NOTICES AND DISCLAIMERS

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration.

No product or component can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more
complete information about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit http://www.intel.com/benchmarks .

Intel® Advanced Vector Extensions (Intel® AVX) provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX
instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo
frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and
provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced
data are accurate.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of
others.

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/go/turbo

Agenda

15:45-17:00, Distributed Training and Federated Learning

= 15:45 - 16:15 Distributed Deep Learning Training
= 16:15 - 16:45 Federated Learning
= 16:45 - 17:00 Quiz Time

DISTRIBUTED DEEP LEARNING
TRAINING

DISTRIBUTED TRAINING
/" MODELPARALLELISM

% §

PARAMETER SERVER

- WORKER O - WORKER 1 . WORKER 2

Tree using gRPC calls

HOROVOD

WORKER O WORKER 2
cores 0-3 cores 8-11

WORKER 1
cores 4-7

https://arxiv.org/abs/1802.05799v3

Ring All-Reduce using MPI

MESSAGE PASSING INTERFACE (MPI)

$ mpirun -H 192.168.1.100,192.168.1.105 hostname
aipg-infra-07.intel.com
aipg-infra-09.intel.com

$ mpirun —H host1,host2,host3 python hello.py
Hello World!
Hello World!
Hello World!

CHANGES T0 TENSORFLOW

import tensorflow as tf
import horovod.tensorflow as hvd

hvd.init()

opt = tf.train.AdagradOptimizer(0.01 * hvd.size())
opt = hvd.DistributedOptimizer(opt)

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

SOCKETS & CORES

SOCKET

Receptacle on the
motherboard for one
physically packaged
processor.

A complete private set
of registers, execution
units, and queues to

SOCKETO SOCKET 1 execute a program.

lSCpU (nteD Al | o

MULTIPLE WORKERS PER CPU
$ mpirun
-H hostA,hostB,hostC
-np ©
--map-by ppr:1:socket:pe=2
--oversubscribe
--report-bindings
python train_model.py

MULTIPLE WORKERS PER CPU

$ mpirun

-H hostA, hostB, hostC

-n 6

-ppn 2

-print-rank-map

-genv | _MPI_PIN_DOMAIN=socket
-genv OMP_NUM_THREADS=24
-genv OMP_PROC_BIND=true
-genv KMP_BLOCKTIME=1

python train_model.py

Intel MPI @DA | 11

MULTIPLE WORKERS PER CPU

SOCKET O SOCKET 1
RO hostA [BB/BB/../..1[../../../..
R1 hosta [../../../..]1[BB/BB/../..
R2 hostB BB/BB/../..)[../../../..
R3 hostB [../../../..][BB/BB/../..
R4 hostC [BB/BB/../..1[../../../..
R5 hostC [../../../..]1[BB/BB/../..

mpirun -H hostA,hostB,hostC -np 6 --map-by ppr:1:socket:pe=2 ... (nteD Al | 12

HOROVODRUN COMMAND

horovodrun -np 4 -H node-4984:2,node-4985:2 --binding-args="--
map-by ppr:2:socket:pe=10" --mpi-args="--report-bindings" python
train_horovod.py

. Advanced: Run Horovod with Open MPI
& facebookincubator / gloo

In some advanced cases you might want fine-grained control over options passed to Open MPL
To learn how to run Horovod training directly using Open MPI, read Run Horovod with Open

About MEL

Collective communications library with Run Horovod with Intel(R) MPI

various pl’l mitives for multi-machine horovodrun automatically converts some parameters to the format supported by Intel(R) MPI
trai ning mpirun. The set of allowed options includes -np, -H and ssh arguments (-p, -i). Intel(R) MPI

variables. For additional information refer to Intel(R) MPI official documentation.

https://horovod.readthedocs.io/en/stable/running_include.html (inteD Al | 13

& IntelAl / unet

<> Code (@ lIssues 3

¥ master ~ unet/3D/

@ tonyreina Update 3D notebook

images
] 3d_unetipynb
[READMEmd
'Y argparser.py
] dataloader.py
9 horovod_command.sh
9 model.py
] plet_predictions.ipynb
9 quantize modelipynb
% run_unet_horovod.sh
7 script_slurm
Y settings.py
[trainpy

] train_horovod.py

1"l Pull requests

& Watch ~ | 15 17 Star

Go to file

Adding plot

Update 3D notebook

Update README.md

Adding 3D inference notebook

rotate 90 on 3D data loader to give correct orientation
Updating license

Updating 2D to TensorFlow 2 and OpenVINO 2021
Updating license

Updating license

Updating to new data loader

Updating Horovod script

Adding 3D inference notebook

Updating 3D print

Updating 2D to TensorFlow 2 and OpenVINO 2021

Actions [Projects [0 wiki

Y Fork 67
@) Security wan
Add file = e

2 days ago o History

3 months ago

2 days ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
4 months ago
4 months ago
3 months ago
3 months ago

3 months ago

github.com/IntelAl/unet

BKC/BKM FOR HPC Al
WHITE PAPER @_tgl’ ¢ D O C ke r

* SLURM
Training and Inference with TensorFlow* On . o
Intel® Xeon® Processor-Based HPC ® S I n g u la r I ty

Infrastructures
Kurpad?®, Vamsi Sripathi®, Sun Choi', Vikram Saletore'
Connectivity Group & Al Products Group, Data Center Group . ' I S | e

Customer Solutions Technical Enabling, Intel Corporation

Version: 1.1
Date of Issue: January 2019
Prepared By: Aishwarya Bhandare?, Deepthi Karkada®, Kushal Datta", Anupama

https://www.intel.ai/best-practices-for-tensorflow-on-intel-xeon-processor-based-hpc-infrastructures intel) Al .)

FEDERATED LEARNING

THE DATASILO PROBLEM

s —0—r

Some data
Model Improved

@ Model

Eventually, we hit the limit of our dataset.

@D Al | 17

THE DATASILO PROBLEM

s —0—gr

Some data
Model Improved

Model

. @ . Can we add
more data?

(nteD gl | 18

Challenges for Training Al Models?

» Data is legally protected (HIPAA, GDPR) \

= Data is sensitive \
» Data too valuable or value unknown

= Data too large to transmit

Centralized Learning vs Federated Learning

Centralized Learning Federated Learning

Data Owner A '
Collaboratorsi Model E

: update A

Governor

€
=
—
S [R Aggregation
Training : 070 Server
Infrastructure

Updated
model

50 Foot View of Federated Learning
1

N
ayers.Conv3D(name="PredictionMask", W
kernel_size= W

Aggregation
w

by,

=1

get batch_data()

scientific reports

I n te I Explore our content v Journal information v
®

nature > scientific reports > articles > article

Perelman

SChOOl Of Medicine Article | Open Access | Published: 28 July 2020
UNIVERSITY Of PERNSYLVANIA Federated learning in medicine: facilitating multi-

:'9 institutional collaborations without sharing patient

Multimodal Brain Tumor Segmentation

Micah J. Sheller, Brandon Edwards, G. Anthony Reina, Jason Martin, Sarthak Pati, Aikaterini Kotrotsou,
Mikhail Milchenko, Weilin Xu, Daniel Marcus, Rivka R. Colen & Spyridon Bakas &

Scientific Reports 10, Article number: 12598 (2020) | Cite this article
4738 Accesses | 2 Citations | 121 Altmetric | Metrics

Abstract

b
Several studies underscore the potential of deep learning in identifying complex patterns,
leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse

datasets, required for training, is a significant challenge in medicine and can rarely be found in

individual institutions. Multi-institutional collaborations based on centrally-shared patient data

https://www.nature.com/articles/s41598-020-69250-1 @ePn | 22

FEDERATING THE U-NET TRAINING [ORIGINAL INSTITUTIONS]*

Collaboration Method

EEEEE
How much better does each institution do when training on the full data vs. just their own data?
~ 17% better on the hold-out BraTS data

~ 2.6% better on their own validation data

https://www.nature.com/articles/s41598-020-69250-1 @wePn | 23

openfl 1.0.1

github.com/intel/openfl
openfl.readthedocs.io/

pip install openfl IE Released: Mar 2, 2021

Federated Learning for the Edge

Navigation Project description

Project des:

Welcome to Intel® Open Federated Learning
D Release history

python 3.6 | 3.7 | 3.8 | build | passing pypi v1.0.1 | #% slack @openfl | License Apache 2.0

Federated learning is a distributed machine learning approach that enables organizations to collaborate on machine
learning projects without sharing sensitive data, such as, patient records, financial data, or classified secrets (Sheller
MJ, et al., 2020; Sheller MJ, et al., 2019; Yang Y, et al., 2019; McMahan HB, et al., 2016).

The basic premise behind federated learning is that the model moves to meet the data rather than the data moving to 1' Te nsor FIOW

A Homepage meet the model. Therefore, the minimum data movement needed across the federation is solely the model
parameters and their updates.

& Download files

Project links

© Source Code

as - Open Federated Learning (OpenFL) is a Python 3 project developed by Intel Labs and Intel Internet of Things Group. O PyTO rC h
ocumentation
¥ Bug Tracker FEI]ERATEI] I.EARNING [FI.] .

Statistics
GitHub statistics:
o Stars: 74

1* Forks: 15

© Openissues/PRs: 7

View statistics for this project via
Libraries.io B2, or by using our public
dataset on Google BigQuery &4

Meta

License: Apache Software License

https://github.com/intel/openfl

OpenFL Interfaces

Python API

Experimentation, Single Node

]

In[]

]

]

Federated Keras MNIST Tutorial

L dependencies if not already installed

Jpip install tensorflow mnist

import numpy as np
import mnist

import tensorflow as tf

import tensorflow.keras as keras

From tensorflow.keras import backend as K

From tensorflow.keras import Sequential

From tensorflow.keras.layers import Conv2D, Flatten, Dense
from tensorflow.keras.utils import to_categorical

import openfl.native as fx
from openfl.federated import Federatedodel,FederatedDataset

After importing the required packages, the next step is setting up our openfl workspace. To do this, simply run the £x.init() command as follows
#Setup default workspace, Logging,
x.init("keras_cnn_mnist")

Now we are ready to define our dataset and model to perform federated leaming on. The dataset should be composed of a numpy arrayWe start with a simple fully
connected model that is trained on the MNIST dataset.

ion images/Labels

#Inport training and validat
mnist . train_inages(
al(mnist.

train_images
train_labels = to_catego
valid_images = mnist.tes
valid_labels = to_catego

train_labels())
mages ()
al(mnist.test_labels())

def preprocess (inages)

inages - (images / 2

inages. reshape((-1, 784))

inages
return images

inages.
preprocess(train_images)
preprocess(valid_images)

feature_shape = train_images.shape[1]
classes - 10
1_data - FederatedDataset(train_images, train_labels,valid_inages,valid_labels,batch_size=32,nun_classes=classes)

def build_model(feature_shape,classes)
‘Defines the MNIST model

model = Sequential()
model.add(Dense(64, input_shap:
model.add(Dense(64, activation.
model . add(Dense(classes, act

on="relu’))

eature_shape, activa

)

relu
ation.

crossentropy’ ,metrics=["accuracy’],)

model. compile(optimizer="adam", loss="categorica

return model

#Create a federated model using the build model function and dati

#1_model = FederatedHodel (build_model,data_loader=F1_data)

fx CLI

Production, Multi-node

Intel OpenFL - Secure Federated Learning at the Edge™

fx [options] [args]

1, —Llog-level TEXT Logging verbosity level.
help Show this message and exit.

Manage Jupyter notebooks.

rt the Jupyter notebook from the tutor:
Manage Federated Learning Plans.

Finalize the Data Science plan.
Initialize p
Print the

Remove this plan.
S: the current plan te this plan and...

Switch the current plan to this pl

Manage Federated Learning Workspaces.
Create certificate authority for federation.

Create the workspace.
Pack FL.Edge and the workspa

Certify the collaborator.
Generate certificate request for the...

Start a collaborator servic

Manage Federated Learning Aggregator.

50 Foot View of OpenFL Architecture

Use the
federation
for other

tasks?

AGGREGATOR
TSR | |TENSOR CODEC
GLOBAL
|| W

TASK ASSIGNER

—

—

o

ﬁ

gRPC TLS

COLLABORATOR

TENSOR DB
LOCAL

/)

TENSOR CODEC

o«

TASK RUNNER

&

PRIVATE DATA

FL Plan

Aggregator Plan

Collaborator Plan

Data Loader

Task Runner

Federated Keras MNIST Tutorial

In []: | #Install dependencies if not already installed
p e n y O n Elpip install tensorflow mnist

In []: dimport numpy as np
import mnist
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import backend as K
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Conv2D, Flatten, Dense
from tensorflow.keras.utils import to_categorical

import openfl.native as fx
from openfl.federated import FederatedModel,FederatedDataSet

After importing the required packages, the next step is setting up our openfl workspace. To do this, simply run the £x.init() command as follows.

In []: | #Setup default workspace, Logging, etc.
fx.init(keras_cnn_mnist")

Now we are ready to define our dataset and model to perform federated leaming on. The dataset should be composed of a numpy arraywe start with a simple fully
connected model that is trained on the MNIST dataset.

In [1: | #Import training and validation images/labels
train_images = mnist.train_images()
train_labels = to_categorical(mnist.train_labels())
valid_images = mnist.test_images()
valid_labels = to_categorical(mnist.test_labels())

def preprocess(imagas):
#Normalize
images - (images / 255) - 8.5
#Flatten
images = images.reshape((-1, 784))
return images

Preprocess the images.
train_images = preprocess(train_images)
valid_images = preprocess(valid_images)

feature_shape = train_images.shape[1]
classes =10

fl_data = FederatedDataSet(train_images,train_labels,valid_images,valid_labels,batch_size=32,num_classes=classes)

def build model({feature_shape,classes):
#Defines the MNIST model
model = Sequential()
model.add(Dense(64, input_shape-feature_shape, activation="relu'))
model.add(Dense(64, activation="relu’))
model.add(Dense(classes, activation="softmax'))

model.compile(optimizer="'adam’, loss="categorical_crossentropy',metrics=["accuracy'],)
return model

In []: |#Create a federated model using the build model function and dataset
fl_model = FederatedModel(build_model,data_loader=fl_data)

OpenFL Python AP

In []: #Create a federated model using the build model function and dataset
fl_model = FederatedModel(build_model,data_loader=fl_data)

The FederatedModel object is a wrapper around your Keras, Tensorflow or PyTorch model that makes it compatible with openfl. It provides built in federated training and
validation functions that we will see used below. Using it's setup function, collaborator models and datasets can be automatically defined for the experiment.

In []: collaborator_models = fl_model.setup(num_collaborators=2)
collaborators = {'one':collaborator_models[@], 'two':collaborator_models[1]}#, 'three’:collaborator_models[2]}

In []: #Original MNIST dataset
print(f'original training data size: {len(train_images)}')
print(f'oOriginal validation data size: {len(valid_images)}\n')

#Collaborator one's data
print(f'Collaborator one\'s training data size: {len(collaborator_models[@].data_loader.X_train)}')
print(f'Collaborator one\'s validation data size: {len(collaborator_models[@].data_loader.X_valid)}\n')

#Collaborator two's data
print(f'Collaborator two\'s training data size: {len(collaborator_models[1].data_loader.X_train)}')
print(f'Collaborator two\'s validation data size: {len(collaborator_models[1].data_loader.X_valid)}\n')

#Collaborator three's data

#print(f'Collaborator three\'s training data size: {len(collaborator_models[2].data_Loader.X_train)}')
#print(f'Collaborator three\'s validation data size: {len(collaborator_models[2].data_Loader.X_valid)}"')

We can see the current plan values by running the fx.get_plan() function

In []: #Get the current values of the plan. Each of these can be overridden
import json
print(json.dumps(fx.get_plan(), indent=4, sort_keys=True))

Now we are ready to run our experiment. If we want to pass in custom plan settings, we can easily do that with the override_config parameter

In []: #Run experiment, return trained FederatedModel
final_f1l_model = fx.run_experiment(collaborators,override_config={'aggregator.settings.rounds_to_train':5})

In []: #Save final model
final_f1l_model.save_native('final_model")

OpenFL Flow

1. Setup PKIs (recommend commercial CA)
2. Define TF/PyTorch/Other model

3. Define data loader

4. Define FL Plan

5. Create OpenFL workspace

6

7

. Distribute OpenFL workspace
. Start OpenkFL task runner

OpenFL fx CLI

Usage: fx workspace create [OPTIONS]
Try 'fx workspace create --help' for help.

Error: Missing option '--template'. Choose from:
keras_cnn_mnist,
tf_2dunet,
tf_cnn_histology,
torch_cnn_mnist.
(fledge_env) ny@b4¢ 731 :~$ fx workspace create --prefix ~/workl --template keras_cnn_mnist

Fully-functional demos as templates:

e Keras CNN for MNIST
* TensorFlow 2D U-Net
* TensorFlow CNN for Histology

PyTorch CNN for MNIST

New workspace directory structure:
workl
cert
L— config
|— signing-ca.conf
|— root-ca.conf
|— server.conf
L— client.conf

save
logs
data
requirements.txt
plan

|
|
|
|
|
|
|
|
|
|
|
| |— defaults
|
|
|
|
|
|
|
|
|
|
|
I

|— collaborator.yaml
|— assigner.yaml

|— data_loader.yaml
}— task_runner.yaml
|— tasks_torch.yaml
|— network.yaml

| tasks_tensorflow.yaml
|— tasks_keras.yaml

L— aggregator.yaml
data.yaml

cols.yaml

L— plan.yaml

code

|— tfmnist_inmemory.py

— mnist_utils.py

|— keras_cnn.py

L— _init__.py

8 directories, 21 files

0K

https://github.com/intel/openfl/blob/develop/tests/gitlab/test_hello_federation.sh

OpenFL fx CLI

task_runner:
defaults: plan/defaults/task_runner.yaml
settings: {}
template: code.keras_cnn.KerasCNN
tasks:
aggregated_model_validation:
function: validate
kwargs:
apply: global
batch_size:
metrics:
- acc
defaults: plan/defaults/tasks_keras.yaml
locally_tuned_model_validation:
function: validate
kwargs:
apply: local
batch_size:
metrics:
- acc
settings: {}
train:
function: train
kwargs:
batch_size:
epochs:
metrics:
- loss

O Starting the Aggregator Service.
Building = Object Module.
Settings = { s I : :
. : [
Override = { 3 }
Building * Object from Module.
Settings * { :
: 0 s 1,
<fledge.component.assigner.random_grouped_assigner.RandomGroupedAssigner object at
Override * { y }

Starting Aggregator gRPC Server

>

OpenFL fx CLI

https://github.com/intel/openfl/blob/develop/tests/gitlab/test_hello_federation

for aggregated_model_validation, round

Collaborator bravo456 i

w

sending task results
for train, round

w

Collaborator alphal23 is sending task results

for train, round

Collaborator bravo456 is sending task results
for locally_tuned_model_validation, round

Collaborator alphal23 i
for locally_tuned_model_validation, round

7

sending task results
train task metrics...
loss:

aggregated_model_validation task metrics...

Saved the best model with score
locally_tuned_model_validation task metrics...
Saving round 3 model...

Starting round

nd

Aggregator

for ¢

Waiting for tasks...

Waiting for tasks...

Waiting for tasks...

Received the following tasks: [

s s 1

Sending metric for task aggregated_model_validat

ion, round number 1: acc

Sending metric for task train, round number 1: 1
oss

Sending metric for task locally_tuned_model_vali
dation, round number 1: acc

Waiting for tasks...
Received the following tasks: [

s s 1

Sending metric for task aggregated_model_validat
ion, round number 2: acc

Sending metric for task train, round number 2: 1
oss
Sending metric for task locally_tuned_model_vali
dation, round number 2: acc
Waiting for tasks...
Collaborator A ..
ion, r

, as updates are applied automatically.

Sending metric for task aggregated_model_valida
tion, round number ©: acc

Sending metric for task train, round number

loss

Sending metric for task locally_tuned_model_val
idation, round number @: acc

Waiting for tasks...

Received the following tasks: [

s s 1

Sending metric for task aggregated_model_valida
tion, round number 1: acc

Sending metric for task train, round number
loss

Sending metric for task locally_tuned_model_val
idation, round number 1: acc

Waiting for tasks...

Waiting for tasks...

Received the following tasks: [

s s 1

Sending metric for task aggregated_model_valida
tion, round number 2: acc

Sending metric for task train, round number
loss

_val

idatic

Collaborator B

Federated Tumor Segmentation (FeTS) Challenge

Center for Biomedical Image Computing & Analytics

1} > Resources > FeTS > FeTS 2021 challenge
(= CBICA

Labs ¥ The Federated Tumor Segmentation (FeTS) challenge

Faculty & Staff ¥

International challenges have become the standard for validation of biomedical image analysis methods. We argue,

T n H H n
though, that the actual performance even of the winning algorithms on “real-world” clinical data often remains [] as k 1 (e e rate ral n I n g

unclear, as the data included in these challenges are usually acquired in very controlled settings at few institutions.

The seemingly obvious solution of just collecting increasingly more data from more institutions in such challenges ° Tas k 2 1] Fe : | e rate | Eva l at i n n
does not scale well due to privacy and ownership hurdles. u O

Portal (IPP)[3 As the first challenge to ever be proposed for federated learning in medicine, the Federated Tumor Segmentation

CUBIC (HPC Cluster)

Image Processing

(FeTS) challenge 2021 intends to address these hurdles, both for the creation and the evaluation of tumor
CaPTk segmentation models. Specifically, the FeTS 2021 challenge uses clinically acquired, multi-institutional MRI scans from
the BraTs 2020 challenge, as well as from various remote independent institutions included in the collaborative
Qi network of a real-world federation (https://www.fets.ai). The FeTS challenge focuses on the construction and
evaluation of a consensus model for the segmentation of intrinsically heterogeneous (in appearance, shape, and

histology) brain tumors, namely gliomas [1]. Compared to the BraTS challenge [2-4], the ultimate goal of FeTS is 1) the S ta rtS I I ay 2 O 2 1

creation of a consensus segmentation model that has gained knowledge from data of multiple institutions without

Seminars

News

pooling their data together (i.e., by retaining the data within each institution), and 2) the evaluation of segmentation
Grants Course models in
such a federated configuration (i.e., in the wild).

https://www.med.upenn.edu/cbica/fets/miccai2021

Quiz Time

