

AI Training Series:
High Performance Data Analytics
Using R at LRZ
2024-02-21

Course Information

• The aim of this course is to demonstrate the different ways of
using R efficiently and productively on LRZ systems
with a focus on parallelization mechanisms and data
analytics/machine learning tasks

• It is not an introduction to R itself
• Many of the topics covered in this course are based on either

methods & techniques successfully implemented on our systems
or issues encountered by users, for which they created tickets at
the LRZ Servicedesk

• Also, it assumes you have some prior knowledge and experience
in using GNU/Linux and SSH, as well as a good understanding of
the LRZ HPC and BDAI Infrastructure (if you attended the
previous AI Training Series courses, you are fine)

HPDA Using R at LRZ | 2024-02-21 3

Data Science
Archive (DSA)

HPC & AI Systems for Bavarian Universities

LRZ Linux Cluster

4

LRZ Compute CloudLRZ AI Systems
• “Big Data” CPU nodes
• HPE P100 node
• V100 nodes
• DGX-1 P100, DGX-1 V100
• Multiple DGX A100

HPDA Using R at LRZ | 2024-02-21

CoolMUC-2 Teramem-2 CoolMUC-3
LRZ Compute Cloud

(w/ some GPUs)

ssh://lxlogin[1-4].lrz.de
ssh://lxlogin8.lrz.de

login.ai.lrz.de
https://cc.lrz.de

Data Science Storage
(DSS)

Archive and
Backup (ABS)

(ssh:// and https://)

5

Demo/Hands-on: AI Systems – RStudio Server
https://login.ai.lrz.de

HPDA Using R at LRZ | 2024-02-21

R for AI

6HPDA Using R at LRZ | 2024-02-21

https://keras.posit.co/

https://torch.mlverse.org/

https://r-text.org/

https://xgboost.readthedocs.io/en/stable/R-package/
… and more

Demo/Hands-on: Linux Cluster

• Connect to the CoolMUC-2 segment
of the Linux Cluster

• From a terminal application:
$ ssh <user>@lxlogin1.lrz.de

• Alternatives would be
lxlogin[2-4].lrz.de for CoolMUC-2
(or lxlogin8.lrz.de for CoolMUC-3)

7HPDA Using R at LRZ | 2024-02-21

R Modules

• R is not accessible on the Linux Cluster by default (try: $ which R)
• Environment modules allow for the dynamic modification of environment variables
• A (minimal) set of default modules is active after login:
$ module list

• Use the module system to search for different R versions:
$ module available r (or module av r)

8HPDA Using R at LRZ | 2024-02-21

R Modules

9HPDA Using R at LRZ | 2024-02-21

R Modules

• (The current default version of)
R can be loaded using
$ module load r

• If you need a different version, you have to
specify the full name of the module,
e.g. “r/3.4.4-gcc8-mkl”

10HPDA Using R at LRZ | 2024-02-21

R Package Management

• All R packages are installed into libraries – these are (just) directories in the file system
with subdirectories for each installed package

• The default installation of R comes with a single library (if defined, $R_HOME/library)
usually containing the standard and recommended packages
(in RStudio, this is called the System Library)

• On a multiuser system, regular users may not add/install packages directly into this library
(but administrators can)

• On the Linux Cluster we only provide the standard set of base packages in this central
location

11HPDA Using R at LRZ | 2024-02-21

R Package Management

• Individual users can have (one or more) additional, personal libraries
(called User Library in RStudio)

• The path for this library directory can be specified by the environment variable
$R_LIBS_USER (amongst others)

• If this is not defined, R will ask you to create a personal package library when installing
packages for the first time…

12HPDA Using R at LRZ | 2024-02-21

R Package Management

• Notice the suggested path – it is specific to
the (minor) version of R!

• You can use the .libPaths() function within
R to check the current library directories…

13HPDA Using R at LRZ | 2024-02-21

R Package Management

• So, subject to the system/cluster segment
and R version you‘re using, you will
depend on different system and user
libraries

• You can always control the R packages
you use (and their versions) by
maintaining your user library…

• … it might even be beneficial to do this in
a project-specific manner.

14HPDA Using R at LRZ | 2024-02-21

R Package Management

• A challenge: on GNU/Linux (most) „add-on“ R packages will be compiled from source
• This requires compilers, tools and additional dependencies available on the system
• For general compatibility use (a recent version) of the GNU Compiler Collection GCC to

compile add-on packages – ideally the version used to compile R itself. Setting this up
has been automatized when loading the latest R modules.

This is essentially equivalent to the following module commands:
module unload intel-mpi
module unload intel-oneapi-compilers
module load gcc
module load r

• If you miss any dependencies, make sure to check the available modules!
• And, as always: if you encounter any problems, talk to us!

15HPDA Using R at LRZ | 2024-02-21

R Package Management

• Optional:
there are package managers which can be run as user applications and may provide
additional dependency requirements

• They manage R and (many of) its packages „from the outside“
• For this, you could take a look at Spack (https://spack.io) or conda (https://conda.io)

16HPDA Using R at LRZ | 2024-02-21

Slurm Workload Manager

• Slurm is a job scheduler:
• Allocates access to resources (time, memory, nodes/cores)
• Provides framework for starting, executing, and monitoring work
• Manages queue of pending jobs (enforcing “fair share” policy)

• Use the sinfo command to get information about the available
clusters
$ sinfo --clusters=all or, shortened:
$ sinfo –M all

17HPDA Using R at LRZ | 2024-02-21

Slurm Workload Manager

• Look for the cluster segments
• inter (allows for interactive usage)
• cm2 (the main CoolMUC-2 cluster)
• serial (shared nodes for serial jobs)

• What is their current status?
• Get information about a specific cluster

segment, e.g.
$ sinfo -M inter or
$ sinfo -M cm2

18HPDA Using R at LRZ | 2024-02-21

CoolMUC-2 Overview

Slurm Cluster Slurm Partition Node Range per Job Slurm Job Settings

cm2 cm2_large 25-64 --clusters=cm2
--partition=cm2_large
--qos=cm2_large

cm2_std 3-24 --clusters=cm2
--partition=cm2_std
--qos=cm2_std

cm2_tiny cm2_tiny 1-4 --clusters=cm2_tiny

serial serial_std 1 --clusters=serial
--partition=serial_std
--mem=<memory_per_node>MB

serial_long 1 --clusters=serial
--partition=serial_long
--mem=<memory_per_node>MB

inter cm2_inter 1-4 --clusters=inter
--partition=cm2_inter

cm4_inter_large_mem 1 --clusters=inter
--partition=cm4_inter_large_mem

teramem_inter 1 --clusters=inter
--partition=teramem_inter

19HPDA Using R at LRZ | 2024-02-21

For additional details see https://doku.lrz.de/display/PUBLIC/Job+Processing+on+the+Linux-Cluster

Interactive R Session

• The inter cluster can be used for interactive resource allocation:
$ salloc -p cm2_inter -N 1

• Using this shell, you can e.g. run R interactively on this node
(if the R module is loaded):
$ R

20HPDA Using R at LRZ | 2024-02-21

Interactive R Session

21HPDA Using R at LRZ | 2024-02-21

user@cm2login1:~$ salloc -p cm2_inter -N 1
salloc: Granted job allocation 159945
user@i22r07c05s11:~$ module load r
user@i22r07c05s11:~$ R

R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

[...]

> library(parallel)
> detectCores()
[1] 56
>

Job Processing

• For production jobs, you want to prepare and submit a batch script
• They tell Slurm about the resources you need and the scripts/programs you want to run…
• For the purposes of this training, a Slurm reservation has been created, i.e. a certain

number of CoolMUC-2 compute nodes (cm2 cluster) have been dedicated exclusively to
participants of this training.

• Add Slurm option --reservation=hdta6w23 to any upcoming resource allocation on
the cm2 cluster, partitions cm2_std or cm2_large.
(you may still be able to run jobs on other clusters/partitions or without using this
reservation, but it does increase your chances of faster execution)

22HPDA Using R at LRZ | 2024-02-21

Job Processing

#!/bin/bash
#SBATCH --clusters=cm2_tiny
#SBATCH --nodes=1

module load slurm_setup

module load r

Rscript myscript.R

• A very minimal example of a job script (not
necessarily recommended, but working in
some cases), requesting
• a single, exclusive node (with 28 cores)
• of the cm2_tiny partition/cluster, part of
• the CoolMUC-2 system

• Submit this job script to the queue:
$ sbatch <myjob.sh>

23HPDA Using R at LRZ | 2024-02-21

Job Processing

#!/bin/bash
#SBATCH -o /dss/dsshome1/.../.../myjob.%j.%N.out
#SBATCH -D /dss/dsshome1/.../.../workdir
#SBATCH -J jobname
#SBATCH --get-user-env
#SBATCH --clusters=cm2
#SBATCH --partition=cm2_std
#SBATCH --qos=cm2_std
#SBATCH --nodes=3
#SBATCH --mail-type=end
#SBATCH --mail-user=xyz@xyz.de
#SBATCH --export=NONE
#SBATCH --time=08:00:00

module load slurm_setup
module unload intel-mpi
module load openmpi

module load r

mpirun R –f myscript.R

• A more practical example…
• defining custom output file(s)
• setting a working directory
• assigning a job name
• configuring mail notifications
• managing the environment
• limiting walltime explicitly

• See documentation for more
details:
https://doku.lrz.de/x/AgaVAg

24HPDA Using R at LRZ | 2024-02-21

Job Management and Accounting

• Submit a job:
$ sbatch myjob.sh

• Query status of your jobs:
$ squeue -M <cluster> -u <user>

• Approximate start time of pending jobs:
$ squeue -M <cluster> -u <user> --start

• Abort a job:
$ scancel -M <cluster> <jobid>

• Get accounting data for (past) jobs:
$ sacct -X -M <cluster> [-S <YYYY-MM-DD>] -u <user>

25HPDA Using R at LRZ | 2024-02-21

Potential Pitfalls

• Jobs get aborted (by Slurm) if they use more (memory) resources than specified
-> you need to estimate memory and runtime requirements
• Estimate memory requirements from a (single, local) serial run, extrapolate if needed

(use e.g. your system monitor or the “top” command line tool)
• Provide some “buffer” for runtime

• Queuing times can be long
• Use “sinfo” to find less busy cluster segments
• Smaller, less demanding jobs generally start faster

-> you can benefit from accurate resource estimation

26HPDA Using R at LRZ | 2024-02-21

Potential Pitfalls

• Debugging can be inconvenient
• The time interval between changes in the R code and seeing results/getting feedback is

longer than usual
• The compute environment (compute nodes of the cluster) and the development/test

environments (local, login or interactive nodes) are usually not exactly the same
• Debug as much as possible in a serial fashion
• Prepare small jobs and test them interactively (using “salloc”/”srun”)

27HPDA Using R at LRZ | 2024-02-21

AI Training Series:
High Performance Data Analytics
Using R at LRZ
2024-02-21 | J. Albert-von der Gönna

HPC/AI Cluster Systems

Accelerator: GPU, FPGA
Socket
Core

HPDA Using R at LRZ | 2024-02-21 29

30HPDA Using R at LRZ | 2024-02-21

CRAN Task View: High-Performance and Parallel Computing
https://cran.r-project.org/web/views/HighPerformanceComputing.html

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts

31HPDA Using R at LRZ | 2024-02-21

Parallelization Using R: Embarrassingly/Pleasingly Parallel

32HPDA Using R at LRZ | 2024-02-21

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

Parallelization Using R: Embarrassingly/Pleasingly Parallel

• Let’s look at a toy problem:

for(i in 1:20) sum(sort(runif(1e7)))

• Add a time measurement:

system.time(for(i in 1:20) sum(sort(runif(1e7))))

• You might also be familiar with alternatives like the following:

lapply(1:20, function(x) sum(sort(runif(1e7))))

33HPDA Using R at LRZ | 2024-02-21

Parallelization Using R: Embarrassingly/Pleasingly Parallel

• Use the command line to start your R process (in the background):
$ Rscript script0.R &

• If you do this repeatedly, the resulting R processes will be distributed by the OS to
different cores (subject to availability):
$ Rscript script1.R &
$ Rscript script2.R &
$ Rscript script3.R & …

• To further automate this procedure, you could write a bash script (run_all_R_scripts.sh)
containing these commands and then run this single script:
$ bash run_all_R_scripts.sh &

• Typically, do not start more processes than cores!
• Do not use the (cluster) login nodes for this (e.g. request an interactive shell instead)!

34HPDA Using R at LRZ | 2024-02-21

• “It is sometimes useful to perform a computation in a separate R process, without
affecting the current R process at all. This package does exactly that.”

• Use r() to run an R function in a new R process.

library(callr)
r(function() var(iris[, 1:4]))

#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707
#> Sepal.Width -0.0424340 0.1899794 -0.3296564 -0.1216394
#> Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094
#> Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063

35

There is, of course, also an R package to achieve this: callr
https://callr.r-lib.org/

HPDA Using R at LRZ | 2024-02-21

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

36HPDA Using R at LRZ | 2024-02-21

Parallelization Using R: Worker Queue

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

37

Shared file system or
database
rredis/doRedis,
batchtools, clustermq

HPDA Using R at LRZ | 2024-02-21

Parallelization Using R: rredis/doRedis

Redis is an open source, fast, persistent, networked database with many features, among them a
blocking queue-like data structure (Redis “lists”). This feature makes Redis useful as a lightweight
back end for parallel computing.

A Redis server has to be set up as part of the cluster (e.g. on a login node) or even somewhere else,
containing the problem description(s). Worker processes connect to this server and tasks are
assigned to them.

This is a very flexible and dynamic approach, as workers can basically run wherever you want (as
long as they can connect to the server). When running on the cluster, you have to deal with resource
allocation separately (via the Slurm workload manager) and potential firewall access restrictions.

39HPDA Using R at LRZ | 2024-02-21

“batchtools provides a parallel implementation of Map for high performance computing
systems managed by schedulers like Slurm, …
• all relevant batch system operations (submitting, listing, killing) are either handled

internally or abstracted via simple R functions
• with a well-defined interface, the source is independent from the underlying batch system

- prototype locally, deploy on any high performance cluster”

i.e. a (interactive) R process is used in combination with the shared file system and the
workload manager of the cluster to distribute workloads across nodes

40

Parallelization Using R: batchtools
https://mllg.github.io/batchtools/

HPDA Using R at LRZ | 2024-02-21

• Allows to send function calls as jobs on a computing cluster with a minimal interface
provided by the Q() function

library(clustermq)
fx = function(x) x * 2

Q(fx, x=1:3, n_jobs=1)

• All calculations are load-balanced, i.e. workers that get their jobs done faster will also
receive more function calls to work on

• Computations are done entirely on the network and without any temporary files on
network-mounted storage

41

Parallelization Using R: clustermq
https://mschubert.github.io/clustermq/

HPDA Using R at LRZ | 2024-02-21

42HPDA Using R at LRZ | 2024-02-21

Parallelization Using R: clustermq
https://mschubert.github.io/clustermq/

Use clustermq if you want:
• a one-line solution to run cluster jobs with

minimal setup
• access cluster functions from your local

machine (e.g. using RStudio) via SSH
• fast processing of many function calls without

network storage I/O

Use batchtools if you:
• want to use a mature and well-tested package
• don’t mind that arguments to every call are

written to/read from disc
• don’t mind there’s no load-balancing at run-

time

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

• Shared Memory (strong coupling):
• one R process spawns sub-processes on a single node with many cores

(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)

43HPDA Using R at LRZ | 2024-02-21

Parallelization Using R: Shared Memory

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

44

Shared file system or
database
rredis/doRedis,
batchtools, clustermq

Shared memory

parallel/doParallel

HPDA Using R at LRZ | 2024-02-21

Shared Memory Parallelization: Multithreading with doParallel

• As seen earlier, the for loop construct in R:
for(i in 1:20) sum(sort(runif(1e7)))

serial execution/single thread

• “The foreach package provides a new looping construct for executing R code repeatedly.
[…] it supports parallel execution, that is, it can execute those repeated operations on
multiple processors/cores on your computer, or on multiple nodes of a cluster.”

library(foreach)
foreach(i = 1:20) %do% sum(sort(runif(1e7))) # serial execution

foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
multithread execution (?)

45HPDA Using R at LRZ | 2024-02-21

Shared Memory Parallelization: Multithreading with doParallel

• This is were the “do-backends” (aka %dopar% adapters, e.g. doParallel) come into play…
• By creating/registering a cluster, foreach’s %dopar% operator can rely on these parallel

resources, e.g. using parallel’s multicore-like functionality (“forking”):

library(foreach)
library(doParallel)
registerDoParallel(cores=4)

define number of cores, this enables multicore-functionality
(preferred on GNU/Linux, but won’t work on Windows)

foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))

46HPDA Using R at LRZ | 2024-02-21

Shared Memory Parallelization: Multithreading with doParallel

• The procedure is similar for snow-like functionality:

library(foreach)
library(doParallel)
cluster.object <- makePSOCKcluster(4)
registerDoParallel(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
stopCluster(cluster.object)

• This uses Rscript to launch further copies of R (on the same host or optionally elsewhere;
in the latter case, hostnames need to be provided)

• [parallel, by relying on snow, also allows to create MPI-clusters (makeMPIcluster()-
function) but Rmpi/doMPI is usually recommended to be used instead]

47HPDA Using R at LRZ | 2024-02-21

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

• Shared Memory (strong coupling):
• one R process spawns sub-processes on a single node with many cores

(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)
• Message Passing (strong coupling):

• several R processes talk to each other (across different nodes) by passing messages
(e.g. Rmpi/doMPI), this also allows for a (single) main and (multiple) workers model

48HPDA Using R at LRZ | 2024-02-21

Parallelization Using R: Message Passing

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

49

Message Passing

Rmpi/doMPI

Shared file system or
database
rredis/doRedis,
batchtools, clustermq

Shared memory

parallel/doParallel

HPDA Using R at LRZ | 2024-02-21

Message Passing with doMPI

• To execute a doMPI script on multiple compute nodes a “message passing environment”
needs to be set up, i.e. the R interpreter needs to be executed using a command such as
mpirun (i.e. mpirun R –f script.R)

• Then, the already familiar „do-back end“-pattern is put to use within R:

library(foreach)
library(doMPI)
cluster.object <- startMPIcluster()
registerDoMPI(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
closeCluster(cluster.object)

50HPDA Using R at LRZ | 2024-02-21

More on foreach()

• clustermq::register_dopar_cmq(...) registers clustermq as foreach parallel handler

• use times() for simple repetitions:
times(10) %do% sum(sort(runif(1e7)))

• foreach is a function with several arguments…
foreach(i = 1:10, .combine = c, …) %do% sth() # process results

as they get generated, e.g. c(), cbind(), list(), sum(), ...
• … evaluates iterators…
foreach(i = iter(input)) %do% sth() # see package iterators
foreach(i = irnorm(100)) %do% sth()

• … and provides additional operators:
foreach(i = 1:10) %:% when(cond) %do% sth() # nesting operator

and condition cf. Python’s list comprehensions

51HPDA Using R at LRZ | 2024-02-21

More on parallel

• parallel provides parallel replacements of lapply and related functions (as have snow and
multicore):

• multicore-like: e.g. mclapply(1:10, function(x) sum(sort(runif(1e7)))),
mcmapply (x, FUN, ...), mcMap(FUN, …)

• snow-like: clusterApply(cl, x, fun, ...), e.g. parLapply(cl, x, FUN, ...)

52HPDA Using R at LRZ | 2024-02-21

• The parallelly package provides functions that enhance the parallel package.
• Showcase: parallelly::availableCores() gives the number of CPU cores available to your R

process as given by R options and environment variables, including those set by job
schedulers on high-performance compute (HPC) clusters. If R runs under 'cgroups' or a
Linux container, then their settings are acknowledged too – vs. parallel::detectCores()
$ salloc -p cm2_inter -c 2
$ R
> library(parallel)
> detectCores()
[1] 56
> library(parallelly)
> availableCores()
Slurm 2

• The functions and features of parallely are written to be backward compatible with the
parallel package, such that they may be incorporated there later.

53

parallelly: Enhancing the parallel package
https://github.com/HenrikBengtsson/parallelly

HPDA Using R at LRZ | 2024-02-21

Even More on parallel: Futures/Promises

• Constructs for synchronizing program execution. Describe objects that act as proxies for
a result, which is yet unknown (because the computation is incomplete)

• Send command to background and return handle:
handle <- mcparallel(some_expensive_function)

• Collect result at later point:
result <- mccollect(handle)

54HPDA Using R at LRZ | 2024-02-21

Futures/Promises

> system.time(sum(sort(runif(1e7))))
user system elapsed
1.581 0.112 1.700

> system.time(sapply(1:20, function(x) sum(sort(runif(1e7)))))
user system elapsed

28.875 2.998 31.883

> library(parallel)
> h <- mcparallel(sapply(1:20, function(x) sum(sort(runif(1e7)))))
> mccollect(h, wait = FALSE)
NULL
wait approx. 30 seconds for job to finish
> mccollect(h, wait = FALSE)
[1] 5000214 4999121 5001166 …

55HPDA Using R at LRZ | 2024-02-21

• Package future tries to unify the previous approaches:
“The purpose of this package is to provide a lightweight and unified Future API for
sequential and parallel processing of R expressions via futures. […] Because of its unified
API, there is no need to modify any code in order switch from sequential on the local
machine to, say, distributed processing on a remote compute cluster. ”

• Implicit:
v %<-% { expr } # future assignment , creates a future and a

promise to its value (instead of regular assignment <-)

• Explicit:
f <- future({ expr }) # creates a future
v <- value(f) # gets the value of the future

(blocks if not yet resolved)

56

Futures/Promises
https://github.com/HenrikBengtsson/future

HPDA Using R at LRZ | 2024-02-21

• Function plan() allows the user to plan the future, i.e. it specifies how futures are resolved

• For example: plan(sequential) and more

> library("future")
> plan(sequential)
> v %<-% {
+ cat("Hello world!\n")
+ 3.14
+ }
> v
Hello world!
[1] 3.14

57

Futures/Promises
https://github.com/HenrikBengtsson/future

HPDA Using R at LRZ | 2024-02-21

Name OSes Description
synchronous: non-parallel:
sequential all sequentially and in the current R process
asynchronous: parallel:
multisession all background R sessions (on current machine)
multicore not Windows/RStudio forked R processes (on current machine)
cluster all external R sessions on current, local, and/or remote machines

• The future.callr package provides future backends that evaluates futures in a background
R process utilizing the callr package - they work similarly to multisession futures but have
a few advantages (e.g. more than 125 parallel R processes)

• Package future.batchtools provides an implementation of the Future API on top of the
batchtools package, i.e. it allows to process futures (as defined by the future package) on
HPC infrastructure

58

Futures/Promises
https://github.com/HenrikBengtsson/future

HPDA Using R at LRZ | 2024-02-21

• Package doFuture provides two alternatives for using futures with foreach such that any
type of future (that is supported by the Future API of the future package) can be used for
asynchronous (parallel/distributed) or synchronous (sequential) processing.
• Traditional approach: %dopar% adapter
library(doFuture)
registerDoFuture()
plan(multicore)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))

• Modern approach (recommended when starting from scratch): %dofuture% operator
library(doFuture)
plan(multicore)
foreach(i = 1:20) %dofuture% sum(sort(runif(1e7)))

• Look out for the use of foreach and the possibility to register all these different back ends
in other R packages, e.g. plyr uses foreach as parallel backend and BiocParallel supports
any %dopar% adapter/the %dofuture% operator as well!

59

doFuture: future and foreach
https://github.com/HenrikBengtsson/doFuture

HPDA Using R at LRZ | 2024-02-21

• The targets package is a Make-like pipeline toolkit for statistics and data science in R
• maintain a reproducible workflow without repeating yourself
• skip costly runtime for tasks that are already up to date
• run the necessary computation with implicit parallel computing
• abstract files as R objects

• A fully up-to-date targets pipeline is tangible evidence that the output aligns with the code
and data, which substantiates trust in the results

60

… and beyond: the targets package
https://docs.ropensci.org/targets/

HPDA Using R at LRZ | 2024-02-21

• targets supports high-performance computing with the tar_make_clustermq() and
tar_make_future() functions (using the future.batchtools backend)

• These functions are like tar_make(), but they allow multiple targets to run simultaneously
over parallel workers. Again, these workers can be processes on your local machine, or
they can be jobs on a computing cluster.

• tar_make_clustermq() uses persistent workers. That means all the parallel processes
launch together as soon as there is a target to build, and all the processes keep running
until the pipeline winds down.

• tar_make_future() runs transient workers. That means each target gets its own worker
which initializes when the target begins and terminates when the target ends.

61

The targets package
https://docs.ropensci.org/targets/

HPDA Using R at LRZ | 2024-02-21

• In computationally demanding analysis projects, statisticians and data scientists
asynchronously deploy long-running tasks to distributed systems, ranging from traditional
clusters to cloud services.

• The NNG-powered mirai R package is a sleek and sophisticated scheduler that efficiently
processes these intense workloads.

• The crew package extends mirai with a unifying interface for third-party worker launchers.
• Inspiration also comes from packages future, rrq, clustermq, and batchtools.

• A crew controller is an object in R which accepts tasks, returns results, and launches
workers.

• Workers can be local processes, jobs on traditional clusters such as SLURM, or jobs on
cloud services such as AWS Batch, depending on the launcher plugin of the controller.

62

crew: a distributed worker launcher framework
https://wlandau.github.io/crew/

HPDA Using R at LRZ | 2024-02-21

Conclusion

• Parallel programming is here to stay (for the foreseeable future).
• Know your hardware…
• … and the possibilities of your software/programming environment.
• Applying proper (high level) abstractions (foreach, futures, targets…) to fully utilize the

features of modern CPUs/GPUs and supercomputing infrastructure will allow you to write
fast and scalable programs.

63HPDA Using R at LRZ | 2024-02-21

	Foliennummer 1
	Foliennummer 2
	Course Information
	HPC & AI Systems for Bavarian Universities
	Demo/Hands-on: AI Systems – RStudio Server
	R for AI
	Demo/Hands-on: Linux Cluster
	R Modules
	R Modules
	R Modules
	R Package Management
	R Package Management
	R Package Management
	R Package Management
	R Package Management
	R Package Management
	Slurm Workload Manager
	Slurm Workload Manager
	CoolMUC-2 Overview
	Interactive R Session
	Interactive R Session
	Job Processing
	Job Processing
	Job Processing
	Job Management and Accounting
	Potential Pitfalls
	Potential Pitfalls
	Foliennummer 28
	HPC/AI Cluster Systems
	CRAN Task View: High-Performance and Parallel Computing
	(Explicit) Parallelization Using R
	Parallelization Using R: Embarrassingly/Pleasingly Parallel
	Parallelization Using R: Embarrassingly/Pleasingly Parallel
	Parallelization Using R: Embarrassingly/Pleasingly Parallel
	There is, of course, also an R package to achieve this: callr
	(Explicit) Parallelization Using R
	Parallelization Using R: Worker Queue
	Parallelization Using R: rredis/doRedis
	Parallelization Using R: batchtools
	Parallelization Using R: clustermq
	Parallelization Using R: clustermq
	(Explicit) Parallelization Using R
	Parallelization Using R: Shared Memory
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Message Passing
	Message Passing with doMPI
	More on foreach()
	More on parallel
	parallelly: Enhancing the parallel package
	Even More on parallel: Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	doFuture: future and foreach
	… and beyond: the targets package
	The targets package
	crew: a distributed worker launcher framework
	Conclusion

