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HPC Cluster Systems

Accelerator: GPU, FPGA
Socket
Core
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Parallelization

Motivation:
• You have a lot of (more or less) indepen-

dent tasks or

• You want to accelerate a single complex 
task -> it might be possible to turn the 
single complex task into many (more or 
less) independent tasks

…and you have access to a (massively 
parallel) supercomputer!
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Parallelization Scenario: Embarrassingly/Pleasingly Parallel

• many independent processes
(10 - 100.000)

• individual task (list) for each process
• private memory for each process
• no communication between processes
• results are stored separately on a (large) 

storage medium
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Parallelization Scenario: Worker Queue

• many independent processes
(10 - 100.000)

• central task scheduler (database)
• private memory for each process
• results are sent back to task scheduler
• re-scheduling of failed tasks possible
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Parallelization Scenario: Shared Memory

• a few processes working closely together
(10-100)

• single task list (script/program)
• shared memory

(cache coherent non-uniform memory 
architecture aka ccNUMA)

• results are kept in shared memory
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Parallelization Scenario: Message Passing

• many independent processes
(10 - 100.000)

• one task list (script/program) for all processes
• each process can (in principle) talk to every 

other process
• private memory
• needs communication strategy in order to 

scale (area of optimization, e.g. nearest 
neighbor communication)

• beware of deadlocks! 
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CRAN Task View: High-Performance and Parallel Computing
https://cran.r-project.org/web/views/HighPerformanceComputing.html



(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different 

scripts
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Parallelization Using R: Embarrassingly/Pleasingly parallel

13Using R at LRZ | April 2021

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &



Parallelization Using R: Embarrassingly/pleasingly parallel

• Use the command line to start your R process (in the background):
$ Rscript script0.R &

• If you do this repeatedly, the resulting R processes will be distributed by the OS to
different cores (subject to availability):
$ Rscript script1.R &
$ Rscript script2.R &
$ Rscript script3.R & …

• To further automate this procedure, you could write a bash script (run_all_R_scripts.sh) 
containing these commands and then run this single script:
$ bash run_all_R_scripts.sh &

• Do not start more processes than cores!
• Do not use the (cluster) login nodes for this (e.g. request an interactive shell instead)!
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Parallelization Using R: Embarrassingly/pleasingly Parallel

• Let’s look at a toy problem:

for(i in 1:20) sum(sort(runif(1e7)))

• Are there parallelization opportunities?
• Add a time measurement:

system.time(for(i in 1:20) sum(sort(runif(1e7))))

• You might also be familiar with alternatives like the following:

lapply(1:20, function(x) sum(sort(runif(1e7))))
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(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different 

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R 
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)
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Parallelization Using R: Worker Queue

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &
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Shared file system or 
database

job steps/srun, batchtools,
rredis/doRedis
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“batchtools provides a parallel implementation of Map for high performance computing 
systems managed by schedulers like Slurm, …
• all relevant batch system operations (submitting, listing, killing) are either handled 

internally or abstracted via simple R functions
• with a well-defined interface, the source is independent from the underlying batch system 

- prototype locally, deploy on any high performance cluster”

i.e. a (interactive) R process is used in combination with the shared file system and the 
workload manager of the cluster to distribute workloads across nodes

18

Parallelization Using R: batchtools
https://mllg.github.io/batchtools/
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Parallelization Using R: rredis/doRedis

Redis is an open source, fast, persistent, networked database with many features, among them a 
blocking queue-like data structure (Redis “lists”). This feature makes Redis useful as a lightweight 
back end for parallel computing.

A Redis server has to be set up as part of the cluster (e.g. on a login node) or even somewhere else, 
containing the problem description(s). Worker processes connect to this server and tasks are 
assigned to them.

This is a very flexible and dynamic approach, as workers can basically run wherever you want (as 
long as they can connect to the server). When running on the cluster, you have to deal with resource 
allocation separately (via the Slurm workload manager) and potential firewall access restrictions.

19Using R at LRZ | April 2021



(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different 

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R 
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

• Shared Memory (strong coupling):
• one R process spawns sub-processes on a single node with many cores

(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)
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Parallelization Using R: Shared Memory

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

21

Shared file system or 
database

job steps/srun, batchtools,
rredis/doRedis

Shared memory

parallel/doParallel
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Shared Memory Parallelization: Multithreading with doParallel

• As seen earlier, the for loop construct in R:
for(i in 1:20) sum(sort(runif(1e7)))

# serial execution/single thread

• “The foreach package provides a new looping construct for executing R code repeatedly. 
[…] it supports parallel execution, that is, it can execute those repeated operations on 
multiple processors/cores on your computer, or on multiple nodes of a cluster.”

library(foreach)
foreach(i = 1:20) %do% sum(sort(runif(1e7)))  # serial execution

foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
# multithread execution (?)
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Shared Memory Parallelization: Multithreading with doParallel

• This is were the “do-back ends” (e.g. doParallel) come into play…
• By creating/registering a cluster, foreach’s %dopar% operator can rely on these parallel 

resources, e.g. using parallel’s multicore-like functionality (“forking”):

library(foreach)
library(doParallel)
registerDoParallel(cores=2)

# define number of cores, this enables multicore-functionality
# (preferred on GNU/Linux, but won’t work on Windows)

foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
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Shared Memory Parallelization: Multithreading with doParallel

• The procedure is similar for snow-like functionality:

library(foreach)
library(doParallel)
cluster.object <- makePSOCKcluster(2)
registerDoParallel(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
stopCluster(cluster.object)

• This uses Rscript to launch further copies of R (on the same host or optionally elsewhere; 
in the latter case, hostnames need to be provided) 

• [parallel‘s snow-like functionality also allows to create MPI-clusters (makeMPIcluster()-
function) but Rmpi/doMPI is usually recommended to be used instead]
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(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different 

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R 
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

• Shared Memory (strong coupling):
• one R process spawns sub-processes on a single node with many cores

(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)
• Message Passing (strong coupling): 

• several R processes talk to each other (across different nodes) by passing messages  
(e.g. Rmpi/doMPI), this also allows for a (single) main and (multiple) workers model
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Parallelization Using R: Message Passing

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &
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Message Passing

Rmpi/doMPI

Shared file system or 
database

job steps/srun, batchtools,
rredis/doRedis

Shared memory

parallel/doParallel
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Message Passing with doMPI

• To execute a doMPI script on multiple compute nodes a “message passing environment” 
needs to be set up, i.e. the R interpreter needs to be executed using a command such as 
mpirun (i.e. mpirun R –f script.R)

• Then, the already familiar „do-back end“-pattern is put to use within R:

library(foreach)
library(doMPI)
cluster.object <- startMPIcluster()
registerDoMPI(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
closeCluster(cluster.object)
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More foreach()

• use times() for simple repetitions:
times(10) %do% sum(sort(runif(1e7)))

• foreach is a function with several arguments…
foreach(i = 1:10, .combine = c, …) %do% sth()  #  process results

as they get generated, e.g. c(), cbind(), list(), sum(), ... 
• … evaluates iterators…
foreach(i = iter(input)) %do% sth()  # see package iterators
foreach(i = irnorm(100)) %do% sth()

• … and provides additional operators:
foreach(i = 1:10) %:% when(cond) %do%  sth()  # nesting operator

and condition cf. Python’s list comprehensions
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More parallel

• parallel provides parallel replacements of lapply and related functions (as have snow and 
multicore):

• multicore-like: e.g. mclapply(1:10, function(x) sum(sort(runif(1e7)))),
mcmapply (x, FUN, ...), mcMap(FUN, …)

• snow-like: clusterApply(cl, x, fun, ...), e.g. parLapply(cl, x, FUN, ...)
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Even More parallel: Futures/Promises

• Constructs for synchronizing program execution. Describe objects that act as proxies for 
a result, which is yet unknown (because the computation is incomplete)

• Send command to background and return handle:
handle <- mcparallel(some_expensive_function)

• Collect result at later point:
result <- mccollect(handle)
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Futures/Promises

> system.time(sum(sort(runif(1e7))))
user system elapsed
1.581   0.112   1.700

> system.time(sapply(1:20, function(x) sum(sort(runif(1e7)))))
user system elapsed

28.875   2.998  31.883

> library(parallel)
> h <- mcparallel(sapply(1:20, function(x) sum(sort(runif(1e7)))))
> mccollect(h, wait = FALSE)
NULL
# wait approx. 30 seconds for job to finish
> mccollect(h, wait = FALSE)
[1] 5000214 4999121 5001166 …
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• Package future tries to unify the previous approaches:
“The purpose of this package is to provide a lightweight and unified Future API for 
sequential and parallel processing of R expressions via futures. […] Because of its unified 
API, there is no need to modify any code in order switch from sequential on the local 
machine to, say, distributed processing on a remote compute cluster. ”

• Implicit:
v %<-% { expr }  # future assignment , creates a future and a

promise to its value (instead of regular assignment <-)

• Explicit:
f <- future({ expr })  # creates a future
v <- value(f)  # gets the value of the future

(blocks if not yet resolved)

32

Futures/Promises
https://github.com/HenrikBengtsson/future
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• Function plan() allows the user to plan the future, i.e. it specifies how futures()s are
resolved

• For example: plan(sequential) vs. plan(multiprocess)

> library("future")
> plan(multiprocess)
> v %<-% {
+   cat("Hello world!\n")
+   3.14
+ }
> v
Hello world!
[1] 3.14
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Futures/Promises
https://github.com/HenrikBengtsson/future
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Name OSes Description
synchronous: non-parallel:
sequential all sequentially and in the current R process
transparent all as sequential w/ early signaling and w/out local (for debugging)
asynchronous: parallel:
multiprocess all multicore, if supported, otherwise multisession
multisession all background R sessions (on current machine)
multicore not Windows forked R processes (on current machine)
cluster all external R sessions on current, local, and/or remote machines
remote all simple access to remote R sessions

• Additionally: package future.batchtools provides an implementation of the Future API on 
top of the batchtools package, i.e. it allows to process futures (as defined by the future 
package) on HPC infrastructure

34

Futures/Promises
https://github.com/HenrikBengtsson/future
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• Package doFuture provides a %dopar% adaptor for the foreach package such that any 
type of future (that is supported by the Future API of the future package) can be used for 
asynchronous (parallel/distributed) or synchronous (sequential) processing.

• Example:
library(doFuture)
registerDoFuture()
plan(multiprocess)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))

• Look out for the use of foreach (and the possibility to register all these different back 
ends) in other R packages!
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doFuture: future and foreach
https://github.com/HenrikBengtsson/doFuture
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• Drake is a general-purpose workflow manager for data-driven tasks.
• It rebuilds intermediate data objects when their dependencies change, and it skips work 

when the results are already up to date. Not every run-through starts from scratch, and 
completed workflows have tangible evidence of reproducibility.

• drake supports scalability, parallel computing (relying on the parallel, future, batchtools, 
and future.batchtools packages), and a smooth user experience when it comes to setting 
up, deploying, and maintaining data science projects.
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… and beyond.
https://ropensci.github.io/drake/
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Conclusion

• Parallel programming is here to stay (for the foreseeable future).
• Know your hardware…
• … and the possibilities of your software/programming environment.
• Applying proper (high level) abstractions (foreach, futures,…) to target the features of 

modern CPUs/GPUs and supercomputing infrastructure will allow you to write fast and 
scalable programs.

37Using R at LRZ | April 2021


	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	HPC Cluster Systems
	Parallelization
	Parallelization Scenario: Embarrassingly/Pleasingly Parallel
	Parallelization Scenario: Worker Queue
	Parallelization Scenario: Shared Memory
	Parallelization Scenario: Message Passing
	CRAN Task View: High-Performance and Parallel Computing
	(Explicit) Parallelization Using R
	Parallelization Using R: Embarrassingly/Pleasingly parallel
	Parallelization Using R: Embarrassingly/pleasingly parallel
	Parallelization Using R: Embarrassingly/pleasingly Parallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Worker Queue
	Parallelization Using R: batchtools
	Parallelization Using R: rredis/doRedis
	(Explicit) Parallelization Using R
	Parallelization Using R: Shared Memory
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Message Passing
	Message Passing with doMPI
	More foreach()
	More parallel
	Even More parallel: Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	doFuture: future and foreach
	… and beyond.
	Conclusion

