Introduction to Neural Network Compression Techniques

LRZ Al Workshop

Dr. Nikolai Solmsdorf – Al Software Solutions Engineer 13.10.2022

Notices and Disclaimers

- Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex
- Performance results are based on testing as of dates shown in configurations and may not reflect all
 publicly available updates. See backup for configuration details. No product or component can be absolutely secure.
- You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.
- The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to the Zero-Clause BSD open source license (OBSD), https://opensource.org/licenses/OBSD. You may create software implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.
- No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with the sole exception that code included in this document is licensed subject to the Zero-Clause BSD open source license (OBSD), http://opensource.org/licenses/OBSD.
- No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
- Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial" names and not intended to function as trademarks.
- © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

LRZ AI Workshop intel.

Introduction

Neural Network Compression Techniques

Intel® Neural Compressor

Introduction

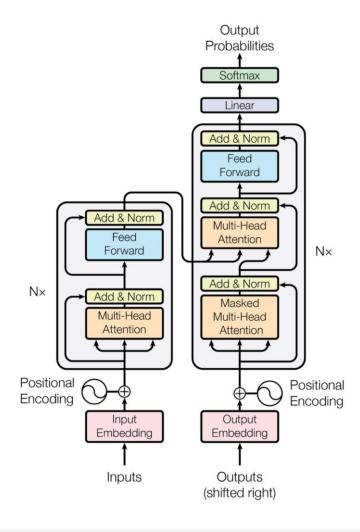
Introduction

Need for neural network compression techniques?

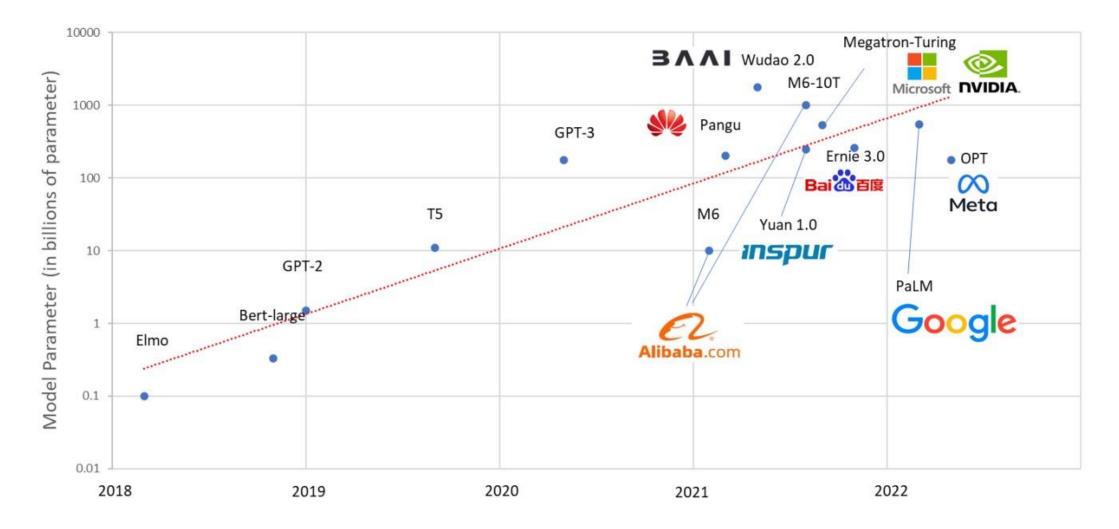
Showcase: Transformer architectures!

Introduction – Transformers

- Transformer architecture originates from machine translation tasks (NLP)
- Core-component: Multi-head (self-) attention
- Parallelization
- Most commonly known: BERT
- Huge increase of model parameters over the years



Introduction – Transformers



Introduction – Transformers (GPT-3)

- Large Language Model (LLM) by OpenAI (backed by Microsoft)
- 175B parameters (cf. BERT base: 110M)
- 45TB of training data
- Cf. GPT-NeoX:
 - Trained on 96 [!] Nvidia A100s
 - For 3 months
- Estimated cost for training: 10—20 million dollars

intel.

Introduction – Transformers

- Dominate NLP (via Hugging Face)
- BERT models (still) prevail
- Optimization opportunities:
 - Training/Finetuning
 - Inference
 - On a variety of hardware (CPU & GPU)
 - Aimed at speed-ups, memory reductions, sustainability.

Neural Network Compression Techniques

Neural Network Compression – Overview

Precision

Quantization

Pruning

Knowledge Distillation

Mixed Precision

Neural Network Compression Techniques

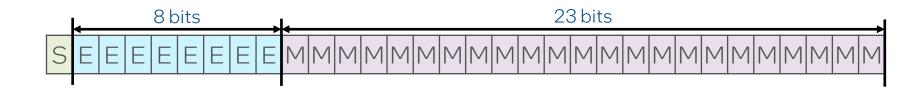
Precision

Data precision:

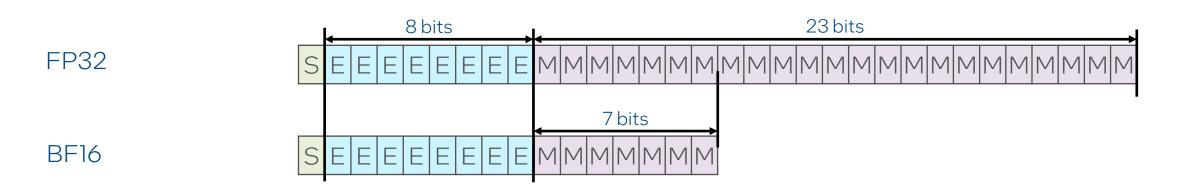
Number of bits used to store numerical values in memory

Commonly found types of precision in Deep Learning:

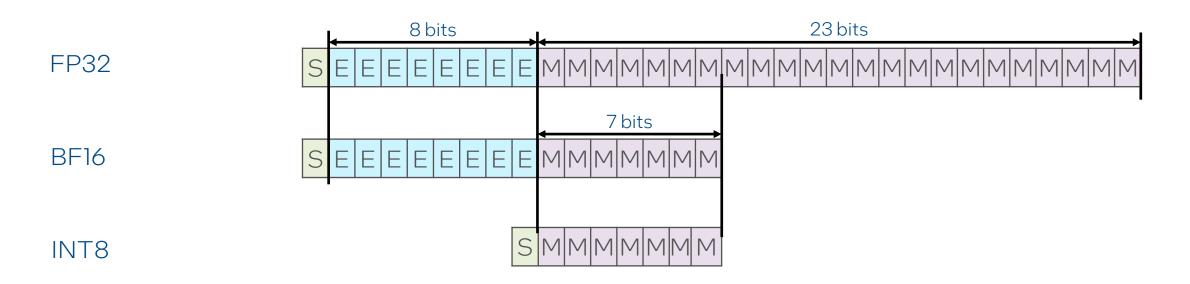
FP32



■ FP32: The standard type for all neural network computations



- FP32: The standard type for all neural network computations
- BF16: Efficient replacement for FP32 in training and inference



- FP32: The standard type for all neural network computations
- BF16: Efficient replacement for FP32 in training and inference
- INT8: Significant speed-up in inference with small loss in accuracy

Lower Precision – Summary

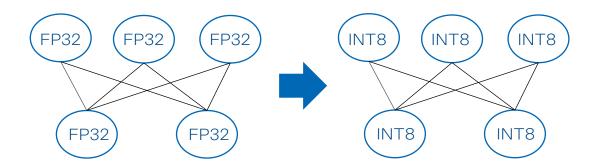
intel

Neural Network Compression Techniques

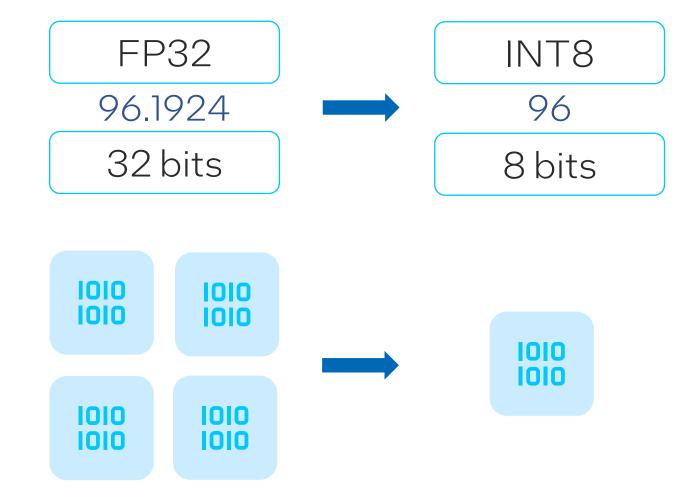
Quantization

Quantization

- Systematic reduction of the precision of all or several layers within the model.
- Effectively, reduces the model size.
- Allows for faster inference.



Quantization



Quantization – Techniques (PTQ)

Post-Training Static Quantization (PTQ static):

- Performs quantization on already trained models.
- It requires an additional pass over a dataset to work, only activations do calibration.

Post-Training Dynamic Quantization (PTQ dynamic):

- Multiplies input values by the scale factor, then rounds the result to the nearest.
- It determines the scale factor for activations dynamically based on the data range observed at runtime.
- Weights are quantized ahead of time, but the activations are dynamically quantized during inference.

intel.

Quantization – Techniques (QAT)

- Quantization-Aware Training (QAT): Simulates low-precision inference-time computation in the forward pass of the training process.
 - All weights and activations are "fake quantized" during both the training forward and backward passes
 - FP32 values are rounded to mimic INT8 values, but all computations are still done with floating point numbers.
 - Weight are trained while being "aware" of the model will be quantized in the end.
 - Leads to higher accuracy than previous 2 quantization techniques but may take more time to deployment.

LRZ AI Workshop intel. 2

Quantization – Summary

Systematic reduction of the model precision

Common procedure: FP32 => INT8

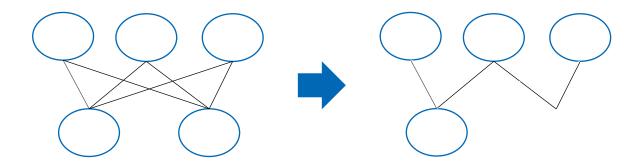
Common techniques: PTQ (static, dynamic) & QAT

Faster inference & possible loss in accuracy

Neural Network Compression Techniques Pruning

Pruning

 Neural Network Pruning: Reduces the size of a network by removing superfluous parts to achieve compact architectures with a minimal drop in accuracy.



Pruning – Techniques

Unstructured Pruning

- Finding and removing the least salient connections in the model where the nonzero patterns are irregular and could be anywhere in the matrix.
- Superfluous weight values are reduced to zero.
- Network architecture is unchanged, but induces sparsity in the network.

Structured Pruning

- Finding parameters in groups, deleting entire blocks, filters, or channels according to some pruning criteria.
- Possibly, reduces width of layers and network.

Pruning – Techniques

Pruning Type	Pruning Granularity	Pruning Algorithm
Unstructured Pruning	Element-wise	Magnitude
		Pattern Lock
Structured Pruning	Filter/Channel-wise	Gradient Sensitivity
	Block-wise	Group Lasso
	Element-wise	Pattern Lock

Pruning – Summary

Remove superfluous parts in NN

Unstructured Pruning

Structured Pruning

Faster inference & possible loss in accuracy

Neural Network Compression Techniques

Knowledge Distillation

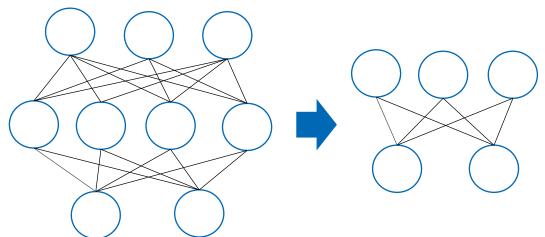
Knowledge Distillation

 A model compression method in which a small model is trained to mimic a pre-trained, larger model.

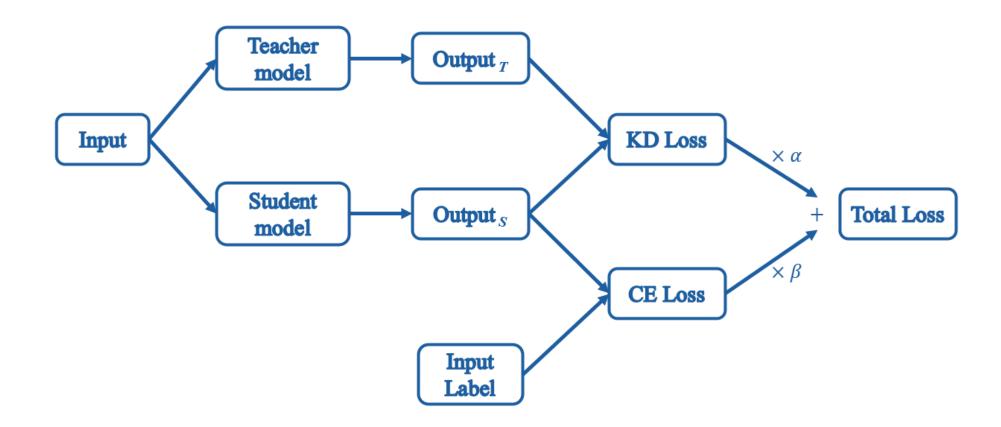
 The training setting is sometimes referred to as "teacherstudent".

Transfers knowledge from the teacher to the student without

loss of validity.



Knowledge Distillation



Knowledge Distillation

Student model:

- Shallow version of the teacher with fewer layers and fewer neurons per layer.
- Quantized version of the teacher.
- Pruned version of the teacher.
- Smaller, optimized network through neural architecture search (NAS).

E.g., DistilBERT:

- 40% smaller than the teacher model, i.e., BERT base.
- 97% of performance retained in GLUE benchmark.
- 60% faster at inference.

LRZ AI Workshop intel. 3

Knowledge Distillation – Summary

Student NN mimics teacher NN

Student: Shallower version of teacher Knowledge transfer through combined loss

Faster finetuning & inference

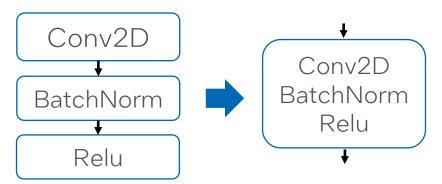
intel

Neural Network Compression Techniques

Graph Optimization

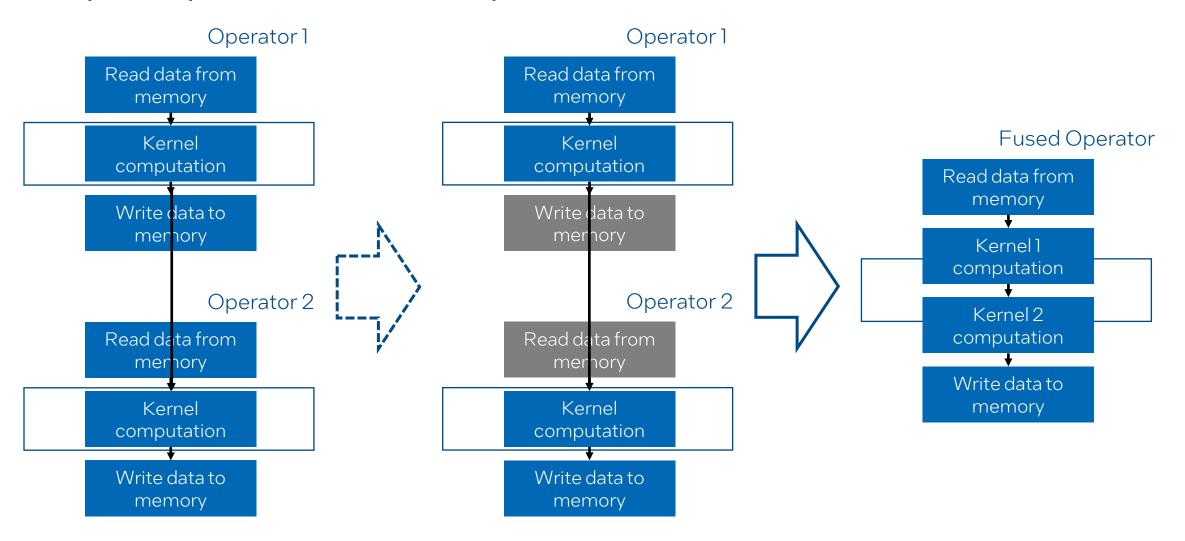
Graph Optimization

- Optimizes for inference of the model.
- Simplifies and fuses certain layers together.
 - Reduces complexity of the model.
- Optimizes graph (e.g., operators) and runtime (e.g., memory management).



LRZ AI Workshop intel. 3

Graph Optimization – Operator Fusion



Graph Optimization – FP32 & BF16 Fusion Patterns

- Conv2D + ReLU
- Conv2D + SUM
- Conv2D + SUM + ReLU
- Conv2D + Sigmoid
- Conv2D + Sigmoid + MUL
- Conv2D + HardTanh
- Conv2D + SiLU
- Conv2D + ELU
- Conv3D + ReLU

- Conv3D + SUM
- Conv3D + SUM + ReLU
- Conv3D + SiLU
- Linear + ReLU
- Linear + GELU
- Add + LayerNorm
- Div + Add + Softmax
- Linear + Linear + Linear
- View + Transpose + Contiguous + View

Graph Optimization – INT8 Fusion Patterns

- INT8 IN -> FP32 OUT
 - dequant -> conv
 - dequant -> linear
 - dequant -> conv -> relu
 - dequant -> conv -> sum
 - dequant -> conv -> sum -> relu
 - dequant -> linear -> relu
 - dequant -> linear -> gelu
 - dequant -> linear -> sigmoid
 - dequant -> linear -> sum
 - dequant -> bmm
 - dequant -> bmm -> div

■ INT8 IN -> INT8 OUT

- dequant -> conv -> quant
- dequant -> linear -> quant
- dequant -> conv -> relu -> quant
- dequant -> conv -> sum -> dequant
- dequant -> conv -> sum -> relu -> quant
- dequant -> linear -> relu -> quant
- dequant -> linear -> gelu -> quant
- dequant -> linear -> sigmoid -> quant
- dequant -> linear -> sum -> quant
- dequant -> bmm -> quant
- dequant -> bmm -> div -> quant
- dequant -> max_pool2d -> quant

Graph Optimization – Summary

Neural network as DAG

Operator& memory optimization

E.g., operator fusion

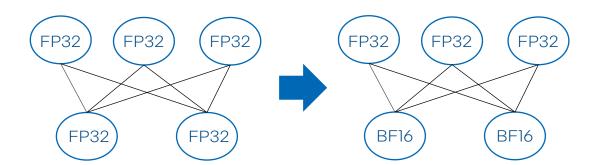
Faster inference

Neural Network Compression Techniques

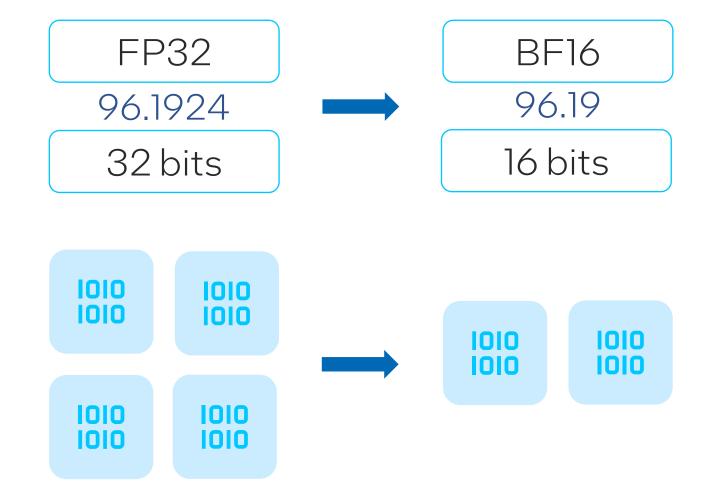
Mixed Precision

Mixed Precision

- Combination of different numerical formats in one computational workload.
- Requires less memory.
- Allows for faster training and inference.



Mixed Precision



intel

42

Auto Mixed Precision (AMP)

3 Categories of operators

Lower precision

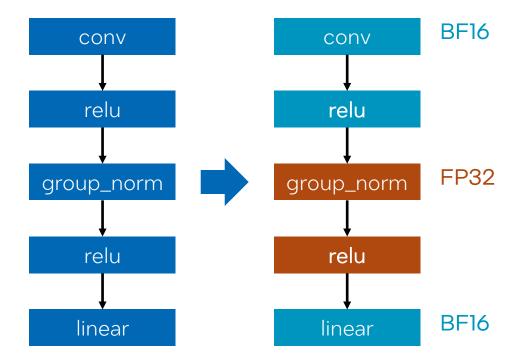
- Computation bound operators that could get performance boost with BF16.
- E.g.: conv, linear

Fallthrough

- Operators that runs with both FP32 and BF16 but might not get performance boost with BF16.
- E.g.: relu, max_pool2d

• FP32

- Operators that are not enabled with BF16 support yet. Inputs of them are casted into FP32 before execution.
- E.g.: max_pool3d, group_norm



Mixed Precision – Summary

Combination of precision types

Common: FP32 & BF16

E.g., AMP

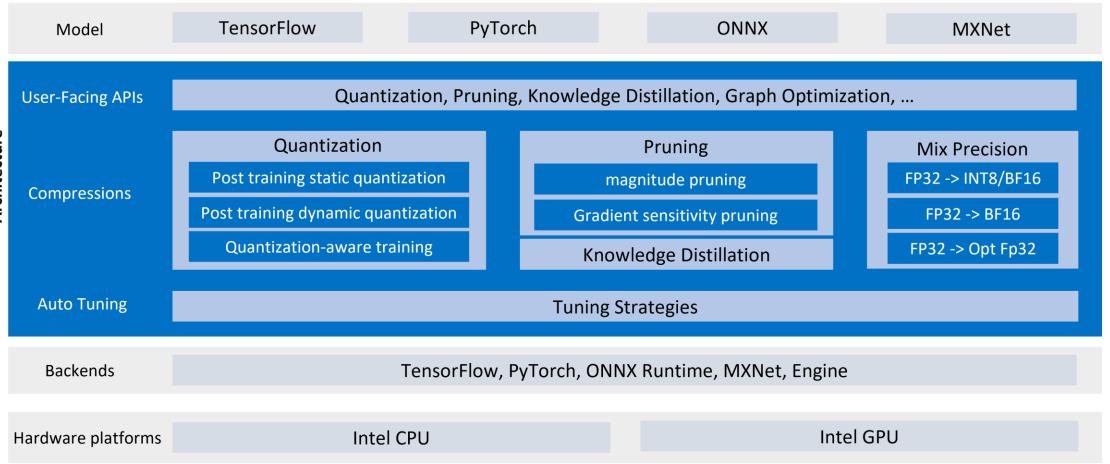
Faster training & inference

Intel Neural Compressor (INC)

INC: Intel Neural Compressor

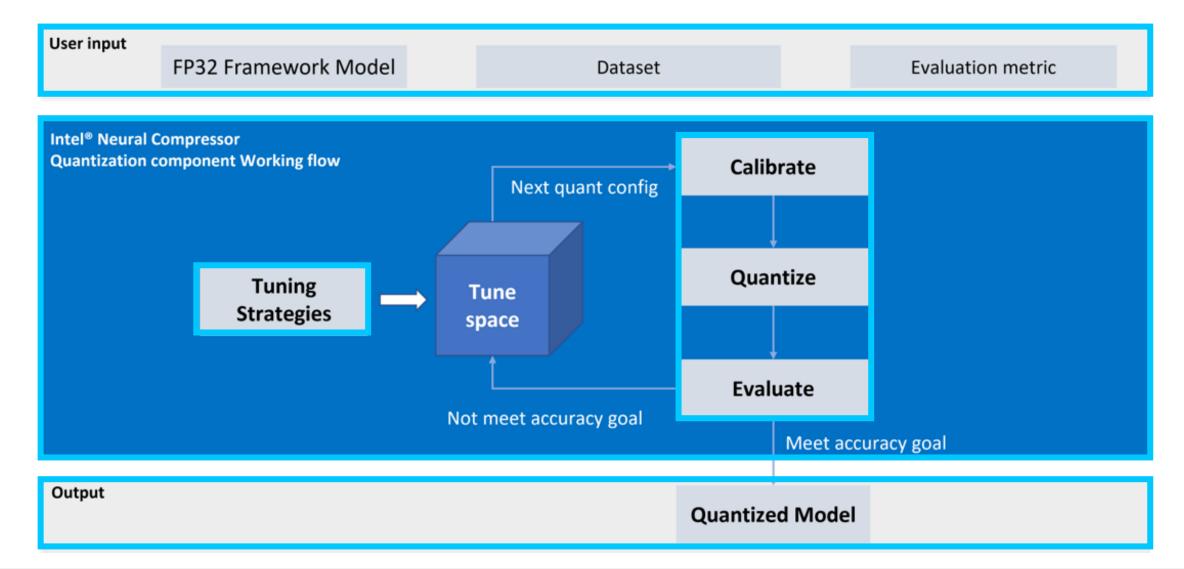
The Intel Neural Compressor, is an open-source Python library, which delivers unified interfaces across multiple deep learning frameworks for popular network optimization technologies.

It supports quantization, mixed precision, pruning, knowledge distillation, and graph optimizations, and uses accelerations by Intel Deep Learning Boost or Intel Advanced Matrix Extension in SPR.



LRZ AI Workshop intel。 4

INC: Workflow



LRZ AI Workshop intel. 4

Hugging Face

- Hugging Face is an NLP-focused startup, which developed the popular Transformers library that exposes state-of-art transformer architectures to end-users.
- 2021 they released Optimum, a toolkit to compress
 Transformers, which also builds upon Intel Neural Compressor.

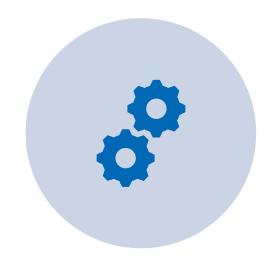
```
from optimum.intel.neural_compressor.quantization import IncQuantizerForSequenceClassification

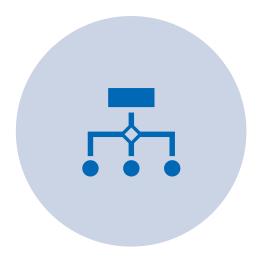
# Create quantizer from config
quantizer = IncQuantizerForSequenceClassification.from_config(
    "echarlaix/bert-base-dynamic-quant-test",
    config_name="quantization.yml",
    eval_func=eval_func,
)

# Apply dynamic quantization
model = quantizer.fit_dynamic()
```

LRZ AI Workshop intel 4

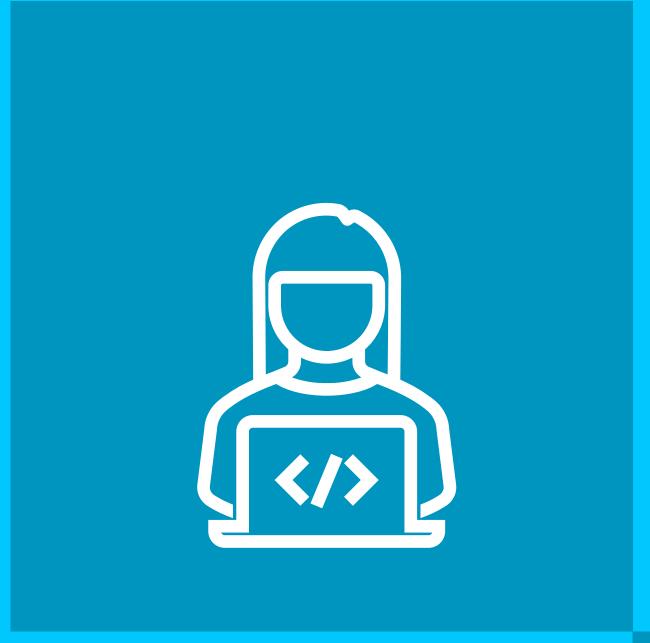
INC: Intel Neural Compressor





COVERING CV, RECOMMENDER, NLP, ETC.

Demo



Thank you for your attention!

Questions?

#