Leibniz Supercomputing Centre

of the Bavarian Academy of Sciences and Humanities

Al Training Series:
High Performance Data Analytics
Using R at LRZ

2024-02-21

Course Information

« The aim of this course is to demonstrate the different ways of
using R efficiently and productively on LRZ systems
with a focus on parallelization mechanisms and data
analytics/machine learning tasks

* |t is not an introduction to R itself

« Many of the topics covered in this course are based on either
methods & techniques successfully implemented on our systems
or issues encountered by users, for which they created tickets at
the LRZ Servicedesk

» Also, it assumes you have some prior knowledge and experience
in using GNU/Linux and SSH, as well as a good understanding of
the LRZ HPC and BDAI Infrastructure (if you attended the
previous Al Training Series courses, you are fine)

HPDA Using R at LRZ | 2024-02-21 3

HPC & Al Systems for Bavarian Universities

- =

Data Science : Archive and
Archive (DSA) n Backup (ABS)

Data Science Storage
(DSS)

LRZ Al Systems

+ “Big Data” CPU nodes

LRZ Linux Cluster

BEGN

+ DGX-1P100, DGX-1 V100
* Multiple DGX A100

+ HPE P100 node

* V100 nodes #‘
A
B

CoolMUC-2 Teramem-2 CoolMUC-3

ssh://Ixlogin[1-4].Irz.de login.ai.lrz.de
ssh://Ixlogin8.Irz.de (ssh:// and https://)

Ca-

HPDA Using R at LRZ | 2024-02-21

LRZ Compute Cloud

LRZ Compute Cloud
(w/ some GPUs)

https://cc.Irz.de

https://login.ai.lrz.de
Demo/Hands-on: Al Systems — RStudio Server

O B https:/food-2.ai.lrz.de/pun/sys/dashboard/batch_connect/sys/bc_rstudio/ai-systems/session_contexts/new

| (TEST INSTANCE) Files ~ Jobs ~ Clusters ~ Interactive Apps ~ @ My Interactive Sessions

SEervers

Home / My Interactive Sessions / RSW -~ Jupyter Notebook

‘R RStudio Server

Interactive Apps

+ TensorBoard

=

Servers

= Jupyter Notebook Choose the resource type for this session

. CPU + GPU Nvidia Ampere A100 (20GB MIG, Ampere Tensor Cores) v
€ RStudio Server

Specify your random-access memory (RAM) requirements
t TensorBoard

Medium: ~60 GB v

Choose one of the following RStudio containers or "Custom..."” to provide additional
container information in the field to appear below

R 4.3.0, RStudio Server 2023.03.1, CUDA 11.8 v

MNumber of hours

1 -

Launch

* The RStudio Server session data for this session can be accessed under the data
root directory.

HPDA Using R at LRZ | 2024-02-21 5

R for Al

https://keras.posit.co/

https://torch.mlverse.org/ https://xgboost.readthedocs.io/en/stable/R-package/

HPDA Using R at LRZ | 2024-02-21and more 6

Demo/Hands-on: Linux Cluster

« Connect to the CoolMUC-2 segment
of the Linux Cluster

* From a terminal application:
$ ssh <user>@1lxlogini.lrz.de

 Alternatives would be
Ixlogin[2-4].Irz.de for CoolMUC-2
(or Ixlogin8.Irz.de for CoolMUC-3)

HPDA Using R at LRZ | 2024-02-21

R Modules

R is not accessible on the Linux Cluster by default (try:)
Environment modules allow for the dynamic modification of environment variables
A (minimal) set of default modules is active after login:

Use the module system to search for different R versions:

(or)

HPDA Using R at LRZ | 2024-02-21

R Modules

HPDA Using R at LRZ | 2024-02-21

di36pez@ivy-login: ~

Datei Bearbeiten Ansicht Suchen Terminal Hilfe

di36pez@ivy-login:~$ which R
which: no R in (/Llrz/sys/intel/studio2017 u6/impi/2017.4.256/1lrzbin:/1lrz/sys/int
el/studio2017_u6/impi/2017.4.256/bin64: /1lrz/sys/intel/studio2017_u6/compilers_an
d libraries 2017.6.256/Llinux/bin/intel64: flrz/sys/share/modules/bin: /lrzfsysfbin
:fusrflocal/bin: fusr/bin: /bin: fusr/bin/X11: fusrfgames: fopt/ibutils/bin: fLlrzfsys/
tools/slurm utils/bin)
di36pez@ivy-login:~$ module list
Currently Loaded Modulefiles:

1) admin/f1.0 3) intel/17.0 5) mpi.intel/2017 7) lrz/default

2) tempdir/i1.0 4) mkl/2017 6) spack/release/18.2
di3épez@ivy-login:~$ module av r

flrz/sys/share/modules/files/graphics

Jlrz/sys/share/modules/files/libraries

Jlrz/sys/sharef/modules/files/tools
redis/3.2.5(default)
Jlrz/sys/spack/18.2/modules/x86 avx/linux-sles12-x86 64
r/3.4.4-x11 r/3.5.e-x11 readlinef7.0
r/3.4.4-¥11-mkl r/3.5.0-X11-mkl renderproto/0.11.1
di36pez@ivy-login:~$ I

R Modules

* (The current default version of)

R can be loaded using
$ module load r

* If you need a different version, you have to
specify the full name of the module,
e.g. “r/3.4.4-gcc8-mkl”

HPDA Using R at LRZ | 2024-02-21

di3épez@ivy-login: ~

Datei Bearbeiten Ansicht Suchen Terminal Hilfe

di3d6pez@ivy-login:~S module load r

di36pez@ivy-login:~S which R

Jlrz/mnt/sys.x86 sles12/spack/18.2/opt/x86 avx/rf3.5.0-gcc-pzdtq2a/bin/R
di3épez@ivy-login:~%

10

R Package Management

« All R packages are installed into libraries — these are (just) directories in the file system
with subdirectories for each installed package

« The default installation of R comes with a single library (if defined, $R_HOME/library)
usually containing the standard and recommended packages
(in RStudio, this is called the System Library)

« On a multiuser system, regular users may not add/install packages directly into this library
(but administrators can)

« On the Linux Cluster we only provide the standard set of base packages in this central
location

HPDA Using R at LRZ | 2024-02-21 11

R Package Management

* Individual users can have (one or more) additional, personal libraries
(called User Library in RStudio)

« The path for this library directory can be specified by the environment variable
$R _LIBS USER (amongst others)

« If this is not defined, R will ask you to create a personal package library when installing
packages for the first time...

HPDA Using R at LRZ | 2024-02-21

12

R Package Management

di3épez@ivy-login: ~

Datei Bearbeiten Ansicht Suchen Terminal Hilfe
R version 3.5.0 (2018-84-23) -- "Joy in Playing"
Copyright (C) 2018 The R Foundation for Statistical Computing

Platforn: x86_64-pc-linux-gnu (64-bit) * Notice the suggested path — it is specific to
R ist freie Software und kommt OHNE JEGLICHE GARANTIE.

Sie sind eingeladen, es unter bestimmten Bedingungen weiter zu verbreiten. the (m'nor) VerS|On Of R'

Tippen Sie 'license()' or 'licence()' fiOr Details dazu.

R ist ein Gemeinschaftsprojekt mit vielen Beitragenden. o You Can use the IleathS() funCtlon Wlthln

Tippen Sie 'contributors()' fiUr mehr Information und 'citation()',

um zu erfahren, wie R oder R packages in Publikationen zitiert werden kd&nnen. R to Check the Current Ilbrary dlrectorles L.

Tippen Sie 'demo()' fur einige Demos, 'help()' fir on-line Hilfe, oder
'help.start()' fur eine HTML Browserschnittstelle zur Hilfe.
Tippen Sie 'q()', um R zu verlassen.

> install.packages("ggplot2")
Warnung in install.packages("ggplot2")
'"I1ib = "flrz/mnt/sys.x86 sles12/spack/18.2/opt/x86 avx/r/3.5.8-gcc-pzdtg2a/rli

b/R/1library" ist nicht schreibbar

Would you like to use a personal library instead? (yes/No/cancel) yes
Would you like to create a personal library

‘~[R/%x86 64-pc-linux-gnu-library/3.5°

to install packages into? (yes/No/cancel) I

HPDA Using R at LRZ | 2024-02-21 13

R Package Management

« S0, subject to the system/cluster segment
— and R version you‘re using, you will
Datei Bearbeiten Ansicht Suchen Terminal Hilfe depend on dlﬁerent System and user

di36épez@ivy-login:~$ R

di3épez@ivy-login: ~

R version 3.5.0 (2018-84-23) -- "Joy in Playing" Ilbrarles

Copyright (C) 2018 The R Foundation for Statistical Computing

Pl B S e L (B0 b * You can always control the R packages
R ist freie Software und kommt OHNE JEGLICHE GARANTIE. . H

Sie sind eingeladen, es unter bestimmten Bedingungen weilter zu verbreiten. yOU Use (and thelr VerSIOnS) by

Tippen Sie 'license()' or 'licence()' fiOr Details dazu.

maintaining your user library...

... it might even be beneficial to do this in
o b A TR e e P R e e s a project-specific manner.

Tippen Sie 'q()', um R zu verlassen.

R ist ein Gemeinschaftsprojekt mit vielen Beitragenden.
Tippen Sie 'contributors()' fiUr mehr Information und 'citation()',
um zu erfahren, wie R oder R packages in Publikationen zitiert werden kénnen.

= .libPaths()
[1] "/home/hpc/pr28fafdi36pez/R/x86 64-pc-linux-gnu-library/3.5"

[2] "/lrz/mnt/sys.x86 sles12/spack/18.2/opt/x86 avx/r/3.5.0-gcc-pzdtq2a/rlib/R/1
ibrary"”

-

HPDA Using R at LRZ | 2024-02-21

14

R Package Management

» Achallenge: on GNU/Linux (most) ,add-on" R packages will be compiled from source
* This requires compilers, tools and additional dependencies available on the system

« For general compatibility use (a recent version) of the GNU Compiler Collection GCC to
compile add-on packages — ideally the version used to compile R itself. Setting this up
has been automatized when loading the latest R modules.

This is essentially equivalent to the following module commands:

+ If you miss any dependencies, make sure to check the available modules!
* And, as always: if you encounter any problems, talk to us!

HPDA Using R at LRZ | 2024-02-21 15

R Package Management

* Optional:
there are package managers which can be run as user applications and may provide
additional dependency requirements

 They manage R and (many of) its packages ,from the outside”
 For this, you could take a look at Spack (https://spack.io) or conda (https://conda.io)

HPDA Using R at LRZ | 2024-02-21

16

Slurm Workload Manager

« Slurm is a job scheduler:
 Allocates access to resources (time, memory, nodes/cores)
* Provides framework for starting, executing, and monitoring work
« Manages queue of pending jobs (enforcing “fair share” policy)

» Use the sinfo command to get information about the available

clusters
$ sinfo --clusters=all or, shortened:

$ sinfo -M all

HPDA Using R at LRZ | 2024-02-21 17

Slurm Workload Manager

didépez@mpp2-login5: ~

Datei Bearbeiten Ansicht Suchen Terminal Hilfe
di36épez@mpp2-login5:~% sinfo -M all

CLUSTER: bsbslurm

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
bsb_konvert* up infinite 1 mix hbsbr®9co5s02
bsb_konvert* up infinite 1 alloc hbsbreoces5sel
bsb_konvert* up infinite 4 idle hbsbro9c65s[03-06]

CLUSTER: hm_mech
PARTITION AVAIL TIMELIMIT MNODES STATE NODELIST
hm_mech_batch#* up 14-00:00:0 12 alloc hhmkre9ce4s[e1-12]

CLUSTER: httf
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
httf batch* up 3-00:00:00 5 resv httfres5co5s[01-05]

CLUSTER: htus
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
htus_batch* up 3-00:00:00 2 idle htusr85c84s[05-06]

CLUSTER: inter

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
mpp3_inter¥* up 2:00:00 1 alloc mpp3r®3cB5s03
mpp3_inter¥* up 2:00:00 2 idle mpp3r@3cO5s[01-02]
teramem_inter up 4-00:00:00 1 mix terameml

HPDA Using R at LRZ | 2024-02-21

Look for the cluster segments

* inter (allows for interactive usage)
« cm2 (the main CoolMUC-2 cluster)

serial (shared nodes for serial jobs)
What is their current status?

Get information about a specific cluster
segment, e.qg.

$ sinfo -M inter or

$ sinfo -M cm2

18

CoolMUC-2 Overview

Slurm Cluster Slurm Partition Node Range per Job Slurm Job Settings

cm2_large 25-64 --clusters=cm2
--partition=cm2_large
--qos=cm2_large

cm2_std 3-24 --clusters=cm2
--partition=cm2_std
--qos=cm2_std

cm2_tiny cm2_tiny 1-4 --clusters=cm2_tiny

serial serial_std 1 --clusters=serial
--partition=serial_std
--mem=<memory_per_node>MB

serial_long 1 --clusters=serial
--partition=serial_long
--mem=<memory_per_node>MB

inter cm2_inter 1-4 --clusters=inter
--partition=cm2_inter

cm4_inter_large_mem 1 --clusters=inter
--partition=cm4_inter_large_mem

teramem_inter 1 --clusters=inter
--partition=teramem_inter

For additional details see https://doku.lrz.de/display/PUBLIC/Job+Processing+on+the+Linux-Cluster

HPDA Using R at LRZ | 2024-02-21 19

Interactive R Session

 The inter cluster can be used for interactive resource allocation:

« Using this shell, you can e.g. run R interactively on this node
(if the R module is loaded):

HPDA Using R at LRZ | 2024-02-21

20

Interactive R Session

user@cm2loginl:~$% salloc -p cm2_inter -N 1
salloc: Granted job allocation 159945
user@i22r07c05s11:~$ module load r
user@i22r07c05s11:~$ R

R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

L.]

> library(parallel)
> detectCores()

[1] 56

>

HPDA Using R at LRZ | 2024-02-21

21

Job Processing

* For production jobs, you want to prepare and submit a batch script
* They tell Slurm about the resources you need and the scripts/programs you want to run...

« For the purposes of this training, a Slurm reservation has been created, i.e. a certain
number of CoolMUC-2 compute nodes (cm2 cluster) have been dedicated exclusively to
participants of this training.

* Add Slurm option to any upcoming resource allocation on
the cm2 cluster, partitions cm2_std or cm2_large.

(you may still be able to run jobs on other clusters/partitions or without using this
reservation, but it does increase your chances of faster execution)

HPDA Using R at LRZ | 2024-02-21 22

Job Processing

#!1/bin/bash

#SBATCH --clusters=cm2_tiny « A very minimal example of a job script (not
#SBATCH --nodes=1 necessarily recommended, but working in
some cases), requesting

 a single, exclusive node (with 28 cores)
« of the cm2_tiny partition/cluster, part of
* the CoolMUC-2 system

« Submit this job script to the queue:
$ sbatch <myjob.sh>

module load slurm_setup
module load r

Rscript myscript.R

HPDA Using R at LRZ | 2024-02-21 23

Job Processing

#!/bin/
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

modu le
modu le
modu le

modu le

mpirun

HPDA Using

bash
-0 /dss/dsshomel/. ..
-D /dss/dsshomel/. ..
-J jobname
--get-user-env
--clusters=cm2
--partition=cm2_std
--qos=cm2_std
--nodes=3
--mail-type=end
--mail-user=xyz@xyz.de
- -export=NONE
--time=08:00:00

~N N\

load slurm_setup
unload intel-mpi
load openmpi
load r

R -f myscript.R

R at LRZ | 2024-02-21

.../myjob.%j.%N.out
.../workdir

* A more practical example...

defining custom output file(s)
setting a working directory
assigning a job name
configuring mail notifications
managing the environment
limiting walltime explicitly

« See documentation for more
details:

24

Job Management and Accounting

Submit a job:
$ sbatch myjob.sh

Query status of your jobs:
$ squeue -M <cluster> -u <user>

Approximate start time of pending jobs:
$ squeue -M <cluster> -u <user> --start

Abort a job:
$ scancel -M <cluster> <jobid>

Get accounting data for (past) jobs:
$ sacct -X -M <cluster> [-S <YYYY-MM-DD>] -u <user>

HPDA Using R at LRZ | 2024-02-21 25

Potential Pitfalls

« Jobs get aborted (by Slurm) if they use more (memory) resources than specified
-> you need to estimate memory and runtime requirements

« Estimate memory requirements from a (single, local) serial run, extrapolate if needed
(use e.g. your system monitor or the “top” command line tool)

* Provide some “buffer” for runtime
« Queuing times can be long
« Use “sinfo” to find less busy cluster segments

« Smaller, less demanding jobs generally start faster
-> you can benefit from accurate resource estimation

HPDA Using R at LRZ | 2024-02-21

26

Potential Pitfalls

« Debugging can be inconvenient
* The time interval between changes in the R code and seeing results/getting feedback is
longer than usual

« The compute environment (compute nodes of the cluster) and the development/test
environments (local, login or interactive nodes) are usually not exactly the same

« Debug as much as possible in a serial fashion
* Prepare small jobs and test them interactively (using “salloc”/”srun”)

HPDA Using R at LRZ | 2024-02-21

27

Al Training Series:
High Performance Data Analytics
Using R at LRZ

2024-02-21 | J. Albert-von der Gonna

HPC/AI Cluster Systems

Pruned Tree

Switch / / \

Fat Tree

Node

Island

Accelerator: GPU, FPGA
Socket
Core

CL
a1 =l

HPDA Using R at LRZ | 2024-02-21 29

https://cran.r-project.org/web/views/HighPerformanceComputing.html

CRAN Task View: High-Performance and Parallel Computing

CRAN Task View: High-Performance and Parallel Computing with R

Maintainer: Dirk Eddelbuettel

Contact: Dirk Eddelbuettel at R-project.org

Version: 2018-08-27

URL: https://CRAN R-project.org/view=HighPerformanceComputing

This CRAN task view contains a list of packages, grouped by topic, that are useful for high-performance computing (HPC) with R. In this context, we are defining 'high-performance computing' rather loosely as just about anything related to pushing R a little further: using compiled code, parallel
computing (in both explicit and implicit modes), working with large objects as well as profiling.

Unless otherwise mentioned, all packages presented with hyperlinks are available from CRAN, the Comprehensive R Archive Network.
Several of the areas discussed in this Task View are undergoing rapid change. Please send suggestions for additions and extensions for this task view to the task view maintainer .

Suggestions and corrections by Achim Zeileis, Markus Schmidberger, Martin Morgan, Max Kuhn, Tomas Radivoyevitch, Jochen Knaus, Tobias Verbeke, Hao Yu, David Rosenberg, Marco Enea, Ivo Welch, Jay Emerson, Wei-Chen Chen, Bill Cleveland, Ross Boylan, Ramon Diaz-Uriarte, Mark
Zeligman, Kevin Ushey, Graham Jeffries, Will Landau, Tim Flutre, Reza Mohammadi, Ralf Stubner, and Bob Jansen (as well as others I may have forgotten to add here) are gratefully acknowledged.

Contributions are always welcome, and encouraged. Since the start of this CRAN task view in October 2008, most contributions have arrived as email suggestions. The source file for this particular task view file now also reside in a GitHub repository (see below) so that pull requests are also

possible.

The ctv package supports these Task Views. Its functions install.views and update.views allow, respectively, installation or update of packages from a given Task View; the option coreonly can restrict operations to packages labeled as core below.

Direct support in R started with release 2.14.0 which includes a new package parallel incorporating (slightly revised) copies of packages
multicore and snow. Some types of clusters are not handled directly by the base package 'parallel'. However, and as explained in the package

Parallel computing: Explicit parallelism

» Several packages provide the communications layer required for parallel computing. The first package in this area was rpvm by Li and Rossini which uses the PVM (Parallel Virtual Machine) standard and libraries. rpvm is no longer actively maintained, but available from its CRAN archive
directory.

+ In recent years, the alternative MPI (Message Passing Interface) standard has become the de facto standard in parallel computing. It is supported in R via the Rmpi by Yu. Rmpi package is mature yet actively maintained and offers access to numerous functions from the MPI API, as well as
number of R-specific extensions. Rmpi can be used with the LAM/MPI, MPICH / MPICH2, Open MPI, and Deino MPI implementations. It should be noted that LAM/MPI is now in maintenance mode, and new development is focused on Open MFPI.

« The pbdMPT package provides S4 classes to directly interface MPI in order to support the Single Program/Multiple Data (SPMD) parallel programming style which is particularly useful for batch parallel execution. The pbdSLAP builds on this and uses scalable linear algebra packages
(namely BLACS, PBLAS, and ScaLAPACK) in double precision based on ScaLAPACK version 2.0.2. The pbdBASE builds on these and provides the core classes and methods for distributed data types upon which the ppdDMAT builds to provide distributed dense matrices for
"Programming with Big Data". The pbdNCDF4 package permits multiple processes to write to the same file (without manual synchronization) and supports terabyte-sized files. The pbdDEMO package provides examples for these packages, and a detailed vignette. The pbdPROF package
profiles MPI communication SPMD code via MPI profiling libraries, such as fpmpi, mpiP, or TAU.

« An alternative is provided by the nws (NetWorkSpaces) packages from REvolution Computing. It is the successor to the earlier LindaSpaces approach to parallel computing, and is implemented on top of the Twisted networking toolkit for Python.

+ The snow (Simple Network of Workstations) package by Tierney et al. can use PVM, MPI, NWS as well as direct networking sockets. It provides an abstraction layer by hiding the communications details. The snowFT package provides fault-tolerance extensions to snow.

« The snowfall package by Knaus provides a more recent alternative to snow. Functions can be used in sequential or Da:allcl mode.

The foreach package allows genera] iteration over elements in a collection without the use of an explicit loop counter.

« The Rbenst packagc employs OpchP pragmas to cxplult pmdwlor—lcvcl pa:a]lc]lsm in the Random Forest algorithm whu:h promotes efficient use of multlcorc ha.rdwa.m in restaging data and in dclcrmmmg splitting criteria, both of which are performance botllcnccks in the algorithm.
» The h20 package connects to the h2o open source machine learning environment which has scalable implementations of random forests, GBM, GLM (with elastic net regularization), and deep learning.

» The randomForestSRC package can use both OpenMP as well as MPI for random forest extensions suitable for survival analysis, competing risks analysis, classification as well as regression

« The parSim package can perform simulation studies using one or multiple cores, both locally and on HPC clusters.

« The gsub package can submit commands to run on gridengine clusters.

HPDA Using R at LRZ | 2024-02-21

(Explicit) Parallelization Using R

« Embarrassingly/pleasingly parallel (independent processes):

 basic approach: start as many R processes as you need in the shell with different
scripts

HPDA Using R at LRZ | 2024-02-21

31

Parallelization Using R: Embarrassingly/Pleasingly Parallel

R R R

Embarrassingly/Pleasingly
Parallel

$ R -f script.R &

HPDA Using R at LRZ | 2024-02-21

32

Parallelization Using R: Embarrassingly/Pleasingly Parallel

« Let’s look at a toy problem:

for(i in 1:20) sum(sort(runif(le7)))

 Add a time measurement:

system.time(for(1i in 1:20) sum(sort(runif(1e7))))

* You might also be familiar with alternatives like the following:

lapply(1:20, function(x) sum(sort(runif(l1e7))))

HPDA Using R at LRZ | 2024-02-21

33

Parallelization Using R: Embarrassingly/Pleasingly Parallel

« Use the command line to start your R process (in the background):

« If you do this repeatedly, the resulting R processes will be distributed by the OS to
different cores (subject to availability):

 To further automate this procedure, you could write a bash script (run_all R _scripts.sh)
containing these commands and then run this single script:

« Typically, do not start more processes than cores!
* Do not use the (cluster) login nodes for this (e.g. request an interactive shell instead)!

HPDA Using R at LRZ | 2024-02-21 34

https://callr.r-lib.org/
There is, of course, also an R package to achieve this: callr

* “It is sometimes useful to perform a computation in a separate R process, without
affecting the current R process at all. This package does exactly that.”

« Use r() to run an R function in a new R process.

library(callr)

r(function() var(iris[, 1:4]))

#> Sepal.Length Sepal.wWidth Petal.Length Petal.Width
#> Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707
#> Sepal.width -0.0424340 0.1899794 -0.3296564 -0.1216394

#> Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094
#> Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063

HPDA Using R at LRZ | 2024-02-21 35

(Explicit) Parallelization Using R

« Embarrassingly/pleasingly parallel (independent processes):
 basic approach: start as many R processes as you need in the shell with different
scripts
« Worker Queue (weak coupling, shared file system or database):

* a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

HPDA Using R at LRZ | 2024-02-21

36

Parallelization Using R: Worker Queue

:

R R R

Embarrassingly/Pleasingly Shared file system or

Parallel database
rredis/doRedis,
$ R -f script.R & batchtools, clustermq

HPDA Using R at LRZ | 2024-02-21

Parallelization Using R: rredis/doRedis

Redis is an open source, fast, persistent, networked database with many features, among them a
blocking queue-like data structure (Redis “lists”). This feature makes Redis useful as a lightweight
back end for parallel computing.

A Redis server has to be set up as part of the cluster (e.g. on a login node) or even somewhere else,
containing the problem description(s). Worker processes connect to this server and tasks are
assigned to them.

This is a very flexible and dynamic approach, as workers can basically run wherever you want (as
long as they can connect to the server). When running on the cluster, you have to deal with resource
allocation separately (via the Slurm workload manager) and potential firewall access restrictions.

HPDA Using R at LRZ | 2024-02-21 39

https://mllg.github.io/batchtools/
Parallelization Using R: batchtools

“batchtools provides a parallel implementation of Map for high performance computing
systems managed by schedulers like Slurm, ...

« all relevant batch system operations (submitting, listing, killing) are either handled
internally or abstracted via simple R functions

« with a well-defined interface, the source is independent from the underlying batch system
- prototype locally, deploy on any high performance cluster”

l.e. a (interactive) R process is used in combination with the shared file system and the
workload manager of the cluster to distribute workloads across nodes

HPDA Using R at LRZ | 2024-02-21 40

https://mschubert.github.io/clustermq/
Parallelization Using R: clustermq

 Allows to send function calls as jobs on a computing cluster with a minimal interface
provided by the Q() function

library(clustermq)
fx = function(x) x * 2

Q(fx, x=1:3, n_jobs=1)

 All calculations are load-balanced, i.e. workers that get their jobs done faster will also
receive more function calls to work on

« Computations are done entirely on the network and without any temporary files on
network-mounted storage

HPDA Using R at LRZ | 2024-02-21

41

https://mschubert.github.io/clustermq/
Parallelization Using R: clustermq

Use clustermq if you want:

a one-line solution to run cluster jobs with
minimal setup

access cluster functions from your local
machine (e.g. using RStudio) via SSH

fast processing of many function calls without
network storage |/O

Use batchtools if you:

want to use a mature and well-tested package

don’t mind that arguments to every call are
written to/read from disc

don’t mind there’s no load-balancing at run-
time

HPDA Using R at LRZ | 2024-02-21

Runtime

12 h4

1 hour
30 min 1

1 minute -
30 s+

1 second -

Processing overhead

-

1e3

1e4

1e5 1e6 1e7
Mumber of function calls

1e8

1€9

Package
BatchJobs 1.7

=@~ batchtools 0.9.8
clustermg 0.8.3

Number of jobs
- 10
e 50

42

(Explicit) Parallelization Using R

« Embarrassingly/pleasingly parallel (independent processes):

 basic approach: start as many R processes as you need in the shell with different
scripts

« Worker Queue (weak coupling, shared file system or database):

* a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

« Shared Memory (strong coupling):

« one R process spawns sub-processes on a single node with many cores
(e.qg. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)

HPDA Using R at LRZ | 2024-02-21

43

Parallelization Using R: Shared Memory

R R R

Embarrassingly/Pleasingly Shared file system or

Parallel database Shared memory
rredis/doRedis,
batchtools, clustermq parallel/doParallel

HPDA Using R at LRZ | 2024-02-21 44

Shared Memory Parallelization: Multithreading with doParallel

« As seen earlier, the for loop construct in R:
for(i in 1:20) sum(sort(runif(1e7)))
serlal execution/single thread

* “The foreach package provides a new looping construct for executing R code repeatedly.
[...] it supports parallel execution, that is, it can execute those repeated operations on
multiple processors/cores on your computer, or on multiple nodes of a cluster.”

library(foreach)
foreach(i = 1:20) %do% sum(sort(runif(le7))) # serial execution

foreach(i = 1:20) %dopar% sum(sort(runif(le7)))
multithread execution (?)

HPDA Using R at LRZ | 2024-02-21

45

Shared Memory Parallelization: Multithreading with doParallel

* This is were the “do-backends” (aka %dopar% adapters, e.g. doParallel) come into play...

» By creating/registering a cluster, foreach’s %dopar% operator can rely on these parallel
resources, e.g. using parallel’s multicore-like functionality (“forking™):

Llibrary(foreach)
library(doParallel)
registerDoParallel(cores=4)

define number of cores, this enables multicore-functionality
(preferred on GNU/Linux, but won’t work on Windows)

foreach(1i = 1:20) %dopar% sum(sort(runif(le7)))

HPDA Using R at LRZ | 2024-02-21 46

Shared Memory Parallelization: Multithreading with doParallel

« The procedure is similar for snow-like functionality:

library(foreach)
library(doParallel)
cluster.object <- makePSOCKcluster(4)

registerDoParallel(cluster.object)
foreach(1i = 1:20) %dopar% sum(sort(runif(le7)))
stopCluster(cluster.object)

« This uses Rscript to launch further copies of R (on the same host or optionally elsewhere;
in the latter case, hostnames need to be provided)

« [parallel, by relying on snow, also allows to create MPI-clusters (makeMPIcluster()-
function) but Rmpi/doMPI is usually recommended to be used instead]

HPDA Using R at LRZ | 2024-02-21 47

(Explicit) Parallelization Using R

Embarrassingly/pleasingly parallel (independent processes):

 basic approach: start as many R processes as you need in the shell with different
scripts

Worker Queue (weak coupling, shared file system or database):

* a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

Shared Memory (strong coupling):

« one R process spawns sub-processes on a single node with many cores
(e.qg. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)

Message Passing (strong coupling):

« several R processes talk to each other (across different nodes) by passing messages
(e.g. Rmpi/doMPI), this also allows for a (single) main and (multiple) workers model

HPDA Using R at LRZ | 2024-02-21 48

Parallelization Using R: Message Passing

R R R

Embarrassingly/Pleasingly Shared file system or

Parallel database Shared memory Message Passing
rredis/doRedis,
batchtools, clustermq parallel/doParallel Rmpi/doMPI

HPDA Using R at LRZ | 2024-02-21 49

Message Passing with doMPI

* To execute a doMPI script on multiple compute nodes a “message passing environment”

needs to be set up, i.e. the R interpreter needs to be executed using a command such as
mpirun (i.e.mpirun R -f script.R)

« Then, the already familiar ,do-back end“-pattern is put to use within R:

library(foreach)

Llibrary(doMPI)

cluster.object <- startMPIcluster()
registerDoMPI(cluster.object)

foreach(1i = 1:20) %dopar% sum(sort(runif(le7)))
closeCluster(cluster.object)

HPDA Using R at LRZ | 2024-02-21 50

More on foreach() E

 clustermq::register dopar_cmq(...) registers clustermq as foreach parallel handler

 use times() for simple repetitions:
times(10) %do% sum(sort(runif(le7)))

 foreach is a function with several arguments...
foreach(i1 = 1:10, .combine = c, ..) %do% sth() # process results
as they get generated, e.g. c(), cbind(), list(), sum(),
e ... evaluates iterators...
foreach(1i = 1iter(input)) %do% sth() # see package 1iterators
foreach(i = 1irnorm(100)) %do% sth()

... and provides additional operators:
foreach(1i = 1:10) %:% when(cond) %do% sth() # nesting operator

and condition cf. Python’s list comprehensions

HPDA Using R at LRZ | 2024-02-21 51

More on parallel

 parallel provides parallel replacements of lapply and related functions (as have snow and
multicore):

« multicore-like: e.g. mclapply(1:10, function(x) sum(sort(runif(1e7)))),
mcmapply (x, FUN, ...), mcMap(FUN, ...)

« snow-like: clusterApply(cl, x, fun, ...), e.g. parLapply(cl, x, FUN, ...)

HPDA Using R at LRZ | 2024-02-21

52

https://github.com/HenrikBengtsson/parallelly
parallelly: Enhancing the parallel package

* The parallelly package provides functions that enhance the parallel package.

« Showcase: parallelly::availableCores() gives the number of CPU cores available to your R
process as given by R options and environment variables, including those set by job
schedulers on high-performance compute (HPC) clusters. If R runs under 'cgroups’ or a
Linux container, then their settings are acknowledged too — vs. parallel::detectCores()

* The functions and features of parallely are written to be backward compatible with the
parallel package, such that they may be incorporated there later.

HPDA Using R at LRZ | 2024-02-21 53

Even More on parallel: Futures/Promises

« Constructs for synchronizing program execution. Describe objects that act as proxies for
a result, which is yet unknown (because the computation is incomplete)

« Send command to background and return handle:
handle <- mcparallel(some_expensive function)

« Collect result at later point:
result <- mccollect(handle)

HPDA Using R at LRZ | 2024-02-21

54

Futures/Promises

> gystem.time(sum(sort(runif(1e7))))
user system elapsed
1.581 0©.112 1.700

> system.time(sapply(1:20, function(x) sum(sort(runif(1e7)))))
user system elapsed
28.875 2.998 31.883

> library(parallel)

> h <- mcparallel(sapply(1:20, function(x) sum(sort(runif(1e7)))))
> mccollect(h, wait = FALSE)

NULL

wait approx. 30 seconds for job to finish
> mccollect(h, wait = FALSE)
[1] 5000214 4999121 5001166 ..

HPDA Using R at LRZ | 2024-02-21 55

https://github.com/HenrikBengtsson/future
Futures/Promises

« Package future tries to unify the previous approaches:
“The purpose of this package is to provide a lightweight and unified Future API for
sequential and parallel processing of R expressions via futures. [...] Because of its unified
API, there is no need to modify any code in order switch from sequential on the local
machine to, say, distributed processing on a remote compute cluster. ”

 Implicit:
v %<-% { expr } # future assignment , creates a future and a
promise to 1its value (instead of regular assignment <-)

« Explicit:
f <- future({ expr }) # creates a future
v <- value(f) # gets the value of the future
(blocks 1f not yet resolved)

HPDA Using R at LRZ | 2024-02-21 56

https://github.com/HenrikBengtsson/future
Futures/Promises

« Function plan() allows the user to plan the future, i.e. it specifies how futures are resolved

« For example: plan(sequential) and more

> library("future")

plan(sequential)

V %<-% {
cat("Hello world!\n")
3.14

¥

Y

Hello wor ld!

[1] 3.14

>
>
+
+
+
>

HPDA Using R at LRZ | 2024-02-21 57

https://github.com/HenrikBengtsson/future
Futures/Promises

Name OSes

synchronous:

sequential all

asynchronous:

multisession all

multicore not Windows/RStudio
cluster all

Description

non-parallel:

sequentially and in the current R process

parallel:

background R sessions (on current machine)

forked R processes (on current machine)

external R sessions on current, local, and/or remote machines

* The future.callr package provides future backends that evaluates futures in a background
R process utilizing the callr package - they work similarly to multisession futures but have
a few advantages (e.g. more than 125 parallel R processes)

« Package future.batchtools provides an implementation of the Future API on top of the
batchtools package, i.e. it allows to process futures (as defined by the future package) on

HPC infrastructure

HPDA Using R at LRZ | 2024-02-21

58

https://github.com/HenrikBengtsson/doFuture
doFuture: future and foreach

« Package doFuture provides two alternatives for using futures with foreach such that any
type of future (that is supported by the Future API of the future package) can be used for
asynchronous (parallel/distributed) or synchronous (sequential) processing.

 Traditional approach: %dopar% adapter
library(doFuture)
registerDoFuture()
plan(multicore)
foreach(1i = 1:20) %dopar% sum(sort(runif(l1e7)))

« Modern approach (recommended when starting from scratch): %dofuture% operator
library(doFuture)
plan(multicore)
foreach(i = 1:20) %dofuture% sum(sort(runif(le7)))

« Look out for the use of foreach and the possibility to register all these different back ends
in other R packages, e.g. plyr uses foreach as parallel backend and BiocParallel supports
any %dopar% adapter/the %dofuture% operator as well!

HPDA Using R at LRZ | 2024-02-21 59

https://docs.ropensci.org/targets/

... and beyond: the targets package

* The targets package is a Make-like pipeline toolkit for statistics and data science in R
« maintain a reproducible workflow without repeating yourself
« skip costly runtime for tasks that are already up to date
* run the necessary computation with implicit parallel computing
 abstract files as R objects

A fully up-to-date targets pipeline is tangible evidence that the output aligns with the code
and data, which substantiates trust in the results

HPDA Using R at LRZ | 2024-02-21 60

https://docs.ropensci.org/targets/

The targets package

» targets supports high-performance computing with the tar_ma'z clustermq() and
tar_make_future() functions (using the future.batchtools¢ 0(3 a)

« These functions are like tar_make(), but they allo \N\\' < targets to run simultaneously
over parallel workers. Again, these workers \\ rocesses on your local machine, or
they can be jobs on a computing clusts < ((\

« tar_make_clustermq() uses pe\) a,oﬁers That means all the parallel processes
launch together as soon_z . ~satargetto build, and all the processes keep running
until the pipeline wis »66 e...

. tar_make_fut'e\)Qe‘ > transient workers. That means each target gets its own worker
which initializeZ"when the target begins and terminates when the target ends.

HPDA Using R at LRZ | 2024-02-21 61

https://wlandau.github.io/crew/
crew: a distributed worker launcher framework

* |In computationally demanding analysis projects, statisticians and data scientists
asynchronously deploy long-running tasks to distributed systems, ranging from traditional
clusters to cloud services.

« The NNG-powered mirai R package is a sleek and sophisticated scheduler that efficiently
processes these intense workloads.

* The crew package extends mirai with a unifying interface for third-party worker launchers.
* Inspiration also comes from packages future, rrq, clustermq, and batchtools.

« A crew controller is an object in R which accepts tasks, returns results, and launches
workers.

« Workers can be local processes, jobs on traditional clusters such as SLURM, or jobs on
cloud services such as AWS Batch, depending on the launcher plugin of the controller.

HPDA Using R at LRZ | 2024-02-21 62

Conclusion

Parallel programming is here to stay (for the foreseeable future).
Know your hardware...
... and the possibilities of your software/programming environment.

Applying proper (high level) abstractions (foreach, futures, targets...) to fully utilize the
features of modern CPUs/GPUs and supercomputing infrastructure will allow you to write
fast and scalable programs.

HPDA Using R at LRZ | 2024-02-21

63

	Foliennummer 1
	Foliennummer 2
	Course Information
	HPC & AI Systems for Bavarian Universities
	Demo/Hands-on: AI Systems – RStudio Server
	R for AI
	Demo/Hands-on: Linux Cluster
	R Modules
	R Modules
	R Modules
	R Package Management
	R Package Management
	R Package Management
	R Package Management
	R Package Management
	R Package Management
	Slurm Workload Manager
	Slurm Workload Manager
	CoolMUC-2 Overview
	Interactive R Session
	Interactive R Session
	Job Processing
	Job Processing
	Job Processing
	Job Management and Accounting
	Potential Pitfalls
	Potential Pitfalls
	Foliennummer 28
	HPC/AI Cluster Systems
	CRAN Task View: High-Performance and Parallel Computing
	(Explicit) Parallelization Using R
	Parallelization Using R: Embarrassingly/Pleasingly Parallel
	Parallelization Using R: Embarrassingly/Pleasingly Parallel
	Parallelization Using R: Embarrassingly/Pleasingly Parallel
	There is, of course, also an R package to achieve this: callr
	(Explicit) Parallelization Using R
	Parallelization Using R: Worker Queue
	Parallelization Using R: rredis/doRedis
	Parallelization Using R: batchtools
	Parallelization Using R: clustermq
	Parallelization Using R: clustermq
	(Explicit) Parallelization Using R
	Parallelization Using R: Shared Memory
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Message Passing
	Message Passing with doMPI
	More on foreach()
	More on parallel
	parallelly: Enhancing the parallel package
	Even More on parallel: Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	doFuture: future and foreach
	… and beyond: the targets package
	The targets package
	crew: a distributed worker launcher framework
	Conclusion

