NOTICES AND DISCLAIMERS

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.

No product or component can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete information about performance and benchmark results, visit http://www.intel.com/benchmarks.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/benchmarks.

Intel® Advanced Vector Extensions (Intel® AVX) provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Agenda

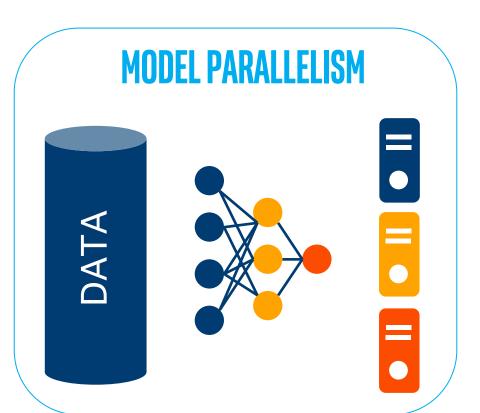
15:45-17:00, Distributed Training and Federated Learning

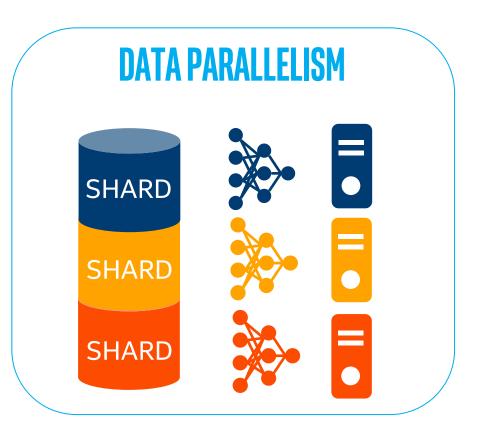
- 15:45 16:15 Distributed Deep Learning Training
- 16:15 16:45 Federated Learning
- **16:45 17:00** Quiz Time

DISTRIBUTED DEEP LEARNING TRAINING

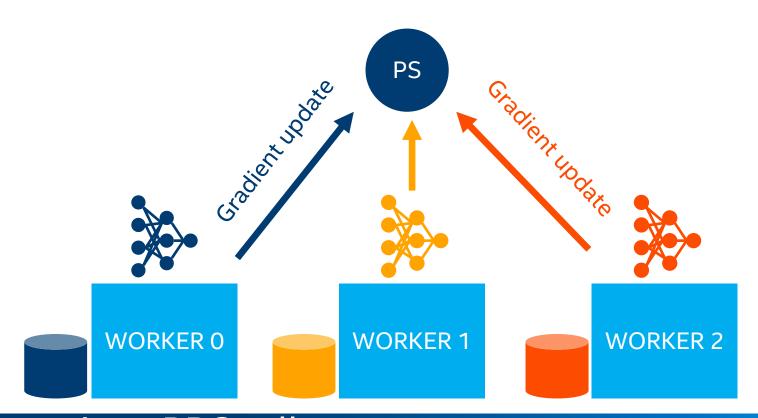
HOROVOD

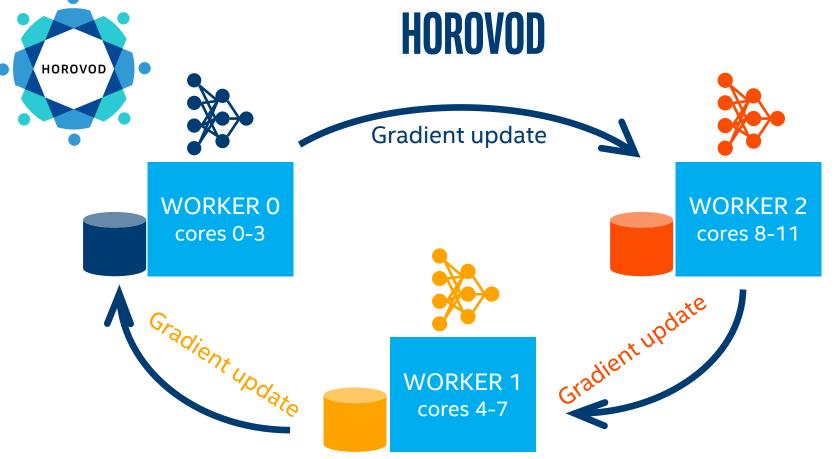
DISTRIBUTED TRAINING





PARAMETER SERVER





https://arxiv.org/abs/1802.05799v3

MESSAGE PASSING INTERFACE (MPI)

```
$ mpirun -H 192.168.1.100,192.168.1.105 hostname aipg-infra-07.intel.com aipg-infra-09.intel.com
```

\$ mpirun –H host1,host2,host3 python hello.py Hello World! Hello World! Hello World!

CHANGES TO TENSORFLOW

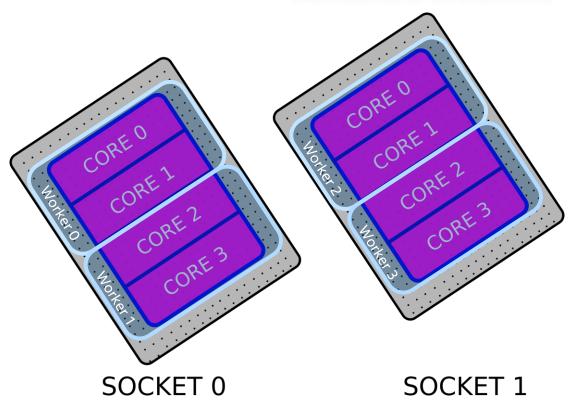
import tensorflow as tf import horovod.tensorflow as hvd

2 hvd.init()

opt = tf.train.AdagradOptimizer(0.01 * hvd.size())
opt = hvd.DistributedOptimizer(opt)

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

SOCKETS & CORES



SOCKET

Receptacle on the motherboard for one physically packaged processor.

CORE

A complete private set of registers, execution units, and queues to execute a program.

MULTIPLE WORKERS PER CPU

- \$ mpirun
- -H hostA,hostB,hostC
- -np 6
- --map-by ppr:1:socket:pe=2
- --oversubscribe
- --report-bindings
 python train_model.py

MULTIPLE WORKERS PER CPU

```
$ mpirun
-H hostA, hostB, hostC
-n 6
-ppn 2
-print-rank-map
-genv I MPI PIN_DOMAIN=socket
-genv OMP NUM THREADS=24
-genv OMP PROC BIND=true
-genv KMP_BLOCKTIME=1
python train model.py
```

MULTIPLE WORKERS PER CPU

```
SOCKET 0
                          SOCKET 1
           [BB/BB/../..][../../..]
R0
    hostA
           [../../..][BB/BB/../..]
R1
    hostA
           [BB/BB/../..][../../..]
R2
    hostB
           [../../..][BB/BB/../..]
R3
    hostB
           [BB/BB/../..][../../..]
R 4
    hostC
           [../../..][BB/BB/../..]
R5
    hostC
```

HOROVODRUN COMMAND

horovodrun -np 4 -H node-4984:2,node-4985:2 --binding-args="--map-by ppr:2:socket:pe=10" --mpi-args="--report-bindings" python train horovod.py

☐ facebookincubator/gloo

About

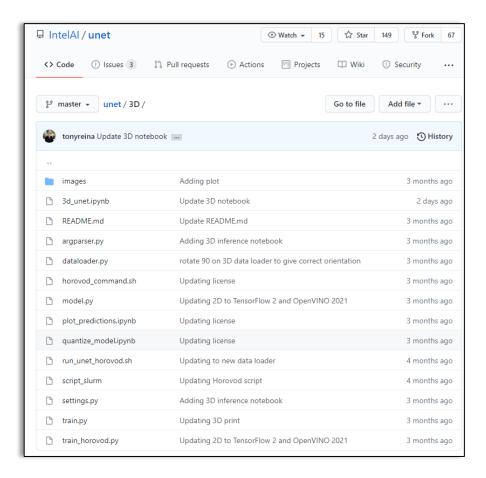
Collective communications library with various primitives for multi-machine training.

Advanced: Run Horovod with Open MPI

In some advanced cases you might want fine-grained control over options passed to Open MPI. To learn how to run Horovod training directly using Open MPI, read Run Horovod with Open MPI.

Run Horovod with Intel(R) MPI

horovodrun automatically converts some parameters to the format supported by Intel(R) MPI mpirun. The set of allowed options includes -np, -H and ssh arguments (-p, -i). Intel(R) MPI mpirun does not support MCA parameters, but you can set some of the options via environment variables. For additional information refer to Intel(R) MPI official documentation.



BKC/BKM FOR HPC AI

WHITE PAPER

Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® Processor-Based HPC Infrastructures

Version:

1.1

Date of Issue: January 2019

Prepared By: Aishwarya Bhandare¹¹, Deepthi Karkada¹¹, Kushal Datta¹¹, Anupama

Kurpad[§], Vamsi Sripathi[¶], Sun Choi[¶], Vikram Saletore[¶]

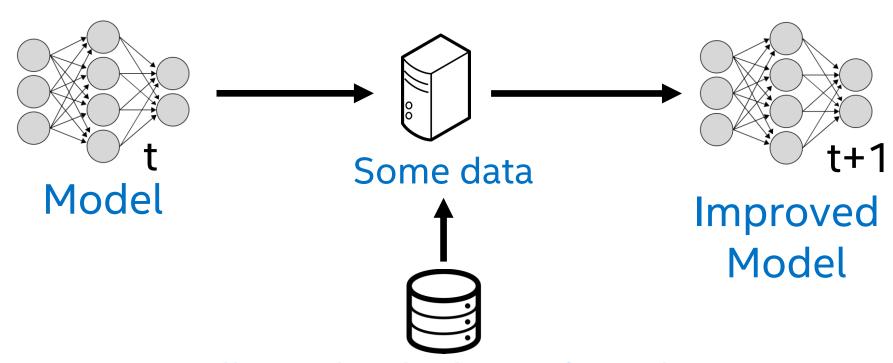
[§]Connectivity Group & [¶]Al Products Group, Data Center Group

Customer Solutions Technical Enabling, Intel Corporation

- Docker
- SLURM
- Singularity
- NFS
- Lustre

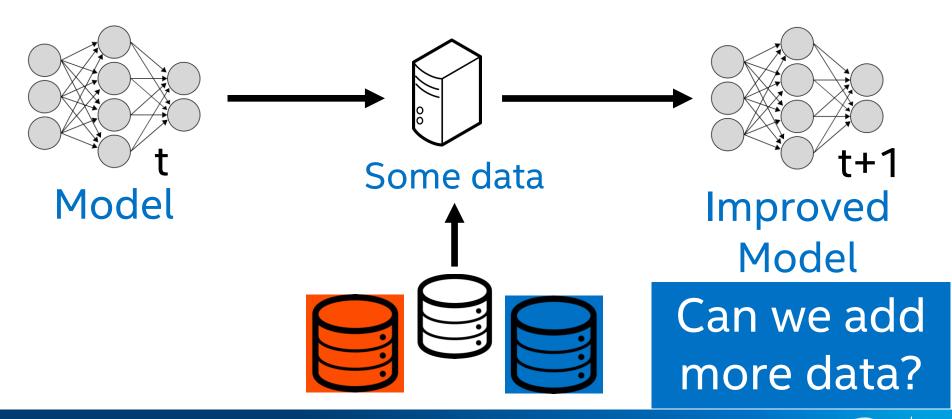
FEDERATED LEARNING

THE DATA SILO PROBLEM



Eventually, we hit the limit of our dataset.

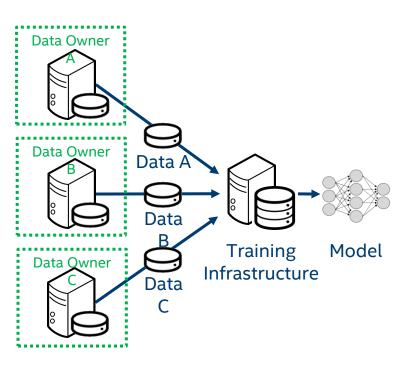
THE DATA SILO PROBLEM



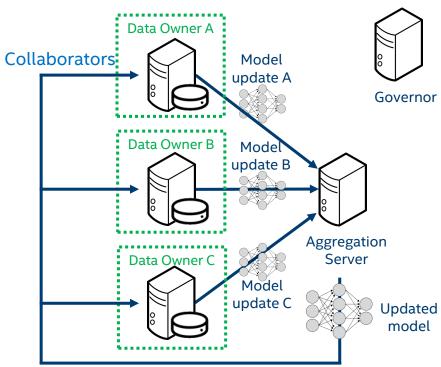
Challenges for Training AI Models?

Centralized Learning vs Federated Learning

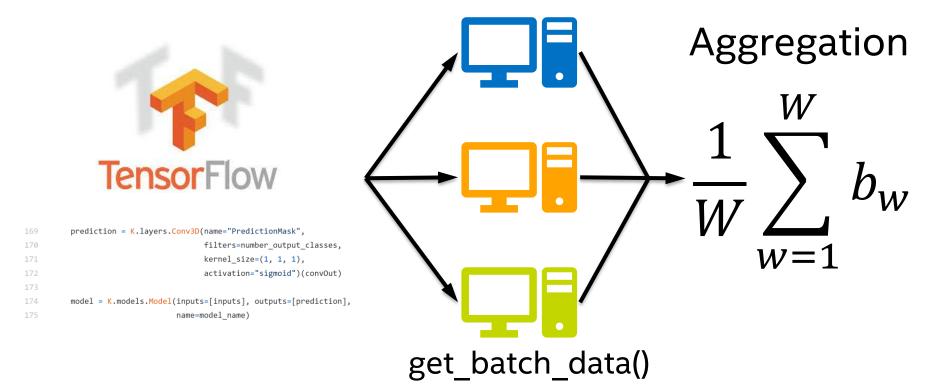
Centralized Learning



Federated Learning



50 Foot View of Federated Learning



scientific reports

Explore our content > Journal information >

nature > scientific reports > articles > article

Article | Open Access | Published: 28 July 2020

Federated learning in medicine: facilitating multiinstitutional collaborations without sharing patient data

Micah J. Sheller, Brandon Edwards, G. Anthony Reina, Jason Martin, Sarthak Pati, Aikaterini Kotrotsou, Mikhail Milchenko, Weilin Xu, Daniel Marcus, Rivka R. Colen & Spyridon Bakas □

Scientific Reports 10, Article number: 12598 (2020) | Cite this article

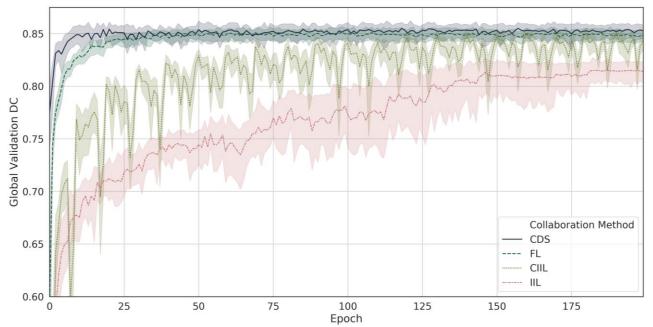
4738 Accesses | 2 Citations | 121 Altmetric | Metrics

Abstract

l_s

Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data

FEDERATING THE U-NET TRAINING [ORIGINAL INSTITUTIONS]*



How much better does each institution do when training on the full data vs. just their own data?

- ~ 17% better on the hold-out BraTS data
- ~ 2.6% better on their own validation data

openfl 1.0.1

pip install openfl 📙

Released: Mar 2, 2021

Federated Learning for the Edge

Navigation

■ Project description

Release history

Download files

Project links

A Homepage

Source Code

Documentation

R Bug Tracker

Statistics

GitHub statistics:

* Stars: 74

Forks: 15

Open issues/PRs: 7

View statistics for this project via Libraries.io ☑, or by using our public dataset on Google BigQuery &

Meta

License: Apache Software License

Project description

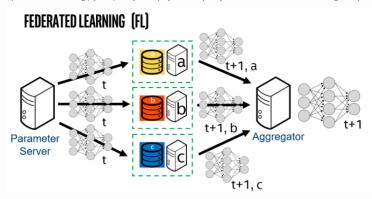
Welcome to Intel® Open Federated Learning

python 3.6 | 3.7 | 3.8 build passing docs passing pypi v1.0.1 # slack @openfl License Apache 2.0

Federated learning is a distributed machine learning approach that enables organizations to collaborate on machine learning projects without sharing sensitive data, such as, patient records, financial data, or classified secrets (Sheller MJ, et al., 2020; Sheller MJ, et al., 2019; Yang Y, et al., 2019; McMahan HB, et al., 2016).

The basic premise behind federated learning is that the model moves to meet the data rather than the data moving to meet the model. Therefore, the minimum data movement needed across the federation is solely the model parameters and their updates.

Open Federated Learning (OpenFL) is a Python 3 project developed by Intel Labs and Intel Internet of Things Group.



github.com/intel/openfl openfl.readthedocs.io/

OpenFL Interfaces Python API

Experimentation, Single Node

Federated Keras MNIST Tutorial

```
In [ ]: #Install dependencies if not already installed
         !pip install tensorflow mnist
In [ ]: import numpy as np
         import mnist
        import tensorflow as tf
         import tensorflow.keras as keras
         from tensorflow.keras import backend as K
         from tensorflow.keras import Sequential
         from tensorflow.keras.layers import Conv2D, Flatten, Dense
         from tensorflow.keras.utils import to categorical
         import openfl.native as fx
         from openfl.federated import FederatedModel,FederatedDataSet
         After importing the required packages, the next step is setting up our openfl workspace. To do this, simply run the fx.init() command as follows:
In [ ]: #Setup default workspace, logging, etc.
         fx.init('keras_cnn_mnist')
         Now we are ready to define our dataset and model to perform federated learning on. The dataset should be composed of a numpy arrayWe start with a simple fully
        connected model that is trained on the MNIST dataset
In [ ]: #Import training and validation images/labels
        train images - mnist.train images()
        train_labels = to_categorical(mnist.train_labels())
         valid_images = mnist.test_images()
        valid_labels = to_categorical(mnist.test_labels())
         def preprocess(images):
            images = (images / 255) - 0.5
            #FLatten
            images = images.reshape((-1, 784))
            return images
         # Preprocess the images.
        train_images = preprocess(train_images)
         valid_images = preprocess(valid_images)
         feature_shape = train_images.shape[1]
         fl data = FederatedDataSet(train images,train labels,valid images,valid labels,batch size=32,num classes=classes)
         def build model(feature shape, classes):
            #Defines the MNIST model
            model = Sequential()
            model.add(Dense(64, input_shape=feature_shape, activation='relu'))
            model.add(Dense(64, activation='relu'))
            model.add(Dense(classes, activation='softmax'))
            model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'],)
In [ ]: #Create a federated model using the build model function and dataset
         fl_model = FederatedModel(build_model,data_loader=fl_data)
```

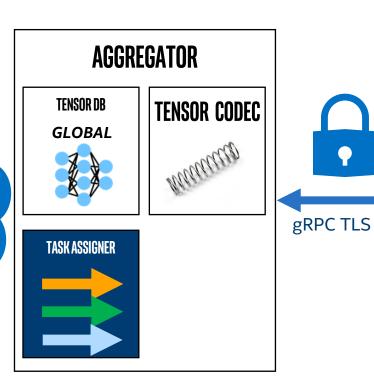
fx CLI

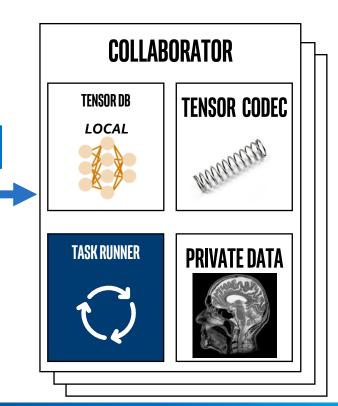
Production, Multi-node

```
CORRECT USAGE
fx [options] [command] [subcommand] [args]
 LOBAL OPTIONS
-l, --log-level TEXT Logging verbosity level.
                      Show this message and exit.
AVAILABLE COMMANDS
                  Manage Jupyter notebooks.
  start
                 Start the Jupyter notebook from the tutorials...
                  Manage Federated Learning Plans.
                 Finalize the Data Science plan.
  initialize
                Initialize Data Science plan.
                 Print the current plan.
                 Remove this plan.
  remove
                 Save the current plan to this plan and...
                 Switch the current plan to this plan.
                  Manage Federated Learning Workspaces.
  certify
                 Create certificate authority for federation.
  create
                 Create the workspace.
                Pack FL.Edge and the workspace as a Docker...
                 Export federated learning workspace
   import
                 Import federated learning workspace
 ollaborator
                 Manage Federated Learning Collaborators.
   certify
                 Certify the collaborator.
   generate-cert-request Generate certificate request for the...
                 Start a collaborator service.
                 Manage Federated Learning Aggregator.
```

50 Foot View of OpenFL Architecture

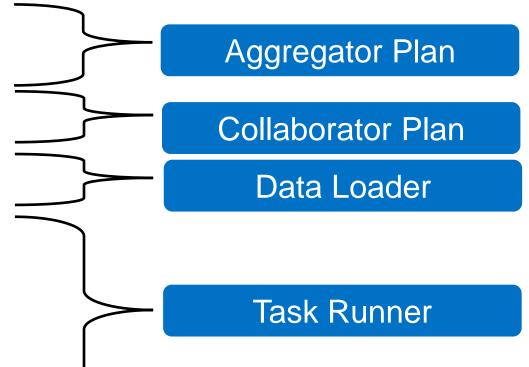
Use the federation for other tasks?





FL Plan

```
defaults : plan/defaults/aggregator.yaml
template : openfl.component.Aggregator
 init_state_path : save/keras_cnn_mnist_init.pbuf
 last state path : save/keras cnn mnist last.pbuf
  rounds to train: 10
defaults : plan/defaults/collaborator.yaml
template : openfl.component.Collaborator
  opt treatment : RESET
defaults : plan/defaults/data loader.vaml
template : code.tfmnist inmemory.TensorFlowMNISTInMemory
  data_group_name : mnist
                    : 256
defaults : plan/defaults/task runner.vaml
template : code.keras cnn.KerasCNN
defaults : plan/defaults/network.yaml
defaults : plan/defaults/assigner.yaml
 task groups :
                : validation only
     percentage : 0.5
        - aggregated_model_validation
        - aggregated_model_validation
        - locally_tuned_model_validation
```



OpenFL Python API

Federated Keras MNIST Tutorial

```
In []: #Install dependencies if not already installed

[]pip install tensorflow mnist

In []: import numpy as np import mnist import tensorflow as tf import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras import backend as K from tensorflow.keras import Sequential from tensorflow.keras.tutls import conv2D, Flatten, Dense from tensorflow.keras.tutls import conv2D, Flatten, Dense from tensorflow.keras.tutls import to_categorical import openfl.native as fx from openfl.native as fx from openfl.federated import FederatedModel.FederatedDataSet
```

After importing the required packages, the next step is setting up our openfl workspace. To do this, simply run the fx.init() command as follows:

```
In [ ]: #Setup default workspace, logging, etc.
fx.init('keras_cnn_mnist')
```

Now we are ready to define our dataset and model to perform federated learning on. The dataset should be composed of a numpy arrayWe start with a simple fully connected model that is trained on the MNIST dataset.

```
In [ ]: #Import training and validation images/labels
        train_images = mnist.train_images()
       train_labels = to_categorical(mnist.train_labels())
       valid images = mnist.test images()
       valid labels = to categorical(mnist.test labels())
        def preprocess(images):
            #Normalize
           images = (images / 255) - 0.5
            images = images.reshape((-1, 784))
           return images
        # Preprocess the images.
       train_images = preprocess(train_images)
       valid images = preprocess(valid images)
       feature_shape = train_images.shape[1]
       classes = 10
       fl data = FederatedDataSet(train images.train labels.valid images.valid labels.batch size=32.num classes=classes)
        def build model(feature shape, classes):
           #Defines the MNIST model
            model = Sequential()
            model.add(Dense(64, input_shape=feature_shape, activation='relu'))
            model.add(Dense(64, activation='relu'))
           model.add(Dense(classes, activation='softmax'))
            model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'],)
            return model
```

```
In [ ]: #Create a federated model using the build model function and dataset
fl_model = FederatedModel(build_model,data_loader=fl_data)
```

OpenFL Python API

```
In []: #Create a federated model using the build model function and dataset
fl_model = FederatedModel(build_model,data_loader=fl_data)
```

The FederatedModel object is a wrapper around your Keras, Tensorflow or PyTorch model that makes it compatible with openfl. It provides built in federated training and validation functions that we will see used below. Using it's setup function, collaborator models and datasets can be automatically defined for the experiment.

```
In []: collaborator_models = fl_model.setup(num_collaborators=2)
    collaborators = {'one':collaborator_models[0],'two':collaborator_models[1]}#, 'three':collaborator_models[2]}

In []: #Original MNIST dataset
    print(f'Original training data size: {len(train_images)}')
    print(f'Original validation data size: {len(valid_images)}\n')

#Collaborator one's data
    print(f'Collaborator one\'s training data size: {len(collaborator_models[0].data_loader.X_train)}')
    print(f'Collaborator one\'s validation data size: {len(collaborator_models[0].data_loader.X_valid)}\n')

#Collaborator two's data
    print(f'Collaborator two\'s training data size: {len(collaborator_models[1].data_loader.X_train)}')
    print(f'Collaborator two\'s validation data size: {len(collaborator_models[2].data_loader.X_train)}')
    #Collaborator three\'s data
    #print(f'Collaborator three\'s training data size: {len(collaborator_models[2].data_loader.X_train)}')
    #print(f'Collaborator three\'s validation data size: {len(collaborator_models[2].data_loader.X_train)}')
```

We can see the current plan values by running the fx.get_plan() function

```
In []: #Get the current values of the plan. Each of these can be overridden
import json
print(json.dumps(fx.get_plan(), indent=4, sort_keys=True))
```

Now we are ready to run our experiment. If we want to pass in custom plan settings, we can easily do that with the override config parameter

```
In []: #Run experiment, return trained FederatedModel
    final_fl_model = fx.run_experiment(collaborators,override_config={'aggregator.settings.rounds_to_train':5})
In []: #Save final model
    final fl model.save native('final model')
```

OpenFL Flow

- 1. Setup PKIs (recommend commercial CA)
- 2. Define TF/PyTorch/Other model
- 3. Define data loader
- 4. Define FL Plan
- 5. Create OpenFL workspace
- 6. Distribute OpenFL workspace
- 7. Start OpenFL task runner

OpenFL fx CLI

Fully-functional demos as templates:

- Keras CNN for MNIST
- TensorFlow 2D U-Net
- TensorFlow CNN for Histology
- PyTorch CNN for MNIST

```
New workspace directory structure:
work1
    cert
    └─ config
            signing-ca.conf
            root-ca.conf
            server.conf
            client.conf
    save
    logs
    data
    requirements.txt
    plan
        defaults
           collaborator.yaml
            assigner.yaml
            data loader.yaml
           task runner.yaml
            tasks torch.yaml
           network.yaml
           tasks_tensorflow.yaml
           tasks_keras.yaml
            aggregator.yaml
        data.yaml
        cols.yaml
        plan.yaml
    code
        tfmnist inmemory.py
        mnist utils.py
        keras cnn.py
        init .py
8 directories, 21 files
 ✓OK
```

OpenFL fx CLI

```
task_runner:
  defaults: plan/defaults/task runner.yaml
  settings: {}
  template: code.keras_cnn.KerasCNN
tasks:
  aggregated model validation:
    function: validate
    kwargs:
      apply: global
      batch_size: 32
      metrics:
      - acc
  defaults: plan/defaults/tasks keras.yaml
  locally_tuned_model_validation:
    function: validate
    kwargs:
      apply: local
      batch_size: 32
      metrics:
      - acc
  settings: {}
  train:
    function: train
    kwargs:
      batch size: 32
      epochs: 1
      metrics:
      - loss
O Starting the Aggregator Service.
                                                                                                                             aggregator.py:28
Building → Object RandomGroupedAssigner from fledge.component Module.
Settings * {'task_groups': [{'name': 'train_and_validate', 'percentage': 1.0, 'tasks': ['aggregated_model_validation', 'train', plan.py:150
'locally tuned model validation']}], 'authorized_cols': ['alpha123', 'bravo456'], 'rounds_to_train': 10},
Override | {'defaults': 'plan/defaults/assigner.yaml'}
Building + Object Aggregator from fledge.component Module.
Settings * { best_state_path': 'save/keras_cnn_mnist_best.pbuf', 'init_state_path': 'save/keras_cnn_mnist_init.pbuf',
'last_state_path': 'save/keras_cnn_mnist_last.pbuf', 'rounds_to_train': 10, 'aggregator_uuid': 'aggregator_plan.yaml_33f2eele',
'federation_uuid': 'plan.yaml_33f2ee1e', 'authorized_cols': ['alpha123', 'bravo456'], 'assigner':
<fledge.component.assigner.random grouped_assigner.RandomGroupedAssigner object at 0x7f8c20d072b0>}
Override | {'defaults': 'plan/defaults/aggregator.yaml'}
Starting Aggregator gRPC Server
```

OpenFL fx CLI

```
for aggregated model validation, round 2
                                                                                                                                    2.0, as updates are applied automatically.
                  Collaborator bravo456 is sending task results
                                                                                    Waiting for tasks...
                                                                                                                                                       Sending metric for task aggregated_model_valida
for train, round 2
                                                                                                                                    tion, round number 0: acc
                  Collaborator alpha123 is sending task results
                                                                  [21:28:18] INFO Waiting for tasks...
                                                                                                                                     [21:28:19] INFO Sending metric for task train, round number 0:
for train, round 2
                                                                                                                                    loss 0.6948366242356688
  21:28:41] INFO Collaborator bravo456 is sending task results
                                                                  [21:28:28] INFO Waiting for tasks...
                                                                                                                                     [21:28:20] INFO Sending metric for task locally_tuned_model_val
for locally_tuned_model_validation, round 2
                                                                                                                                    idation, round number 0: acc 0.9183836579322815
                  Collaborator alpha123 is sending task results
                                                                                    Received the following tasks: ['aggregated model
                                                                                                                                                       Waiting for tasks...
for locally_tuned_model_validation, round 2
                                                                  _validation', 'train', 'locally_tuned_model_validation']
                  train task metrics...
                                                                  [21:28:29] INFO Sending metric for task aggregated_model_validat
                                                                                                                                                       Received the following tasks: ['aggregated mode
                                                                                               0.9204000234603882
                                                                                                                                    1_validation', 'train', 'locally_tuned_model validation']
                                                                  ion, round number 1: acc
                  loss: 0.1192
                                                                                  Sending metric for task train, round number 1: 1
                                                                                                                                     [21:28:21] INFO Sending metric for task aggregated model valida
                                                                                                                                    tion, round number 1: acc
                  aggregated_model_validation task metrics...
                                                                 [21:28:34] INFO Sending metric for task locally_tuned_model_vali
                                                                                                                                     [21:28:25] INFO Sending metric for task train, round number 1:
                                                                  dation, round number 1: acc 0.9430000185966492
                                                                                                                                    loss 0.24818640858776397
          aggregator.py:502
                  acc: 0.9600
                                                                  [21:28:35] INFO Waiting for tasks...
                                                                                                                                     [21:28:26] INFO Sending metric for task locally_tuned_model_val
                                                                                                                                    idation, round number 1: acc 0.9519904255867004
                  Saved the best model with score 0.959996
                                                                                    Received the following tasks: ['aggregated model
                                                                                                                                                       Waiting for tasks...
                                                                  _validation', 'train', 'locally_tuned_model_validation']
                  locally_tuned_model_validation task metrics...
                                                                 [21:28:36] INFO Sending metric for task aggregated model validat
                                                                                                                                                       Waiting for tasks...
                                                                 ion, round number 2: acc
          aggregator.py:502
                 acc: 0.9695
                                                                                    Sending metric for task train, round number 2: 1
                                                                                                                                                       Received the following tasks: ['aggregated mode
                                                                 oss 0.0793122284034888
                                                                                                                                    1_validation', 'train', 'locally_tuned_model_validation']
                  Saving round 3 model...
                                                                  [21:28:41] INFO Sending metric for task locally_tuned_model_vali
                                                                                                                                                       Sending metric for task aggregated model valida
                                                                 dation, round number 2: acc 0.9652000069618225
                                                                                                                                                                   0.9587917327880859
                                                                                                                                    tion, round number 2: acc
                  Starting round 3...
                                                                                    Waiting for tasks...
                                                                                                                                     [21:28:40] INFO Sending metric for task train, round number 2:
                                                                                                                                     idatio
nd 3
                                                                                Collaborator A
                                                                                                                                                   Collaborator B
                 Aggregator
                                                                                                                             lidat
                                                                 ion, r
```

Federated Tumor Segmentation (FeTS) Challenge

- Task 1 ("Federated Training")
- Task 2 ("Federated Evaluation")

Starts May 2021

https://www.med.upenn.edu/cbica/fets/miccai2021

Quiz Time