Leibniz Supercomputing Centre

of the Bavarian Academy of Sciences and Humanities

Al Training Series
Introduction to the LRZ Al Systems

05.11.2024 | Ajay Navilarekal, Darshan Thummar

Agenda m

1. Introduction to the 2. Data Distributed 3. Fully Sharded Data
LRZ Al Systems Training Parallel

O Overview of the LRZ Al 0 Introduction to Convolutional 0 Introduction to Fully
SYRIEINS Neural Networks Sharded Data Parallel

0 Access to the LRZ Al 0 Exercise: Train VGG-19 on a 0 Exercise: Train VGG-199
SYEICINE GPU on 2 GPUs using FSDP

O NVIDIANGC Cloud Q Introduction to Distributed

O Introduction to Enroot Training
Containers QO Exercise: Train VGG-199 on

O Interactive and Batch Jobs 2 GPUs using DDP

O Open on Demand

O Exercise: Run a job and
extend an Enroot
container

Planned breaks

e 11:30 — 11:45 Coffee Break |
e 12:30 — 13:30 Lunch break
e 15:00 — 15:15 Coffee Break Il

1. Introduction to the LRZ Al Resources

Overview of the LRZ Systems m

- =

Data Science == Archive and
Archive (DSA) wss @ Backup (ABS)
-_—

Data Science Storage

(DSS)
Multi-purpose cluster systems might be
used for Al workloads as well, but have Flexible system that copes with almost any
different focus Designed and Configured for Al workload

LRZ Compute Cloud

LRZ Linux Cluster LRZ Al Systems

* “Big Data” CPU nodes

BEGN

CoolMUC-2 Teramem-2 CoolMUC-3

+ DGX-1P100, DGX-1 V100
* Multiple DGX A100

LRZ Compute Cloud
(w/ some GPUs)

+ HPE P100 node

* V100 nodes #‘
A
-

Ixlogin[1-3].Irz.de login.ai.lrz.de
Ixlogin8.Irz.de https://login.ai.lrz.de https://cc.lrz.de

HGX H100
Architecture

DGX A100
Architecture

DGX A100
Architecture
MIG

DGX-1 V100
Architecture

DGX-1 P100
Architecture

HPE Intel
Skylake +
Nvidia Node

V100 GPU
Nodes

Irz

CPU Nodes

Number of
Nodes

CPU cores
per node

Memory per
node

GPUs per
node

Memory per
GPU

SLURM
Partition

Nodes

1. Introduction to the LRZ Al Resources

Storage on the LRZ Al Systems

Home directory

Al Systems DSS

Linux Cluster DSS

Exclusive/private
DSS systems

unified home directory with the
LRZ Linux Cluster, created when
LRZ Linux Cluster access is
granted

Not suitable for heavy and/or
high-frequency 1/O operations -

use the Al Systems DSS instead.

high-bandwidth, low latency 1/O,
access is granted upon request
through the LRZ Servicedesk

general purpose, long-term data
storage

specified by the system owner,
can be purchased, implemented
and housed exclusively for a
private group of dedicated users

/dss/dsshome
/.../[<user>

/dss/dssfs04

/dss/dssfs02
/dss/dssfs03

/dsslegfs01
/dsslegfs02
/dssmcmlfs01

100 GB

upto4 TB

upto 10 TB

(or 20TB+ with
associated costs)

specified by the
system owner

yes, backup
to tape and
file system
snapshots

no

yes for paid
DSS / no for
the free tier

specified by
the system
owner

lifetime of
LRZ project

until further
notice

lifetime of
data project

specified by
the system
owner

_(or
with
associated costs)

("joint
project offer")

https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster
https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster
https://doku.lrz.de/data-science-storage-10745685.html
https://doku.lrz.de/display/PUBLIC/Data+Science+Storage

1. Introduction to the LRZ Al Resources
Access to the LRZ Al Systems — How to access?

User requirements to get the access:

1. Own/ get a Linux Cluster account:
https://doku.lrz.de/display/PUBLIC/Access+and+Login+to+the+Linux-Cluster

2. Submit a service request to LRZ Servicedesk — select "Al topics" and "LRZ Al Systems -
Request for Access" from the drop-down lists. Request has to include Linux Cluster
account username and a description of the intended usage.

Login node login.ai.lrz.de accessible via SSH:

$ ssh --login_name=xxyyyzz login.ai.lrz.de

Make sure you are connected to the Munich Scientific Network (MWN).
Provide your LRZ Linux Cluster credentials to log in.

10

https://doku.lrz.de/display/PUBLIC/Access+and+Login+to+the+Linux-Cluster
https://servicedesk.lrz.de/en/ql/create/23

1. Introduction to the LRZ Al Resources

Access to the LRZ Al Systems — Slurm: sinfo, salloc, srun & scancel

$ ssh --login_name=xxyyyzz login.ai.lrz.de

Executes in the login node

$ squeue --user=xxyyzzz

$ salloc --partition=Irz-v100x2 --gres=gpu:1

$ srun --pty bash

$ scancel job id

® di82hod — ssh login.ai.lrz.de — 82x28

di82hod@login-1:

PARTITION AVAIL TIMELIMIT NODES NODELIST

lrz-v100x2* up 14-00:00: iXx | gpu-005

lrz-v100x2* up 14-00:00: gpu-[001-003]

lrz-hpe-p100x4 up 14-00:00: pl100-001

lrz-dgx-1-p100x8 up 14-00:00: dgx-001

lrz-dgx-1-v100x8 up 14-00:00: dgx-002

lrz-dgx-al00-80x8 up 14-00:00: lrz-dgx-al00-[002,004]

lrz-dgx-al00-80x8 up 14-00:00: lrz-dgx-al00-[001,005]

lrz-dgx-al00-40x8-mig up 14-00:00: lrz-dgx-al00-003

lrz-cpu up 14-00:00: cpu-[001-002,004-005,007,009]

lrz-cpu up 14-00:00: cpu-003

lrz-cpu up 14-00:00: cpu-[006,008]

mcml-dgx-al00-40x8 up 14-00:00: mcml-dgx-[004,008]

mcml-dgx-al00-40x8 up 14-00:00: mcml-dgx-[001-003,005-007]
up 14-00:00: gpu-004

[S IS IS IS IS IS TGS IS IS TGOS IS TS IS
RPONNRORNNRRLRRPLWR

salloc: Pending job allocation 162333

salloc: job 162333 queued and waiting for resources
salloc: job 162333 has been allocated resources
salloc: Granted job allocation 162333
di82hod@login-1:~$[srun --pty bash|
di82hod@p100-001}~$ exit

exit

i82hodeogin-1]~$[scancel T62333]

di82hod@login-1:~$%$ salloc: Job allocation 162333 has been revoked.

di82hod@login-1:~$

https://slurm.schedmd.com/overview.html 11

https://slurm.schedmd.com/overview.html

1. Introduction to the LRZ Al Resources

Nvidia NGC Containers

« The NGC catalogue provides access to GPU
accelerated software that speeds up end-to-end
workflows with performance optimized containers,
pretrained Al models, and SDKs that can be
deployed on any NVIDIA's GPU powered systems.

« The NVIDIA Container Toolkit includes a container
runtime library and utilities to automatically
configure containers to leverage NVIDIA GPUs.

« The NVIDIA CUDA Toolkit, incorporated within
each GPU-accelerated container in NGC, is the
development environment for creating high
performance NVIDIA GPU-accelerated applications.

* https://catalog.ngc.nvidia.com

- + PRE-TRAINED MODELS

DEEP LEARNING
+ + MACHINE LEARNING
HPC APPLICATION CONTAINERS

DGX SOFTWARE STACK

https://catalog.ngc.nvidia.com/

1. Introduction to the LRZ Al Resources

Nvidia NGC Containers

<ANVIDIA. NGC | CATALOG Welcome Guest <ANVIDIA. NGC | C Welcome Guest
£ CATALOG A &
NVIDIA NGC: Al Development Catalog
lore Catalog PyTorch Get Container \/
sz Q_ pytorehl Sort: Relevance
‘ “} | | 23.03-py3
Helm Charts Displaying 339 results
playing Copy the latest tag's image path below:
Accelerated with
NVIDIA Al Enterprise Support O PyTorch NVIDIA T S A o KR
Accelerated with
Yes O PyTorch
Jiele NVIDIA NVIDIA. P is an optimized tensor library for deep learning | based
MERLIN system at both a functional and neural network layer leve eep
learning framework and provides accelerated NumPy-liki th
Entity Type PyTorch. The PyTorch NGC Container comes with all dep - o . . . amon
Description applications, such as conversational Al, natural language processing (NLP), recommenders, and computer vision.
Model PVTOTC" is a GPU accelerated (envsur com- The PyTorch NGC Container is optimized for GPU acceleration, and contains a validated set of libraries that enable and optimize
. putational framework. Functionality can GPU performance. This container also contains software for accelerating ETL (| ,), Training (,), and
esource PyTorch is a GPU accelerated tensor computational The Merlin PyTorch container allows users to do pre- be extended with common Python li- Inference () workloads.
Container framework. Functionality can be extended with com- processing and feature engineering with NVTabular, braries such as NumPy and SciPy.
Collection mon Python libraries such as NumPy and SciPy.... and then train a deep-learning based recommende... Automatic differentiation is done with a
tape-based system at the functional and
Helm Chart neural network layer levels. Using the PyTorch NGC Container requires the host system to have the following installed:
Publisher .
Use Case Facebook :
Latest T
PN V. 2-3 eo " -g3 For supported versions, see the and the
Natural Language Processing o G PyTorch Am‘:'“ :”: 0Py No other i i ilation, or management is required. It is not necessary to install the NVIDIA CUDA Toolkit.
. . VIDI N
Natural Language Understanding PyTorch Lightning Modified The PyTorch NGC Container is optimized to run on NVIDIA DGX Foundry and NVIDIA DGX SuperPOD managed by NVIDIA Base
April 4,2023 Command Platform. Please refer to the to learn more about running workloads on BCP

Textto Speech
Question Answering
Recommedation

Language Modeling

NGC Catalog v1.56.27

Lightweight framework for training models at scale,
without the boilerplate. Train on any number of

PyTorch is a GPU accelerated tensor computational

framework with a Python front end. This container

Compressed Size
9.13GB

Multinode Support

Yes

clusters.

To run a container, issue the appropriate command as explained in the chapter in the NVIDIA Containers For
Deep Learning Frameworks User’s Guide and specify the registry, repository, and tags. For more information about using NGC, refer
to the

13

1. Introduction to the LRZ Al Resources

Nvidia NGC Containers — Setting up credentials

SANVIDIA. NGC | SETUP

NVIDIA. NGC | CA Welcome Guest

Setup

NGC Catal(}g E| Terms of Use . Setup

Sign In/Sign Up

Deploy performance-optimized Al/HPC software containers,® anred vl
Jupyter Notebooks that accelerate Al developments and HPC workloads on any GPU- /7//7
powered on-prem, cloud and edge systems. Instantly experience end-to-end workflows with
access to free hands-on labs on NVIDIA LaunchPad, and learn about enterprise support for Generate API Key oLl
NVIDIA accelerated software here.

Generate your own API key to use the NGC service through The NGC command line interface (NGC CLI) can run deep
the Docker client. learning jobs on NVIDIA Docker containers.

NVIDIA NGC: Al Development Catalog

Displaying 0 results
NVIDIA. NGC | SETUP ® y@ﬁi&ii‘f
Getting Started
API Key Generate API Key
API

API Information
Your API Key authenticates your use of NGC service when using NGC CLI or the Docker client. Anyone with this API Key has access to all services, actions, and

Nvﬂ D m A ﬂ_a u n C h Pa d S resources on your behalf.

. Click Generate API Key to create your own API Key. If you have forgotten or lost your APl Key, you can come back to this page to create a new one at any time.
Instantly experience end-to-end workflows with free hands- SE

Usage
Use your API key to log in to the NGC registry by entering the following command and following the prompts:

Policy

NGC CLI

Sign Out

NVIDIA NGC: Al Development Catalog

Displaying 0 results)/ Sorting & Filters Docker™ &

For the username, enter '$oauthtoken' exactly as shown. It is a special authentication token for all users.

Getting Started

$ docker login nvcr.io

Username: $oauthtoken

Password: <Your Key>

14

1.

Introduction to the LRZ Al Resources

Nvidia NGC Containers — Setting up credentials

Create the file enroot/.credentials within your SHOME and insert the following lines in it:

machine nvcr.io login $oauthtoken password < KEY>
machine authn.nvidia.com login $oauthtoken password <KEY>

Where <KEY> is the API key generated and copied in the previous step.
Introduce a new line after < KEY>.

Now you can import containers from Nvidia NGC on compute nodes of LRZ Al Systems,
e.g. a Pytorch container, with:

[J

15

1. Introduction to the LRZ Al Resources

Introduction to Enroot: The Software Stack Provider for the Al Systems m

* EnrOOt Container runtime Operates $ salloc --partition=Irz-hpe-p100x4 --gres=gpu:1
completely in user space.

« |t allows to run containers defined by
container images from the NVIDIA Executes in the allocated compute node

NGC Cloud or from the Docker Hub.
- Not available on the login node, but $ enroot import docker://nvcr.io/nvidia/pytorch:24.10-py3

on the compute nodes!
* The Enroot Workflow: $ enroot create nvidia+pytorch+24.10-py3.sqsh
. Import an Enroot Container
Image — resulting in sqsh file -
_ _ $ enroot start nvidia+pytorch+24.10-py3
. Create an Enroot Container with

create,

lll. Run software inside an existing
Enroot Container with start.

$ srun --pty bash

16

1. Introduction to the LRZ Al Resources
Running Applications as Interactive Jobs

* Interactive jobs are
submitted to an existing
allocation of resources
using the srun command.

$ salloc --partition=Irz-hpe-p100x4 --gres=gpu:1

$ srun --pty \

--container-mounts=./:/workspace \
--container-image=path/to/your/container.sqsh bash

« We can mount existing
data from outside of the
container into container.

$ srun --pty \
, _ --container-mounts=./:/workspace \
* Enroot container creation --container-image=nvcr.io/nvidia/pytorch:24.10-py3 bash

and job submission in a
single step can be done
via a plugin called pyxis.

Executes in the allocated compute node

$ python /workspace/exercise1.py

17

1. Introduction to the LRZ Al Resources
Running Applications as Batch Jobs

« Batch jobs are the preferred and quicker

way of using the LRZ Al Systems. #!/bin/bash

#SBATCH -p Irz-hpe-p100x4

« Batch job is queued and executed when #SBATCH --gres=gpu:
the resources are available. #SBATCH -0 exercisel.out
* It does the allocation and running of the #SBATCH -e exercise1.err
job for you (instead of salloc and srun).
srun \
--container-mounts="./:/workspace’ \
* The sbatch command submits jobs --container-image=‘nvcr.io/nvidia/pytorch:24.10-py3’ \
described in a sbatch script file. python /Workspace/exercise1 Py
* You need to specify the partition and
number of GPUs that you want to use. Executes in the login node
« Two additional required arguments: $ sbatch exercise1.sbatch

output and error messages file.

1. Introduction to the LRZ Al Resources
Dealing with base images from catalogues other than NGC

« If your image does not supply the CUDA Toolkit, do not install it within the image, because this fixes paths to
the existing NVIDIA driver on the target machine and might crash if the NVIDIA driver is upgraded.

» Instead add the following environment variables within the container, and the container runtime will copy
within the container the needed libraries. Refer to hitps://docs.nvidia.com/datacenter/cloud-native/container-
toolkit/latest/docker-specialized.html| for more information on the accepted values of these variables.

Executes in the allocated resource
$ enroot import docker://some/image-no-cuda

$ enroot create --name base_container some+image-no-cuda.sgsh

$ enroot start base container bash

echo "NVIDIA_DRIVER_CAPABILITIES=compute,utility" >> /etc/environment

echo "NVIDIA REQUIRE_CUDA=cuda>=9.0" >> /etc/environment
echo "NVIDIA VISIBLE_DEVICES=all" >> /etc/environment

$ enroot export --output base_image.sqsh base container

19

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html

1. Introduction to the LRZ Al Resources
Creating an extended Enroot image

 |If your workload depends on a package not provided by the used image.

$ enroot create --name custom_container nvidia+pytorch+24.08-py3.sqsh

$ enroot start custom_container

$ pip install --no-cache-dir lightning
$ HOROVOD_GPU_OPERATIONS=NCCL pip install --no-cache-dir horovod

$ exit

$ enroot export --output custom_container.sgsh custom_container

» For installing some applications you need to be root within the container (e.g., installing software using
the apt package manager in Debian and Ubuntu-based containers.) In this case, add the --root flag.

$ enroot start --root my_container

$ apt update
$ apt install python3-dev

1. Introduction to the LRZ Al Resources
Access to Al Systems through interactive web servers

« Jupyter Notebook, JupyterLab, RStudio Server and TensorBoard

* Available at https://login.ai.lrz.de

« To start e.g. a Jupyter Notebook session select from the top panel:
"Interactive Apps" => “Jupyter Notebook”

« For a typical use-case:
 select the type of resources (CPU only or CPU + single GPU)
» specify your workload (a combination of CPU core and RAM requirements)

 select the container environment you want to work with (e.g. available PyTorch or Tensorflow
container, or a custom container)

« finally, specify the number of hours you plan to work (be aware that your session will be shut
down when this time limit is reached, and any unsaved work will then be lost).

21

https://login.ai.lrz.de/

1. Introduction to the LRZ Al Resources

Access to Al Systems through interactive web servers

Ir:.

Pas

m Leibniz-Rechenzentriim
der Bayerischen Akademie

Integrated, single access

nDemand

v.Irz.de/pun/sys/dashboard# \

ystems Web Ul (TEST INSTANCE)

Kontakt | Impressum | Datenschutzerklarung

Filesv Jobs~ Clusters ¥ Interactive Apps ¥

Interactive Apps
Servers

Jupyter Notebook
(R RStudio Server

1 TensorBoard

tems Web Ul (TEST INSTANCE) Filesv Jobs~ Clusters v Interactive Apps > @

nDemand

& & datalab3.srv.Irz.de/node/p100-001.srv.Irz.de/8942/notebooks/ondemand/Exercisel.py.ipynb
- Ju pyte I Exercisel.py Last Checkpoint: 2 hours ago (autosaved)

File Edit View Insert Cell Kernel Help Trusted

B+ x @B 4 ¥ PRuin B C » Code ER=

d]

w * *
ﬁ Logout

| Python 3 (ipykernel) O

In [3]: # Import packages
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

Hyper-parameters

image_width = 32

image_channels = 3

convl out_channels = 50

conv2_out_channels = 75

kernel_size = 5

pool_size = 2

fcl _out_channels = 50

num_classes = 10

num_epochs = 5

batch_size = 100

learning rate = 0.001

dim_1 = int((image_width-kernel_size+l)/pool_size)
dim 2 = int((dim_l-kernel_size+l)/pool_size)

1. Introduction to the LRZ Al Resources
Public Datasets and Containers on the LRZ Al Systems

» Dedicated DSS container for storing public datasets and Enroot container images of interest to researchers.
» Procedure to request the addition of public datasets / Enroot images:

make sure the dataset / Enroot image is licensed for public usage and requires no individual license nor
registration, and in case of an Enroot image make sure the image is not provided by the Nvidia NGC,

Dockerhub or another public repository directly

open a ticket with the , providing the location of the dataset / Dockerfile for building the
image, and a justification for public interest (including the expected target audience)

provide instructions for downloading the dataset (ideally shell script) / building the image (if non-standard).

/dss/dssfs04/pn69za/pn69za-dss- Last update March 2024 following the
0004/datasets/alphafold_2024 instructions here

dss/dssfs04/pn69za/pn69za-dss- 2020 Update (train2017.zip, val2017.zip,
0004/datasets/cocostuff/ annoations_trainval2017.zip,
stuff_annotations_trainval2017.zip)

dss/dssfs04/pn69za/pn69za-dss- Version 1.4 of dataset completed as of July 2017 Creative Commons Attribution
0004/datasets/visualgenome/ 4.0 International License

23

https://servicedesk.lrz.de/en/ql/create/159
https://github.com/%20deepmind/alphafold
https://github.com/deepmind/alphafold
https://cocodataset.org/

1. Introduction to the LRZ Al Resources
Summary

Command line

$ ssh -l xxyyyzz login.ai.lrz.de

Interactive job Batch job
#!/bin/bash
_ #SBATCH -p Irz-dgx-a100-80x8
$ sinfo #SBATCH --gres=gpu:1
#SBATCH -o exercise1.out
$ salloc --partition=dgx-1-p100 --gres=gpu:1 #SBATCH -e exercise1.err
$ srun --pty --container-mounts=./:/workspace \ srun --container-mounts="./:/workspace’ \
--container-image=nvcr.io/nvidia/pytorch:24.08-py3 bash --container-image="nvcr.io/nvidia/pytorch:24.08-py3’ \
python /workspace/exercise1.py

Executes in the allocated resource

$ python /workspace/exercise1.py $ sbatch exercise1.sbatch

Web browser

https://login.ai.lrz.de

https://doku.lrz.de/display/PUBLIC/LRZ+Al+Systems 24

https://doku.lrz.de/display/PUBLIC/LRZ+AI+Systems
https://login.ai.lrz.de/

Hands-On Exercise 0

Hands-On Exercise O

Creating an extended Enroot image

1. Write a job script to import and extend a container
2. Execute and create your own container

Job script info:

1. partition: Irz-hgx-n100-92x4
2. reservation: aits

3. gpu resources: 1

26

Agenda m

1. Introduction to the 2. Data Distributed 3. Fully Sharded Data
LRZ Al Systems Training Parallel

0 Overview of the LRZ Al Q Introduction to Convolutional 0 Introduction to Fully
Systems Neural Networks Sharded Data Parallel

0 Access to the LRZ Al 0 Exercise: Train VGG-19 on a 0 Exercise: Train VGG-199
SYEICINE GPU on 2 GPUs using FSDP

0 NVIDIANGC Cloud 0 Introduction to Distributed

O Introduction to Enroot Training
Containers QO Exercise: Train VGG-199 on

O Interactive and Batch Jobs 2 GPUs using DDP

0 Open on Demand

O Exercise: Run a job and
extend an Enroot
container

2. Data Distributed Training
Introduction to Convolutional Neural Networks

4] &] — [cAR
& = | — TRUCK
— VAN
| = =
e | = =
' |~ = = >
’ < O [] — BIcYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX

J \ CONNECTED
¥ i

FEATURE LEARNING CLASSIFICATION

https://towardsdatascience.com/a-comprehensive-quide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

29

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

2. Data Distributed Training
Convolutional Neural Network Architectures — VGG (Visual Geometry Group)

ConvNet Configuration

A A-LRN B C D E
11 weight | 11 weight | 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Main idea: increasing depth of CNNs

3 x 3 conv. layers with a stride of 1 -
small receptive fields (compared to prev.
11 x 11 with a stride of 4 in AlexNet)

1 x 1 conv. to make the decision function
more non-linear without changing the
receptive fields

RelLU activation function
ImageNet dataset — 4 days of training
19 layers — 144M parameters

https://arxiv.org/pdf/1409.1556.pdf

30

2. Data Distributed Training
CIFAR10 Data

train_dataset = torchvision.datasets.CIFAR10(root="./data’, train=True, transform=transforms.ToTensor(), download=True)
test dataset = torchvision.datasets.CIFAR10(root="./data’, train=False, transform=transforms.ToTensor(), download=True)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)

test loader = torch.utils.data.DataLoader(dataset=test dataset, batch_size=batch_size, shuffle=False)

airpene ot IR I 2 - [O 0
suomonie 21 10) 5 il e B o 5
o Rl WES ¥ EEE
= L = N
« EEOHNEEEEP
ceer [VI O O 1 R
o [HESESBIPIK R
ro [M I O W B
rorse i N 20 8 9 I B R R T
S =~ A T P P
weok] i 4 18 5 N L S

Input size: 32x32x3

https://www.cs.toronto.edu/~kriz/cifar.html 32

2. Data Distributed Training
Transfer learning — Pretrained Convolutional Neural Networks

 Pre-trained model is a saved network that was
previously trained on a large dataset.

« Feature Extraction: Use the feature maps from
the pre-trained model to detect features in the
new samples. Add a new classifier, which will
be trained from scratch to make predictions.

* Fine-Tuning: Unfreeze a few top layers of a
pretrained model and jointly train both the
newly-added classifier layers and the last
layers of the base model. This allows us "fine-
tune" the higher-order feature maps to make
them more relevant for the specific task.

import torchvision.models as models

import torchvision.models as models
model = models.resnet34(weights="IMAGENET1K V1)

model = models.vgg19(weights="IMAGENET1K V1)

33

2. Data Distributed Training
Neural Networks and GPUs - Why?

CASE 1: Scalar Multiplication

« GPUs in comparison to CPUs:

« GPU allows parallel running of repetitive
calculations within an application

System Memory

« CPU can be thought of as the taskmaster of the . GPU T
entire system, coordinating a wide range of | o=
general-purpose computing tasks CPU < OWE

« GPU performs a narrower range of more J

specialized tasks (e.g., matrix multiplications)

CASE 2: Matri)z Multiplication

« CPUs are faster than GPUs in scalar ‘ System Memory
multiplications.

« GPUs are faster than CPUs in matrix
multiplications.

34

2. Data Distributed Training
Neural Networks and GPUs - How?

device = torch.device('cpu’)

O PyTorch

device = torch.device(‘cuda’)

Programmer | —j —_ | G p U

model = model.to(device)

images = images.to(device=device)
labels = labels.to(device=device)

35

Hands-On Exercise 1

Hands-On Exercise 1

VGG-19 + CIFAR10 on a GPU

1. Make a batch-size vs epoch time table

2. Pull the GitHub repo: htips://github.com/LRZ-BADW/ai-
systems.qit

3. Explore the code
Write a job script to run the code
5. Play with the batch size and note the time

>

Job script info:

* partition: Irz-hgx-n100-92x4
e reservation: aits

e gpu resources: 1

37

https://github.com/LRZ-BADW/ai-systems.git

2. Data Distributed Training
Increasing Amount of Data Available for Deep Learning

ImageNet BigScience Pile: Dataset of Common Crawl
Multilingual Dataset Diverse Text for
for Language Language Modeling

Modeling
LY cest vrail

40+ Si.

languages

Composition of the Pile by Category
. . rnet * Prose * Dialogue * Misc

Tak!

o

Efectivamente.

You bet.

350 billion tokens

14,197,122 images

(150 GB) (1.5 TB) 800GB 2.95 billion web pages
46 languages (351.844 TB)
https.//paperswithcode.com/dataset/imagenet https://bigscience.huggingface.co/blog/building-a-tb- https://arxiv.org/abs/2101.00027 https:/lcommoncrawl.org/

scale-multilingual-dataset-for-language-modeling
38

C . import torch.distributed as dist
2. Data Distributed Training import torch.multiprocessing as mp

PytOrCh DiStribUted Data Para”el from torch.nn.parallel import DistributedDataParallel as DDP

def setup(rank, world_size):

» Based on package torch.distributed for os.environfMASTER_ADDR] = 'localhost
synchronizing gradients. os.environ[MASTER_PORT'] = '12355’
« DDP registers a hook for each parameter that
fires when the corresponding gradient is dist.init_process_group("nccl", rank=rank, world_size=world_size)

computed in the backward pass. That signal is
used to trigger gradient synchronization across

processes. setup(rank, world_size)

def main(rank, world_size, args):

* Runs across multiple GPUs and across multiple |70 o e e)
machines/nodes.

* Near-linear scalability

dist.destroy_process_group()

Li et al., 2020, arXiv:2006.15704 if _name_ =="_ main_ "
https://pytorch.org/docs/master/notes/ddp.html : _
https.//pytorch.org/tutorials/intermediate/ddp tutorial. htmi#basic-use-case world_size = torch.cuda.device_count)

batch_size = int(batch_size / world_size)
mp.spawn(main, args=(world_size, args), nprocs=world_size,
join=True)

https://pytorch.org/docs/master/notes/ddp.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

2. Data Distributed Training
Data Distributed Parallel Training of NNs

Data Parallel

\
|
|
I
I
|
|

Worker 1 7/

________ -

\
I
I
|
|
|
|

Worker2 7

________ -

41

Hands-On Exercise 2

Title | Date | Author

Hands-On Exercise 2

VGG-19 + CIFAR10 on 2 GPUs - DDP

1. Refer to batch-size vs epoch time table

2. Pull the GitHub repo: htips://github.com/LRZ-BADW/ai-
systems.qit

3. Explore the code
Write a job script to run the code
5. Play with the batch size and note the time

>

Job script info:

* partition: Irz-hgx-n100-92x4
e reservation: aits

* gpu resources: 2

43

https://github.com/LRZ-BADW/ai-systems.git

Agenda m

1. Introduction to the 2. Data Distributed 3. Fully Sharded Data
LRZ Al Systems Training Parallel Training
0 Overview of the LRZ Al 0 Introduction to Convolutional 0 Introduction to Fully
Systems Neural Networks Sharded Data Parallel
0 Access fo the LRZ Al 0 Exercise: Train VGG-19 on a 0 Exercise: Train VGG-199
SYEICINE GPU on 2 GPUs using FSDP
0 NVIDIANGC Cloud Q Introduction to Distributed
O Introduction to Enroot Training
Containers O Exercise: Train VGG-199 on
0 Interactive and Batch Jobs 2 GPUs using DDP

0 Open on Demand

O Exercise: Run a job and
extend an Enroot
container

. import torch.distributed as dist

FU"y Sharded Data Para”el from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

def setup(rank, world_size):

° Inspired by ZeRO Stage 3 from os.environMASTER_ADDR'] = 'localhost’
DeepSpeed os.environMASTER_PORT'] = '12355’

dist.init_process_group("nccl", rank=rank, world_size=world_size)

+ |deal for training large models that do
not fit into a single GPU

def main(rank, world_size, args):

setup(rank, world_size)

» Model parameters, gradients and
optimizer states are sharded across
GPUs

fsdp_model = FSDP(model)

dist.destroy_process_group()
if _name_==" main__ "

world_size = torch.cuda.device_count()

batch_size = int(batch_size / world_size)

mp.spawn(main, args=(world_size, args), nprocs=world_size,
join=True)

3. Fully Sharded Data Parallel Training
Fully Sharded Data Parallel

NO ZERO (regular)
Optimizer
Model
Gradients
GPU GPU GPU
Machine

Image from: https://towardsdatascience.com/pytorch-lightning-vs-deepspeed-vs-fsdp-vs-ffcv-vs-e0d6b2a95719

46

https://towardsdatascience.com/pytorch-lightning-vs-deepspeed-vs-fsdp-vs-ffcv-vs-e0d6b2a95719

3. Fully Sharded Data Parallel Training
Data Distributed Parallel Training of NNs

Data Parallel

\
|
|
I
I
|
|

Worker 1 7/

________ -

\
I
I
|
|
|
|

Worker2 7

________ -

47

Hands-On Exercise 3

Hands-On Exercise 3

VGG-19 + CIFAR10 on 2 GPUs - FSDP

1. Refer to batch-size vs epoch time table

2. Pull the GitHub repo: htips://github.com/LRZ-BADW/ai-
systems.qit

3. Explore the code
Write a job script to run the code
5. Play with the batch size and note the time

>

Job script info:

* partition: Irz-hgx-n100-92x4
e reservation: aits

* gpu resources: 2

49

https://github.com/LRZ-BADW/ai-systems.git

The End!

51

Agenda m

1. Introduction to the 2. Data Distributed 3. Fully Sharded Data
LRZ Al Systems Training Parallel Training
0 Overview of the LRZ Al 0 Introduction to Convolutional 0 Introduction to Fully
Systems Neural Networks Sharded Data Parallel
0 Access fo the LRZ Al 0 Exercise: Train VGG-19 on a 0 Exercise: Train VGG-19
Systems GPU on 2 GPUs using FSDP
0 NVIDIANGC Cloud Q Introduction to Distributed
O Introduction to Enroot Training
Containers a Exercise: Train VGG-19 on 2
O Interactive and Batch Jobs GPUs using DDP

0 Open on Demand

O Exercise: Run a job and
extend an Enroot
container

Announcements

Announcements
Hackathon

« Half day event
« BYOC - Bring Your Own Code
* Hands-on & mentoring on scaling/parallelizing your code

 Write us at — Ajay.Navilarekal@lrz.de or Darshan.Thummar@]Irz.de

55

mailto:Ajay.Navilarekal@lrz.de
mailto:Darshan.Thummar@lrz.de

nnnnnnnnnnnnn

https://survey.lrz.de/index.php/885115?lang=en

