EOF, or “Ctrl+D”)
input stream
delimiter

• Try the following. Can you explain how the here document is used?
$ tr a-z A-Z << EOF
> all lower case
> o rly?
> EOF

29Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Pipes

• Commands can be chained using | (the pipe). It will instruct the
shell to use the output of one command directly as input for
another command. Pipes can be used consecutively.

$ echo "some fancy words" | wc –l
$ echo "some fancy words" | tr " " "\n" | wc –l

(More useful example appear with availability of more advanced tools.
See find, grep, sed, awk, …)

30Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

File Manipulation

• Create a copy of “my_file” called “my_file1”:
$ cp my_file my_file1

• Rename/move the copy “my_file1” to “new_file”:
$ mv my_file1 new_file

• Delete the original file “my_file” :
$ rm my_file
Caution: there is neither trash bin, nor undo!

• Take a look at the file listing. What is the expected output?
Does it match?

31Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

File Manipulation

32Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

File Manipulation

• Create two more copies of “new_file”, “01.bak” and “02.bak”
$ cp new_file 01.bak
$ cp new_file 02.bak

• Move to your home directory.
$ cd ..

Alternatively (there are many ways to get home):
$ cd or $ cd /path/to/home/dir or $ cd ~ or $ cd $HOME

• Copy “new_file” to your home directory.
$ cp my_dir/new_file .

• Make a (full) copy of “my_dir” called “another_dir”.
$ cp –r my_dir another_dir

33Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Shell Wildcards

• Wildcards can be used flexibly for character matching in the shell:
• Zero or more characters  *
$ ls -la mydir/n*

• Exactly one character  ?
$ ls -la mydir/0?.bak

• They can be combined in any way and are useful for operating on
files and directories that contain certain patterns.

• Count the combined number of words in all (created text) files with
a file extension:
$ cat */*.??? | wc -w

Can you think of
other patterns to
match certain files
or directories?

34Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Searching: grep

• grep … search for things in text files or streams (pipes)
• uses regular expressions (regex). (formal language to describe text patterns)
• As basic building blocks (besides characters), they can include:

• a boolean “or”, represented by the vertical bar or pipe |.
• Parentheses () are used for grouping.
• Placeholders (similar to shell wildcards) can be used for quantification. The ?

represents zero or one occurrence of the preceding element, * represents zero or
more occurrences of the preceding element and + represents one or more
occurrence(s) of the preceding element.

• The regular expression wildcard dot . matches any character and can also be
combined with the quantifiers mentioned above.

• Consider options like
-w: Select only those lines containing matches that form whole words
-n: Prefix (file name and) line number to each match
-i: Make search case-insensitive
-v: Invert search, i.e. output non-matching lines
and many more…

• Basic examples (without regex quantifiers, wildcards, etc.) are
$ grep something my_dir/nice_file.txt
$ grep -R 'another line' ./*

Can you think of
other regular
expressions to
match specific
strings (but not
others)?

35Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Searching: find

• The find command can be used to search for files and
directories, e.g.

$ find .
$ find . -type d
$ find . -name "*.txt"
$ find . -type f -name 'a*’

• Some practical examples (update all file time stamps)
$ find . -type f -exec touch {} +

• (remove all object files from a compilation, in a tree)
$ find . -type f '*.o' -exec rm {} +

Refer to the find
manpage for
additional
information.

36Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Shell Scripting

• Use shell scripts to save and re-use commands
• Create a new file myscript.sh containing the line

echo "This script is simple."

• Once saved, you can run it explicitly (using the Bash shell)
$ bash myscript.sh

37Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Shell Scripting

• Modify the script to allow for argument use. Add the line:
echo "This $1 is $2."

• Alternative methods:
$ echo 'echo "This $1 is $2."' > myscript.sh
or
$ cat > myscript.sh
echo "This $1 is $2."
<Ctrl+D>

• Provide the needed arguments when calling the script:
$ bash myscript.sh "scripting" "getting somewhere"
or
$ source ./my_script.sh "scripting" "getting
somewhere"

Single vs double
quotes …

38Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Shell Scripting

• Add a shebang interpreter directive as the first line for direct
execution:

#!/bin/bash
echo "This script is simple."

• Afterwards, call the script directly
$./myscript.sh

• What is going on? What about ./…?

Can you explain
the unexpected
outcome?

39Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Ownership and Permissions

• Every file/directory is owned by a specific user
(usually the original creator, but this can be changed)

• Every user is member of a (primary) group (and potentially additional ones)
• Notice the two “root” columns above:

the first one is the owner of the respective file/directory (here, a user called root)
the second one is the group assigned to the file/directory (here, a group called root)

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 40

Ownership and Permissions

• Permissions (access rights) for files and directories are managed in three different
classes: user, group and others

• Three specific permissions apply to each class:
• read (a file or the names of files in a directory)
• write (modify a file or the entries of a directory)
• execute (a file or access file contents of a directory)

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 41

Ownership and Permissions

• The leftmost column represents these permissions as they apply to files and directories
for each of these three classes

• Two examples from the output above:
dos: drwxr-xr-x This is a directory. User (root) has rwx, (members of) group (root) rx and (all) other (users) rx permissions.
hello.c: -rw-r--r-- This is a file. User has rw, group r and other r permissions.

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 42

Shell Scripting

• In order to execute the previously created script file…

• …use chmod to change file permissions/mode bits
$ chmod +x myscript.sh or $ chmod u+x myscript.sh

• Afterwards, call the script directly again
$./myscript.sh

• I want to call myscript.sh also from an other directory!!
$ export PATH=$PATH:$PWD # or path of script location

Refer to the
chmod manpage
for additional
information.

43Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

File Manipulation

• Finally, let‘s clean up: completely delete “another_dir”.

$ rm –r another_dir
Again, be cautious: there is no trash bin or undo!

• There is another command called rmdir? Does this also work?

44Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

Additional material

Visit https://linuxjourney.com/ for many more
interactive tutorials!

45Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich

One more thing: Environment Variables

• Environment variables == named values that can influence how programs are run in the
shell environment (e.g. by providing context information)

• Use the command env to print these variables in the current environment
• To print a specific environment variable, use the echo $VARNAME command

e.g. echo $HOME
• To set (or change) a specific environment variable,

use the export VARNAME=<value> command
• On many LRZ systems, we provide advanced mechanisms to adjust these environment

variables for user-specific modifications, e.g. on the high performance computing clusters
a “module system” is available that (amongst other functionalities) allows for
providing/running different versions of the same application (making changes to
environment variables to do so).

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 46

What else?

• Bash is a fully-fledged programming language (variables, conditionals, loops, functions, ...)
Bash Scripting , Advanced Bash Scripting

• Bash can more: process/job control, history, parallelism ...
• Advanced tools: coreutils, sed, awk, ...
• Advanced Editors: VI(M), Emacs, ...
• Regular Expressions
• GNU Tools GNU Manuals

(Don‘t read that all at once!! That‘s mostly for reference when you really need it!!)

• Some Guidelines:
simplicity, efficiency, complexity by modularity, flexibility, continuity by defaults, know your
tools

Introduction to GNU/Linux | April 8th, 2024 | M. Ohlerich 47

https://tldp.org/LDP/Bash-Beginners-Guide/html/index.html
https://tldp.org/LDP/abs/html/index.html
https://www.gnu.org/software/coreutils/manual/coreutils.html
https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.truth.sk/vim/vimbook-OPL.pdf
https://www.gnu.org/software/emacs/manual/html_node/emacs/index.html
https://www.gnu.org/manual/

Course Evaluation

Please visit
https://survey.lrz.de/index.php/474748?lang=en

and rate this course.

Your feedback is highly appreciated!
Thank you!

Introduction to GNU/Linux | October 9th, 2023 | J. Albert-von der Gönna 48

https://survey.lrz.de/index.php/474748?lang=en

	Foliennummer 1
	Foliennummer 2
	Session Information
	What is GNU/Linux?
	GNU General Public License (GPL)
	Popular Desktop Environments
	Linux and High Performance Computing (HPC)
	It’s time to get started!
	A Unix-like Shell in a Terminal Application
	File System Hierarchy Standard (FHS)
	Exploring the File System
	Detailed Listing of All Files
	General Command Syntax
	Getting Help
	At the outset…
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Directories
	Unix-like Commands (Addendum)
	Navigating Directories
	File Manipulation
	File Manipulation (Editors)
	File Manipulation and Redirection
	File Manipulation and Redirection
	Pipes
	File Manipulation
	File Manipulation
	File Manipulation
	Shell Wildcards
	Searching: grep
	Searching: find
	Shell Scripting
	Shell Scripting
	Shell Scripting
	Ownership and Permissions
	Ownership and Permissions
	Ownership and Permissions
	Shell Scripting
	File Manipulation
	Additional material
	One more thing: Environment Variables
	What else?
	Course Evaluation

