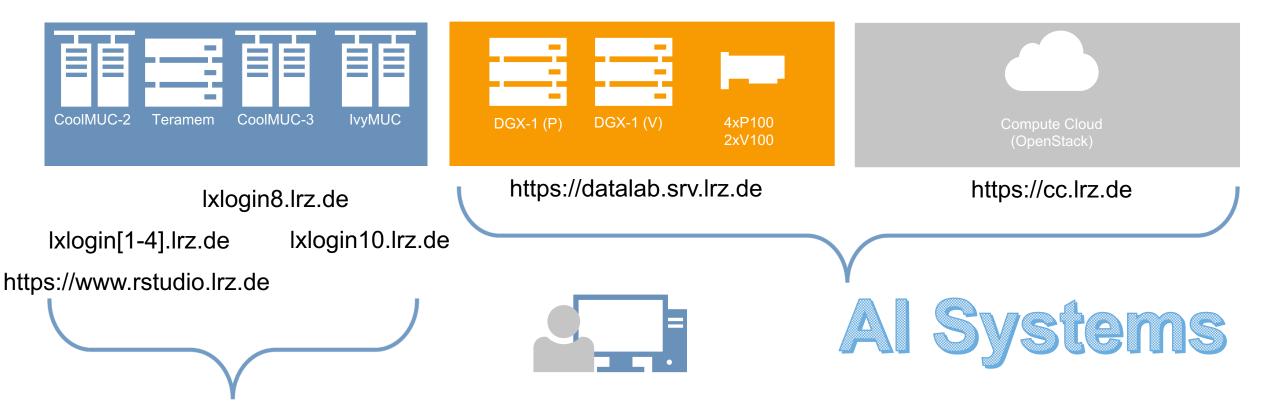


Introduction to the LRZ AI Infrastructure 08.10.2020 | PD Dr. Juan J. Durillo

Agenda



Introduction to the LRZ AI System
Introduction to Machine Learning Training
Horovod: an Example of Distributed Learning
Wrap-Up

Introduction to the LRZ AI Infrastructure LRZ Systems Offer

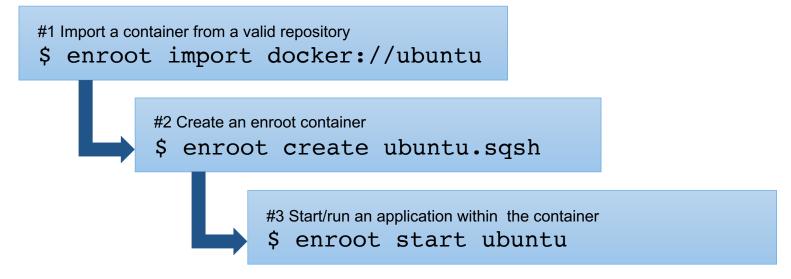
(Multi-purpose cluster systems might be used for AI workloads as well, but have a different focus)

Introduction to the LRZ AI Infrastructure Resources Overview

	DGX-1 P100 Architecture	DGX-1 V100 Architecture	V100 GPU Nodes	
Number of Nodes	1	1	1	Compute Cloud
Cores per node	80	80	40	Flavor dep.
Memory per node	512 GB DDR4	512 GB DDR4	724 GB DDR4	Flavor dep.
GPUs per node	8 Nvidia Tesla P100	8 Nvidia Tesla V100	2 Nvidia Tesla V100	Flavor dep.
Memory per GPU	16 GB	16 GB	16 GB	
CUDA / Tensor Cores per GPU	3584 /	5120 / 640	5120 / 640	
SLURM Partition	dgx	?	gpu	

Introduction to the LRZ AI Infrastructure Hands on – Accessing LRZ System

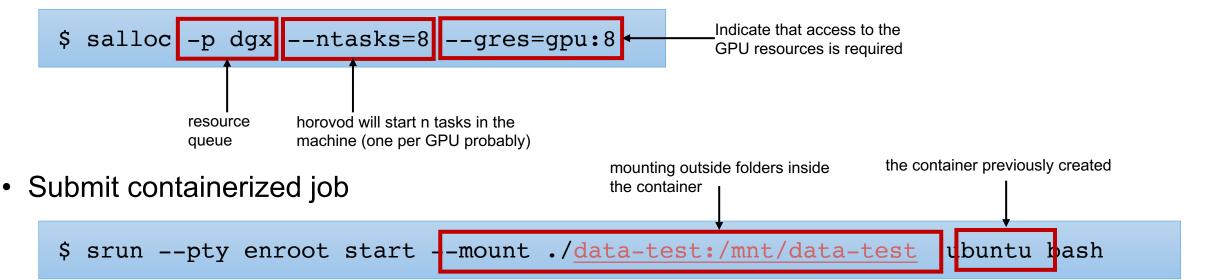
- Who can access the system?
 - Users with a valid Linux Cluster account,
 - who explicitly request access explaining intended used (what? how?)
- A single login node <u>datalab2.srv.lrz.de</u> accessible via ssh


ssh -Y <u>datalab2.srv.lrz.de</u> -l xxyyyzz

- From the login node, jobs are submitted to the hardware described at the beginning of this course using SLURM
- A couple of handy SLURM commands

Introduction to the LRZ AI Infrastructure LRZ AI System – A container based solution

- Containerized applications with enroot, a rootless container runtime by Nvidia
- Slightly different workflow than with Docker



 It should be noticed than the workflow in the AI System consist in submitting jobs that run containerized within an enroot defined container

Introduction to the LRZ AI Infrastructure LRZ AI System – On running Interactive Containerized Applications

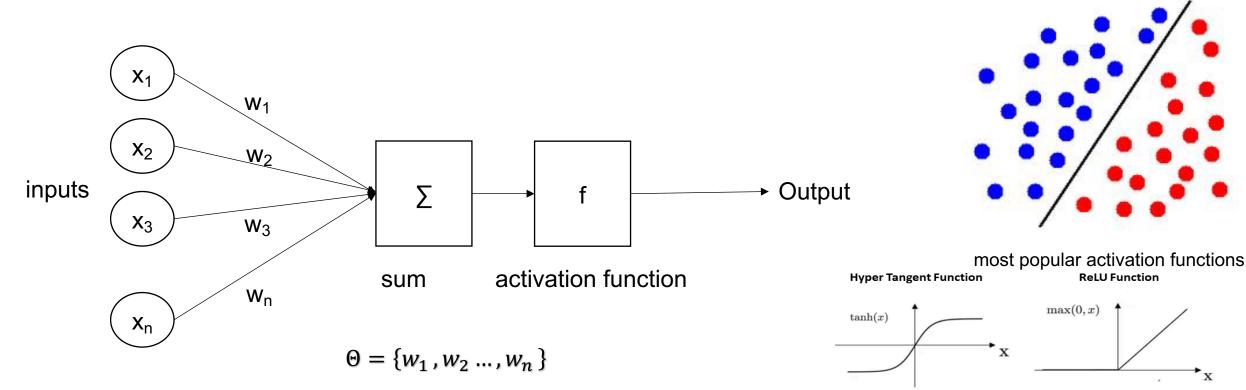
• Get resources allocated

• Meet the pyxis plugin: container creating and job submission in a single step

\$ srun --container-mounts=./data-test:/mnt/data-test --container-name=horovod --container-image='horovod/horovod+0.16.4-tf1.12.0-torch1.1.0-mxnet1.4.1py3.5' bash

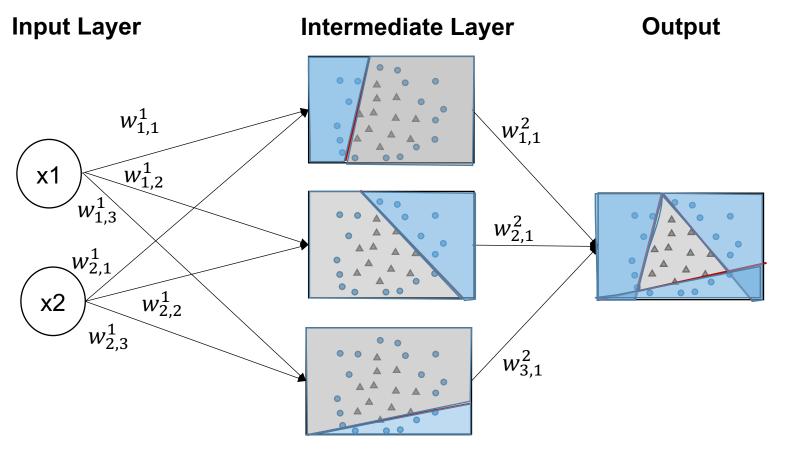
Introduction to the LRZ AI Infrastructure Perceptron – Artificial Neuron

Identity Function


f(x) = x

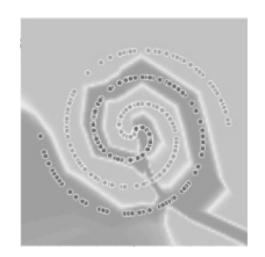
x

Sigmoid Function


x

 $\sigma(x) = \frac{1}{1 + e^{-x}}$

Single artificial neurons work well for linearly separable datasets (indeed output is the activation effect on a linear combination of the input)


Introduction to the LRZ AI Infrastructure Neural Network

 $\Theta = \left\{ w_{1,1}^1, w_{1,2}^1, w_{1,3}^1, w_{2,1}^1, w_{2,2}^1, w_{2,3}^1, w_{1,1}^2, w_{2,1}^2, w_{2,3}^2 \right\}$

• Even when the data is not linearly separable

Introduction to the LRZ AI Infrastructure (Supervised) Learning

• Data domain Ζ: Χ×Υ

•

 $X \rightarrow$ domain of the input data $\Upsilon \rightarrow$ set of labels (knowledge)

- Data Distribution is a probability distribution over a data domain
- X: 32 x 32 color images 2^{2} 2^{2

truck, car, horse, bird, boat

 Υ : labels

Example (CIFAR10 dataset)

- Training set z_1, \ldots, z_n from Z assumed to be drawn from the Data Distribution D
- Validation set v_1, \ldots, v_m from Z also assumed to be drawn from D
- A machine learning model is a function that given a set of parameters Θ and z from Z produces a prediction
- The prediction quality is measured by a differentiable non-negative scalar-valued loss function, that we denote ℓ(Θ; z)

Introduction to the LRZ AI Infrastructure (Supervised) Learning

- Given Θ we can define the expected loss as: $L(\Theta) = \mathbb{E}_{z \sim D}[\ell(\Theta; z)]$
- Given D, ℓ, and a model with parameter set Θ, we can define learning as:
 "The task of finding parameters Θ that achieve low values of the expected loss, while we are given access to only n training examples"
- The mentioned task before is commonly referred to as *training*
- Empirical average loss given a subset of the training data set $S(z_1, ..., z_n)$ as:

$$\widehat{L}(\Theta) = \frac{1}{n} \sum_{t=1}^{n} [\ell(\Theta; z_t)]$$

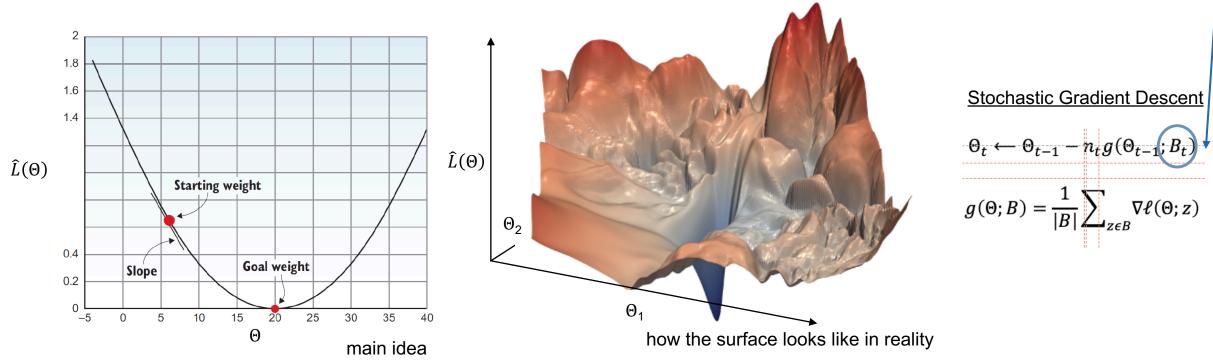
 Usually a proxy function, easier to understand by humans, is used for describing how well the training is performed (e.g., accuracy)

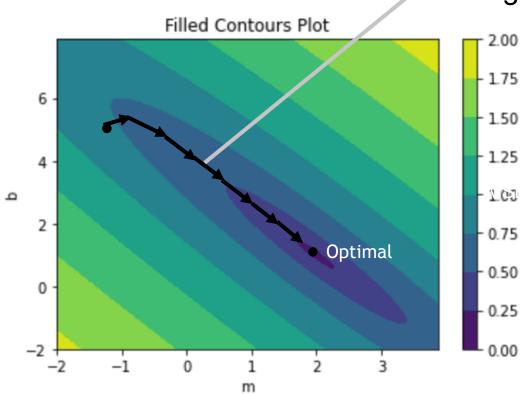
Introduction to the LRZ AI Infrastructure Introduction to Learning

- The dominant algorithms for training neural networks are based on mini-batch stochastic gradient descent (SGD)
- Given an initial point Θ_0 SGD attempt to decrease \hat{L} via the sequence of iterates

$$\Theta_t \leftarrow \Theta_{t-1} - n_t g(\Theta_{t-1}; B_t)$$

$$g(\Theta; B) = \frac{1}{|B|} \sum_{z \in B} \nabla \ell(\Theta; z)$$


	B_t : random subset of training examples
Definitions	n_t : positive scalar (learning rate)
	epoch: update the weights after going over all training set


Introduction to the LRZ AI Infrastructure Training Neural Networks

Batch

Introduction to the LRZ AI Infrastructure Visualizing the training process

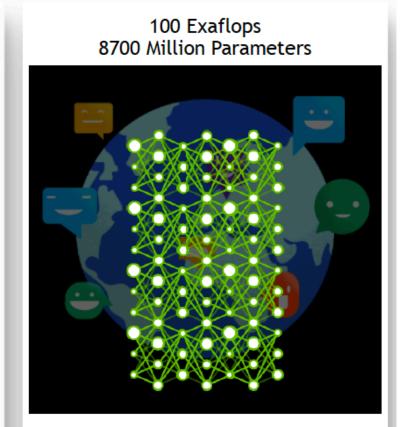
Training steps: every time the gradient is updated

What influences these steps:

- Batch size
- Normalization
- Optimizer
- Learning rate
- Loss function

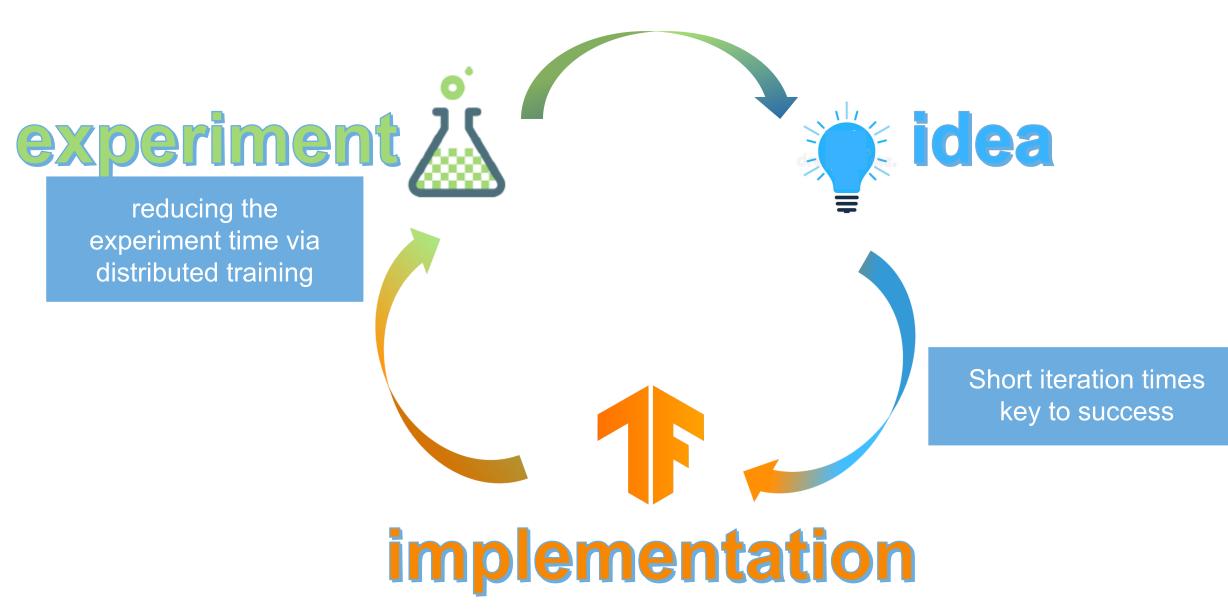
Introduction to the LRZ AI Infrastructure Models of Increasing complexity

7 Exaflops 60 Million Parameters

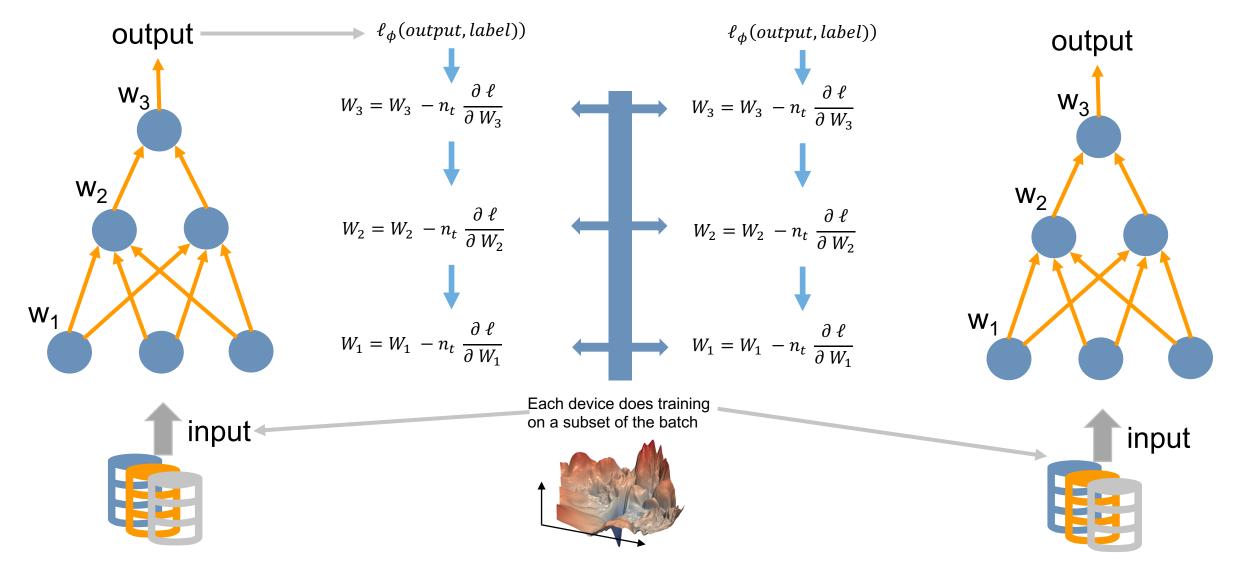


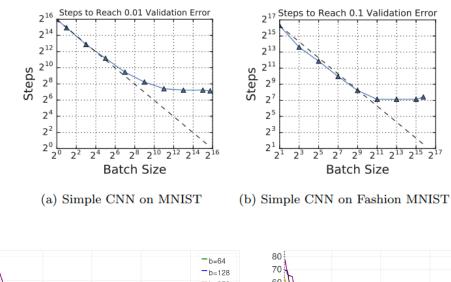
2015 - Microsoft ResNet Superhuman Image Recognition

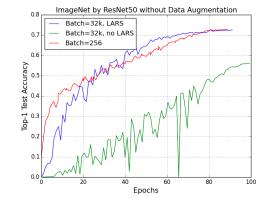
20 Exaflops 300 Million Parameters

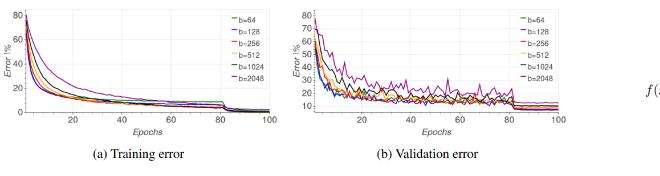

2016 - Baidu Deep Speech 2 Superhuman Voice Recognition

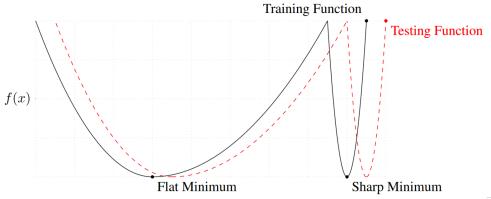
2017 - Google Neural Machine Translation Near Human Language Translation


Introduction to the LRZ AI Infrastructure Experimental Science Require Short Iteration Times


Introduction to the LRZ AI Infrastructure Data Parallelism Training

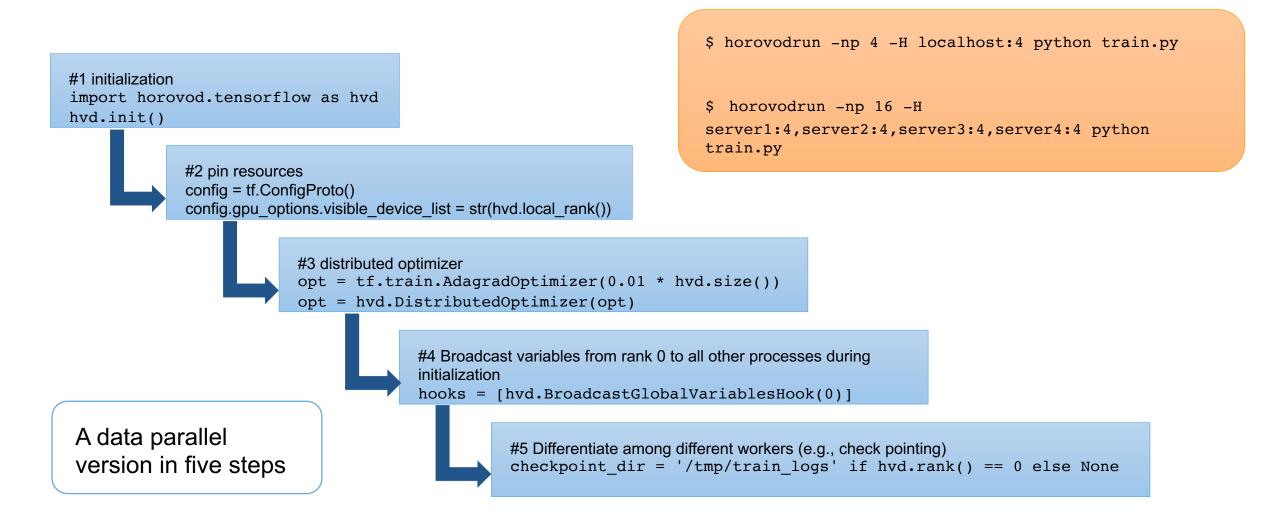





Introduction to the LRZ AI Infrastructure Training with large Batch Sizes

• There are limits

Introduction to the LRZ AI Infrastructure Horovod


- Distributed opensource deep learning training framework for TensorFlow, Keras, Pytorch, and Apache MXNet
- Originally developed at UBER
 - Fast. Scale up to hundreds of GPUs with upwards of 90% scaling efficiency
 - Easy. A few lines of codes.
 - Portable. Different frameworks

To run on CPUs: \$ pip install horovod

To run on GPUs with NCCL: \$ HOROVOD_GPU_OPERATIONS=NCCL pip install horovod

Introduction to the LRZ AI Infrastructure Horovod

Introduction to the LRZ AI Infrastructure

An example step by step ...

Introduction to the LRZ AI Infrastructure Conclusions and Summary

- Introduction to the LRZ AI Resources
- LRZ AI Resources Software Stack
- Machine Learning Training
- Distributed Training Challenges
- Horovod: an Easy Solution for Distributed Training

Introduction to the LRZ AI Infrastructure Feedback...

https://survey.lrz.de/index.php/264821?lang=en

