

Using R at LRZ
07/10/2020 | J. Albert-von der Gönna

3Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

4

Bavarian Academy of Sciences and Humanities
Leibniz Supercomputing Centre

Computer Centre
for all Munich Universities250

employees
approx.

57
years of
IT support

IT Service Backbone for the Advancement of Science and Research

Regional Computer Centre
for all Bavarian Universities

National Supercomputing Centre
(GCS)

European Supercomputing Centre
(PRACE)

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Course Information

• The aim of this course is to demonstrate the different ways of
using R efficiently and productively on LRZ systems
(with some focus on machine learning tasks)

• It is not an introduction to R itself
• Many of the topics covered in this course are based on issues

encountered by users, for which they created tickets at the LRZ
Servicedesk

• Also, it assumes you have some prior knowledge and experience
in using GNU/Linux and SSH (if you attended Monday’s courses,
you should be fine)

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna 5

HPC Systems for Bavarian Universities

6Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

CoolMUC-2 Teramem CoolMUC-3 IvyMUC DGX-1 (P) DGX-1 (V) 4xP100 Compute Cloud
(OpenStack)

lxlogin[1-4].lrz.de

lxlogin8.lrz.de

lxlogin10.lrz.de

https://www.rstudio.lrz.de

https://datalab.srv.lrz.de https://cc.lrz.de

DSS
(Data Science Storage)

Tape Archive
and Backup

• Web-based RStudio frontend
• Cluster of multiple nodes, with

• 40 cores and
• 360 GB RAM each

• Integrates with the Linux Cluster:
• Directly access the data in your DSS-backed Linux Cluster home directory ($HOME)
• Allows to access any DSS-based storage container

(NFS-Export has to be set up by data curator)
• Use the built-in Terminal to submit jobs to the Linux Cluster's batch queues via the

Slurm Workload Manager

• For further details, see https://doku.lrz.de/x/zQWVAg

7

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

8

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

9

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

• R Notebooks:
R Markdown documents with code chunks that can be executed independently and
interactively, with output visible immediately beneath the input

10

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

• Integrated Terminal:
Provides access to the system shell from within Rstudio

• Can be used to submit jobs to the Slurm workload manager of CoolMUC-2

11

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

12

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

13

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

• Connections Tab:
Allows for easy connection to a variety of data sources and to explore the (database)
objects and data inside the connection

• Currently supported are SQLite (via ODBC) and Spark.
Let us know if you have any other requirements!

14

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

• You can open multiple concurrent sessions
(please don‘t use more than 5 at any given time!)

• This can be used to run multiple analyses in parallel (even using different versions of R)
and they can be kept open (almost) indefinitely

15

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

16

RStudio Server
https://www.rstudio.lrz.de

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Linux Cluster

• Connect to the CoolMUC-2 segment
of the Linux Cluster

• From a terminal application:
$ ssh <user>@lxlogin1.lrz.de

• Alternatives would be
lxlogin[2-4].lrz.de for CoolMUC-2 or
lxlogin8.lrz.de for CoolMUC-3 or
lxlogin10.lrz.de for IvyMUC

17Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

R Modules

• R is not accessible on the Linux Cluster by default (try: $ which R)
• Environment modules allow for the dynamic modification of environment variables
• A (minimal) set of default modules is active after login:
$ module list

• Use the module system to search for different R versions:
$ module available r (or module av r)

18Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

R Modules

19Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

R Modules

• (The default/latest version of)
R can be loaded using
$ module load r

• If you need a different version, you have to
specify the full name of the module,
e.g. “r/3.4.4-X11-mkl”

20Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

R Modules

• We are using the package manager Spack (https://spack.io) to provide
applications/modules

• Spack “meta modules” make the (additional) module path(s) available
• By default, the latest LRZ release of Spack is loaded (cf. $ module list)
• Going forward, there might be newer (pre-release) versions of the Spack software stack

available (e.g. spack/staging/20.2, spack/master) which might then also provide newer
versions of R

• If in doubt, stick to the final releases (i.e. spack/release/YY.X)!

21Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

R Package Management

• All R packages are installed into libraries – these are (just) directories in the file system
with subdirectories for each installed package

• The default installation of R comes with a single library (R_HOME/library) usually
containing the standard and recommended packages
(in RStudio, this is called the System Library)

• On a multiuser system, regular users may not add/install packages directly into this library
(but administrators can)

• For the latest versions of R on the Linux Cluster we only provide the standard set of base
packages in this central location

22Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

R Package Management

• Individual users can have (one or more) additional, personal libraries
(called User Library in RStudio)

• The path for this library directory can be specified by the environment variable
$R_LIBS_USER (amongst others)

• If this is not defined, R will ask you to create a personal package library when installing
packages for the first time…

23Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

R Package Management

• Notice the suggested path – it is specific to
the (minor) version of R!

• You can use the .libPaths() function within
R to check the current library directories…

24Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

R Package Management

• So, subject to the system/cluster segment
and R version you‘re using, you will
depend on different system and user
libraries

• You can always control the R packages
you use (and their versions) by
maintaining your user library…

• … it might be beneficial to do this in a
project-specific manner.

25Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

R Package Management

• The challenge: on GNU/Linux (most) „add-on“ R packages will be compiled from source
• This requires compilers, tools and additional dependencies available on the system
• The latest versions are not (always) available and this is (typically) not under user control,

but if you miss something, make sure to check the available modules!
• As always: if you encounter any problems, please talk to us!

• Optional: there are package managers that can provide (some) of these requirements
• They manage R and (many of) its packages „from the outside“
• You could take a look at Spack (https://spack.io), conda (https://conda.io) or Homebrew

(https://brew.sh)

26Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Slurm Workload Manager

• Slurm is a job scheduler:
• Allocates access to resources (time, memory, nodes/cores)
• Provides framework for starting, executing, and monitoring work
• Manages queue of pending jobs (enforcing “fair share” policy)

• Use the sinfo command to get information about the available
clusters
$ sinfo --clusters=all or, shortened:
$ sinfo –M all

27Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Slurm Workload Manager

• Look for the cluster segments
• inter (allows for interactive usage)
• cm2 (the main CoolMUC-2 cluster)
• serial (shared nodes for serial jobs)

• What is their current status?
• Get information about a specific cluster

segment, e.g.
$ sinfo -M inter or
$ sinfo -M cm2

28Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

CoolMUC-2 Overview

Slurm Cluster Slurm Partition Node Range Slurm Job Settings
cm2 cm2_large 25-64 --clusters=cm2

--partition=cm2_large
--qos=cm2_large

cm2_std 3-24 --clusters=cm2
--partition=cm2_std
--qos=cm2_std

cm2_tiny cm2_tiny 1-4 --clusters=cm2_tiny

serial serial_std 1 --clusters=serial
--partition=serial_std
--mem=<memory_per_node>MB

serial_long 1 --clusters=serial
--partition=serial_long
--mem=<memory_per_node>MB

inter cm2_inter 1-4 --clusters=inter
--partition=cm2_inter

29Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

For additional details see https://doku.lrz.de/display/PUBLIC/Job+Processing+on+the+Linux-Cluster

Interactive R Session

• The inter cluster can be used for interactive resource allocation:
$ salloc -p cm2_inter -n 1

• Using this shell, you can e.g. run R interactively on this node
(if the R module is loaded):
$ R

30Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Interactive R Session

31Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

user@cm2login1:~$ salloc -p cm2_inter -n 1
salloc: Granted job allocation 148436
user@i22r07c05s04:~$ module load r
user@i22r07c05s04:~$ R

R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

[…]

> library(parallel)
> detectCores()
[1] 56
>

Job Processing

• For production jobs, you want to prepare and submit batch scripts
• They tell Slurm about the resources you need and the scripts/programs you want to run…

32Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Job Processing

#!/bin/bash
#SBATCH --clusters=cm2_tiny
#SBATCH --nodes=1

module load slurm_setup

module load r

Rscript myscript.R

• A very minimal example of a job script (not
necessarily recommended, but working in
some cases), requesting
• a single, exclusive node (with 28 cores)
• of the cm2_tiny partition/cluster, part of
• the CoolMUC-2 system

• Submit this job script to the queue:
$ sbatch <myjob.sh>

33Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Job Processing

#!/bin/bash
#SBATCH -o /dss/dsshome1/.../.../myjob.%j.%N.out
#SBATCH -D /dss/dsshome1/.../.../workdir
#SBATCH -J jobname
#SBATCH --get-user-env
#SBATCH --clusters=cm2
#SBATCH --partition=cm2_std
#SBATCH --nodes=3
#SBATCH --mail-type=end
#SBATCH --mail-user=xyz@xyz.de
#SBATCH --export=NONE
#SBATCH --time=08:00:00

module load slurm_setup

module load r
cd workdir

R –f myscript.R

• A more practical example…
• defining custom output file(s)
• setting a working directory
• assigning a job name
• configuring mail notifications
• managing the environment
• limiting walltime explicitly

• See documentation for more
details:
https://doku.lrz.de/x/AgaVAg

34Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Job Management and Accounting

• Submit a job:
$ sbatch myjob.sh

• Query status of your jobs:
$ squeue -M mpp2 -u <user>

• Approximate start time of pending jobs:
$ squeue -M mpp2 -u <user> --start

• Abort a job:
$ scancel -M mpp2 <jobid>

• Get accounting data for (past) jobs:
$ sacct -X -M mpp2 [-S <YYYY-MM-DD>] -u <user>

35Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Potential Pitfalls

• Jobs get aborted (by Slurm) if they use more resources than specified
-> you need to estimate memory and runtime requirements
• Estimate memory requirements from a (single, local) serial run, extrapolate if needed

(use e.g. your system monitor or the “top” command line tool)
• Provide some “buffer” for runtime

• Queuing times can be long
• Use “sinfo” to find less busy cluster segments
• Smaller, less demanding jobs generally start faster

-> you can benefit from accurate resource estimation

36Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Potential Pitfalls

• Debugging can be inconvenient
• The time interval between changes in the R code and seeing results/getting feedback is

longer than usual
• The compute environment (compute nodes of the cluster) and the development/test

environments (local, login or interactive nodes) are usually not exactly the same
• Debug as much as possible in a serial fashion
• Prepare small jobs and test them interactively (using “salloc”)

37Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Using R
Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

HPC Cluster Systems

Accelerator: GPU, FPGA
Socket
Core

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna 39

Parallelization

Motivation:
• You have a lot of (more or less) indepen-

dent tasks or

• You want to accelerate a single complex
task -> it might be possible to turn the
single complex task into many (more or
less) independent tasks

…and you have access to a (massively
parallel) supercomputer!

40Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Scenario: Embarrassingly/Pleasingly Parallel

• many independent processes
(10 - 100.000)

• individual task (list) for each process
• private memory for each process
• no communication between processes
• results are stored separately on a (large)

storage medium

41Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Scenario: Worker Queue

• many independent processes
(10 - 100.000)

• central task scheduler (database)
• private memory for each process
• results are sent back to task scheduler
• re-scheduling of failed tasks possible

42Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Scenario: Shared Memory

• a few processes working closely together
(10-100)

• single task list (script/program)
• shared memory

(cache coherent non-uniform memory
architecture aka ccNUMA)

• results are kept in shared memory

43Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Scenario: Message Passing

• many independent processes
(10 - 100.000)

• one task list (script/program) for all processes
• each process can (in principle) talk to every

other process
• private memory
• needs communication strategy in order to

scale (area of optimization, e.g. nearest
neighbor communication)

• beware of deadlocks!

44Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

45Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

CRAN Task View: High-Performance and Parallel Computing
https://cran.r-project.org/web/views/HighPerformanceComputing.html

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts

46Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Using R: Embarrassingly/Pleasingly parallel

47Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

Parallelization Using R: Embarrassingly/pleasingly parallel

• Use the command line to start your R process (in the background):
$ Rscript script0.R &

• If you do this repeatedly, the resulting R processes will be distributed by the OS to
different cores (subject to availability):
$ Rscript script1.R &
$ Rscript script2.R &
$ Rscript script3.R & …

• To further automate this procedure, you could write a bash script (run_all_R_scripts.sh)
containing these commands and then run this single script:
$ bash run_all_R_scripts.sh &

• Do not start more processes than cores!
• Do not use the (cluster) login nodes for this (e.g. request an interactive shell instead)!

48Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Using R: Embarrassingly/pleasingly Parallel

• Let’s look at a toy problem:

for(i in 1:20) sum(sort(runif(1e7)))

• Are there parallelization opportunities?
• Add a time measurement:

system.time(for(i in 1:20) sum(sort(runif(1e7))))

• You might also be familiar with alternatives like the following:

lapply(1:20, function(x) sum(sort(runif(1e7))))

49Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

50Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Using R: Worker Queue

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

51

Shared file system or
database

job steps/srun, batchtools,
rredis/doRedis

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

srun is the command to run (parallel) jobs on clusters managed by Slurm.
It can also be used to create job steps, i.e. to schedule independent processes within a single job
allocation. The --exclusive option can be used to provide resource management for a job by
executing the various job steps as processors become available for dedicated use.

Example job script:

#!/bin/bash
#SBATCH --clusters=cm2_tiny
#SBATCH --nodes=1

module load slurm_setup

module load r

srun -n1 -c1 --exclusive Rscript script1.R &
srun -n1 -c1 --exclusive Rscript script2.R &
srun -n1 -c1 --exclusive Rscript script3.R &
…
srun -n1 -c1 --exclusive Rscript script200.R &

52

Parallelization Using R: Job Steps/srun
https://slurm.schedmd.com/srun.html

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

“batchtools provides a parallel implementation of Map for high performance computing
systems managed by schedulers like Slurm, …
• all relevant batch system operations (submitting, listing, killing) are either handled

internally or abstracted via simple R functions
• with a well-defined interface, the source is independent from the underlying batch system

- prototype locally, deploy on any high performance cluster”

i.e. a (interactive) R process is used in combination with the shared file system and the
workload manager of the cluster to distribute workloads across nodes

Join the “Machine Learning with R at LRZ” course this afternoon to see batchtools in action!

53

Parallelization Using R: batchtools
https://mllg.github.io/batchtools/

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Using R: rredis/doRedis

Redis is an open source, fast, persistent, networked database with many features, among them a
blocking queue-like data structure (Redis “lists”). This feature makes Redis useful as a lightweight
back end for parallel computing.

A Redis server has to be set up as part of the cluster (e.g. on a login node) or even somewhere else,
containing the problem description(s). Worker processes connect to this server and tasks are
assigned to them.

This is a very flexible and dynamic approach, as workers can basically run wherever you want (as
long as they can connect to the server). When running on the cluster, you have to deal with resource
allocation separately (via the Slurm workload manager) and potential firewall access restrictions.

54Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

• Shared Memory (strong coupling):
• one R process spawns sub-processes on a single node with many cores

(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)

55Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Using R: Shared Memory

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

56

Shared file system or
database

job steps/srun, batchtools,
rredis/doRedis

Shared memory

parallel/doParallel

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Shared Memory Parallelization: Multithreading with doParallel

• As seen earlier, the for loop construct in R:
for(i in 1:20) sum(sort(runif(1e7)))

serial execution/single thread

• “The foreach package provides a new looping construct for executing R code repeatedly.
[…] it supports parallel execution, that is, it can execute those repeated operations on
multiple processors/cores on your computer, or on multiple nodes of a cluster.”

library(foreach)
foreach(i = 1:20) %do% sum(sort(runif(1e7))) # serial execution

foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
multithread execution (?)

57Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Shared Memory Parallelization: Multithreading with doParallel

• This is were the “do-back ends” (e.g. doParallel) come into play…
• By creating/registering a cluster, foreach’s %dopar% operator can rely on these parallel

resources, e.g. using parallel’s multicore-like functionality (“forking”):

library(foreach)
library(doParallel)
registerDoParallel(cores=2)

define number of cores, this enables multicore-functionality
(preferred on GNU/Linux, but won’t work on Windows)

foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))

58Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Shared Memory Parallelization: Multithreading with doParallel

• The procedure is similar for snow-like functionality:

library(foreach)
library(doParallel)
cluster.object <- makePSOCKcluster(2)
registerDoParallel(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
stopCluster(cluster.object)

• This uses Rscript to launch further copies of R (on the same host or optionally elsewhere;
in the latter case, hostnames need to be provided)

• [parallel‘s snow-like functionality also allows to create MPI-clusters (makeMPIcluster()-
function) but Rmpi/doMPI is usually recommended to be used instead]

59Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

• Shared Memory (strong coupling):
• one R process spawns sub-processes on a single node with many cores

(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)
• Message Passing (strong coupling):

• several R processes talk to each other (across different nodes) by passing messages
(e.g. Rmpi/doMPI), this also allows for a (single) main and (multiple) workers model

60Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Parallelization Using R: Message Passing

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

61

Message Passing

Rmpi/doMPI

Shared file system or
database

job steps/srun, batchtools,
rredis/doRedis

Shared memory

parallel/doParallel

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Message Passing with doMPI

• To execute a doMPI script on multiple compute nodes a “message passing environment”
needs to be set up, i.e. the R interpreter needs to be executed using a command such as
mpirun (i.e. mpirun R –f script.R)

• Then, the already familiar „do-back end“-pattern is put to use within R:

library(foreach)
library(doMPI)
cluster.object <- startMPIcluster()
registerDoMPI(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
closeCluster(cluster.object)

62Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

More foreach()

• use times() for simple repetitions:
times(10) %do% sum(sort(runif(1e7)))

• foreach is a function with several arguments…
foreach(i = 1:10, .combine = c, …) %do% sth() # process results

as they get generated, e.g. c(), cbind(), list(), sum(), ...
• … evaluates iterators…
foreach(i = iter(input)) %do% sth() # see package iterators
foreach(i = irnorm(100)) %do% sth()

• … and provides additional operators:
foreach(i = 1:10) %:% when(cond) %do% sth() # nesting operator

and condition cf. Python’s list comprehensions

63Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

More parallel

• parallel provides parallel replacements of lapply and related functions (as have snow and
multicore):

• multicore-like: e.g. mclapply(1:10, function(x) sum(sort(runif(1e7)))),
mcmapply (x, FUN, ...), mcMap(FUN, …)

• snow-like: clusterApply(cl, x, fun, ...), e.g. parLapply(cl, x, FUN, ...)

64Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Even More parallel: Futures/Promises

• Constructs for synchronizing program execution. Describe objects that act as proxies for
a result, which is yet unknown (because the computation is incomplete)

• Send command to background and return handle:
handle <- mcparallel(some_expensive_function)

• Collect result at later point:
result <- mccollect(handle)

65Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Futures/Promises

> system.time(sum(sort(runif(1e7))))
user system elapsed
1.581 0.112 1.700

> system.time(sapply(1:20, function(x) sum(sort(runif(1e7)))))
user system elapsed

28.875 2.998 31.883

> library(parallel)
> h <- mcparallel(sapply(1:20, function(x) sum(sort(runif(1e7)))))
> mccollect(h, wait = FALSE)
NULL
wait approx. 30 seconds for job to finish
> mccollect(h, wait = FALSE)
[1] 5000214 4999121 5001166 …

66Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

• Package future tries to unify the previous approaches:
“The purpose of this package is to provide a lightweight and unified Future API for
sequential and parallel processing of R expressions via futures. […] Because of its unified
API, there is no need to modify any code in order switch from sequential on the local
machine to, say, distributed processing on a remote compute cluster. ”

• Implicit:
v %<-% { expr } # future assignment , creates a future and a

promise to its value (instead of regular assignment <-)

• Explicit:
f <- future({ expr }) # creates a future
v <- value(f) # gets the value of the future

(blocks if not yet resolved)

67

Futures/Promises
https://github.com/HenrikBengtsson/future

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

• Function plan() allows the user to plan the future, i.e. it specifies how futures()s are
resolved

• For example: plan(sequential) vs. plan(multiprocess)

> library("future")
> plan(multiprocess)
> v %<-% {
+ cat("Hello world!\n")
+ 3.14
+ }
> v
Hello world!
[1] 3.14

68

Futures/Promises
https://github.com/HenrikBengtsson/future

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Name OSes Description
synchronous: non-parallel:
sequential all sequentially and in the current R process
transparent all as sequential w/ early signaling and w/out local (for debugging)
asynchronous: parallel:
multiprocess all multicore, if supported, otherwise multisession
multisession all background R sessions (on current machine)
multicore not Windows forked R processes (on current machine)
cluster all external R sessions on current, local, and/or remote machines
remote all simple access to remote R sessions

• Additionally: package future.batchtools provides an implementation of the Future API on
top of the batchtools package, i.e. it allows to process futures (as defined by the future
package) on HPC infrastructure

69

Futures/Promises
https://github.com/HenrikBengtsson/future

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

• Package doFuture provides a %dopar% adaptor for the foreach package such that any
type of future (that is supported by the Future API of the future package) can be used for
asynchronous (parallel/distributed) or synchronous (sequential) processing.

• Example:
library(doFuture)
registerDoFuture()
plan(multiprocess)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))

• Look out for the use of foreach (and the possibility to register all these different back
ends) in other R packages!

70

doFuture: future and foreach
https://github.com/HenrikBengtsson/doFuture

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

• Drake is a general-purpose workflow manager for data-driven tasks.
• It rebuilds intermediate data objects when their dependencies change, and it skips work

when the results are already up to date. Not every run-through starts from scratch, and
completed workflows have tangible evidence of reproducibility.

• drake supports scalability, parallel computing (relying on the parallel, future, batchtools,
and future.batchtools packages), and a smooth user experience when it comes to setting
up, deploying, and maintaining data science projects.

71

… and beyond.
https://ropensci.github.io/drake/

Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

Conclusion

• Parallel programming is here to stay (for the foreseeable future).
• Know your hardware…
• … and the possibilities of your software/programming environment.
• Applying proper (high level) abstractions (foreach, futures,…) to target the features of

modern CPUs/GPUs and supercomputing infrastructure will allow you to write fast and
scalable programs.

72Using R at LRZ | 07/10/2020 | J. Albert-von der Gönna

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Bavarian Academy of Sciences and Humanities
	Course Information
	HPC Systems for Bavarian Universities
	RStudio Server
	RStudio Server
	RStudio Server
	RStudio Server
	RStudio Server
	RStudio Server
	RStudio Server
	RStudio Server
	RStudio Server
	RStudio Server
	Linux Cluster
	R Modules
	R Modules
	R Modules
	R Modules
	R Package Management
	R Package Management
	R Package Management
	R Package Management
	R Package Management
	Slurm Workload Manager
	Slurm Workload Manager
	CoolMUC-2 Overview
	Interactive R Session
	Interactive R Session
	Job Processing
	Job Processing
	Job Processing
	Job Management and Accounting
	Potential Pitfalls
	Potential Pitfalls
	Foliennummer 38
	HPC Cluster Systems
	Parallelization
	Parallelization Scenario: Embarrassingly/Pleasingly Parallel
	Parallelization Scenario: Worker Queue
	Parallelization Scenario: Shared Memory
	Parallelization Scenario: Message Passing
	CRAN Task View: High-Performance and Parallel Computing
	(Explicit) Parallelization Using R
	Parallelization Using R: Embarrassingly/Pleasingly parallel
	Parallelization Using R: Embarrassingly/pleasingly parallel
	Parallelization Using R: Embarrassingly/pleasingly Parallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Worker Queue
	Parallelization Using R: Job Steps/srun
	Parallelization Using R: batchtools
	Parallelization Using R: rredis/doRedis
	(Explicit) Parallelization Using R
	Parallelization Using R: Shared Memory
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Message Passing
	Message Passing with doMPI
	More foreach()
	More parallel
	Even More parallel: Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	doFuture: future and foreach
	… and beyond.
	Conclusion

