

2

Leibniz Supercomputing Centre
Software Ecosystem at LRZ | 14.10.2022 | Nisarg Patel

Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

• Introducing compute resources and software ecosystem on it.
• Understating the complexity in providing a fully-featured software – “dependency-hell”.
• LRZ software stack overview - list of modules available for users
• Using Spack on top of LRZ provided software ecosystem

• Chaining & User Spack
• Spack environments

• User Spack internals and in-dept view

3

Motivation

Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Available compute resources at LRZ

4Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

SuperMUC-NG

Quantum
Learning
Machine CoolMUC-3

CoolMUC-2

Teramem

LRZ AI
Systems

LRZ Compute
Cloud

GPU Cloud

LRZ RVS
system BEAST

systems

LRZ Managed
Housing
systems

Software ecosystem on compute resources at LRZ

5Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

SuperMUC-NG

CoolMUC-3

CoolMUC-2

Teramem

LRZ RVS
system BEAST

systems

LRZ Managed
Housing
systems

Getting user application ready for HPC

6Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Do your own stuff;

User is responsible for;
copy, configure, build, Install

compilers
middleware

dependencies
license setups

environment set ups

+ user specific applications

Use LRZ software stack;

provided via modules

compilers
middleware

dependencies
license setups

environment set ups

+ user specific applications

HPC systems at LRZ

Software ecosystem/stack on compute resources

7Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Open source & Commercial Applications
(CFD, Astro, Bio, Geo, QCD)

Performance libraries, debug tools,
graphics applications, etc.

Parallel tools (MPI, OpenMP,
OpenMPI, IO libs)

Compilers (GCC,
Intel, NVHPC, NAG)

System config &
envs

Software stack on compute resources

8Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Open source & Commercial
Applications (CFD, Astro, Bio, Geo,

QCD)

Performance libraries, debug
tools, graphics applications,

etc.

Parallel tools (MPI,
OpenMP, OpenMPI, IO

libs)

Compilers
(GCC, Intel,
nvhpc, NAG)

System config &
envs

• In total about ~400 modules on each of these machines,
• SuperMUC-NG
• CoolMUC-2
• CoolMUC-3

• Libraries and applications are build for,
• Specific architectures

• Skylake
• Haswell
• KNL

• General build
• x86_64

• A trimmed software stack on,
• Housing systems
• BEAST systems
• RVS system

• Baring most commercial applications, about >90% of all
software/libraries are provided with the help of Spack.

• A high-level application may just be the „tip of an iceberg“ when considering a feature-rich
configuration of the software with all it‘s dependencies.

• Feature-rich CFD-Package OpenFOAM incl. vtk & paraview (with 140 dependencies) looks like,

9

The dependency-hell

Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

What is an Environmental Module?

10Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

• Modules provide a flexible way to configure and
access various applications, compilers, tools and
libraries dynamically by managing the shell
environment

• In other words modules allow for the dynamic
modification of environment variables such as;
• library paths
• binary paths
• license server settings
• application specific configurations

local PC :~> ssh lxlogin1.lrz.de

cm2login1:~> module list

1) admin/1.0 2) tempdir/1.0 3) lrz/1.0 4) spack/22.2.1
5) intel-oneapi-compilers/2021.4.0 6) intel-mkl/2020 7) intel-mpi/2019-intel

cm2login1:~> module show intel-oneapi-compilers

conflict intel-oneapi-compilers
conflict intel pgi nag intel-parallel-studio
prepend-path LD_LIBRARY_PATH /lrz/sys/spack/release/22.2.1/opt/…
prepend-path PATH /lrz/sys/spack/release/22.2.1/opt/…
setenv CC icx
setenv CXX icpx
setenv CPP {icx -E}
setenv FC ifx
setenv FORT_BUFFERED true
setenv FORT_BLOCKSIZE c
module-whatis compilers:fortran/c/c++/dpc++:icx:icpx:ifx:ifort:icc

cm2login1:~> module avail gcc

gcc/8.5.0 gcc/9.4.0 gcc/10.3.0 gcc/11.2.0

cm2login1:~> module load gcc

11Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Screenshot of modules in the software stack

12

Providing software with Spack at LRZ

Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

• In the past at LRZ …

• Software stack on LRZ HPC-systems used to be
provided via the module system in a non-
orchestrated way with hand-written TCL-files to
make installations available:
applications/libraries/tools/compilers

• Limitations:
• Non-transparent or oblique conflicts and/or

dependencies of packages
• Non-transparent package-configs and build-variants
• Builds often not reproducible (documentation issue)

• Since 2018 at LRZ …

• Most software (barring a few commercial software)
we provide are installed using Spack.

• Advantages:
• Spack Builds are self-documenting

• Package-builds are typically reproducible
• Spack-compiler wrappers inject compiler-flags for the

target-architecture -> optimized software stack
• Installation of many package-variants do not disturb

each other -> many packages may peacefully coexist
• Installation (fetch/configure/build/install/module-create)

of the software is automized

Spack is one of many package-managers

• Functional Cross-Platform Package Managers:
e.g Nix (NixOs), Gnu Guix (Gnu Guix Linux) … use hashes in install-dirs

• Build-from-source Package Managers
e.g. HomeBrew/LinuxBrew

• Package Managers for specific scripting languages
e.g. Pip (Python), NPM (Javascript)

• Easy Build:
installation framework for managing scientific software on HPC-systems

• Conda:
popular binary package managers for Python and R (but also for other rpm–like
packaging in user-space). Easy to use.
In general no architecture optimized binaries, not targeted at HPC

Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel 13

Flow chart to get my application ready for HPC

14Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Do your own stuff

I am happy, its a piece of cake

I am using available modules but
Its just not sufficient

How can I build further on top of
available software / modules?

use user_spack

Use LRZ provided software via modules

use spack chaining

How do I get
my application

ready for
HPC?

Someone from LRZ
installs software

either manually or
uses Spack

package manager

hmm; if LRZ is using Spack, can I use Spack to
extend the existing software ecosystem to build

my application?

15Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

If you want to use Spack,
you might want to know about it

• Spack automates the fetch, configure and
installation of scientific software.

• It‘s a package manager and not build tool, like
cmake / Autotools.

• Spack works out of the box. Only few
prerequisites from system side, like basic
python, git, make, c/c++ compiler, etc.

• Simply clone Spack to get going.

16Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

What is Spack? In a nutshell

• Spack can install many different variants of the
same package, to name a few:

• package-versions
• different compilers
• different MPI-implementations
• different build options

• Most important terminology using Spack is
“spec”

• Spec is what comes after “spack install” command.
• Specs refer to a particular build configuration of a package.
• “Specs” are more than package name. It can contain the compiler,

compiler version, architecture, compile options, and dependency
options for a build.

• Installation locations are separated via unique
hashes

• installations may peacefully coexist (dynamic linking with RPATH)
• The installation location of any package will also

contain,
• dump (in form of text files) of environment during installation,

output from installation, configure arguments, and concretized
spack-specs

17Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

What is Spack? In a nutshell

• Install a package

Ø spack install hdf5

• Install a particular version by appending @

Ø spack install hdf5@1.12.1

• Specify a compiler (and its version), with %

Ø spack install hdf5%gcc@11.2.0

• Add special boolean compile-time options with +

Ø spack install hdf5@1.12.1%gcc@11.2.0 +fortran +hl

• Add compiler flags using the conventional names

Ø spack install hdf5%gcc@11.2.0 +cxx cppflags="-O3 -floop-block"

• Add micro-architecture with target (for cross compiling)

Ø $ spack install hdf5@1.12.1%gcc target=skylake_avx512

18Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Finding version and variants of a package

• Spack will fetch all the information from a
“package file” of a package.

Ø Spack info <package name>

19Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Concretization: dependency tree of a package

• Spack will fetch all the information from a
“package file” of a package.

Ø Spack info <package name>

• Listing a dependency graph before you go ahead
with an installation

Ø Spack spec –INtL <package name>

Ø Spack spec gives you full concretized map of the
package

20Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Useful Spack commands

https://spack.readthedocs.io/en/latest/index.html

21Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

• Spack in User space – “user_spack” module

• Chaining existing Installation into your own Spack
Environment

• How do I activate user_spack?

• module load user_spack

• Why do I use it?
• making use of already installed packages via chaining of

upstream-location (lrzs/sys/spack/x/y)
• avoids recompiling low level packages in many situations
• has working defaults configurated for some essential

dependencies (e.g. MPI)

• What does loading “user_spack” module do
actually?

• loads a setup script that adds the spack command to your
shell.

• spack version matches the version the default software
stack has been built with

• LRZ specific configurations are preconfigured for you

22Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

• Installing software with user_spack

• HDF5 dependency tree is shown in the image.

• The library itself is not yet installed (-).

• But all of its dependencies are already available
via the upstream LRZ installation ([^]).

• A package that you have installed locally in your
home directory with Spack is marked by [+].

23Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

• Installing your software with user_spack

• Dependencies are chained from the LRZ
installation

• see /dss/…/lrz/sys/spack/… paths

• Spack checks if the source tar ball is available in
the LRZ cache

• If not present, tar files can be download from
external site

• installation location of the library
in $HOME/spack/opt/...

24Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Generating Modules for your software

• We have configured Spack such that modules will only be
generated for explicitly installed packages.

• Modules are installed in $HOME/spack/modules/$LRZ_INSTRSET/
<architecture>/<package>/<version>

• The path to the modules is added to $MODULEPATH when you
load the user_spack module, but only if it already exists. You
might want to reload user_spack.

• If the does not exist,
• > module use <path to local modules>

• To check if the path exist in the list of module paths by,
• > module use

25Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Configuring your Spack Instance

• LRZ provides a configuration that is very similar to the one the software stack was built with.

• You may want to change some or all of these settings to serve your needs, e.g. for the package
selection, generation of modules, etc.

• Your individual configuration files are stored in the directory ~/.spack/.

• > spack config edit repos
• > spack config edit config
• > spack config edit modules

• User config files take precedence over system provided config file, that is they are loaded after the
system config files and overwrite their settings.

26Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Example: Generating modules for upstream packages

• For packages that have been implicitly installed in the upstream spack (LRZ installed) stack no modules are
generated by default.

• You can configure your `user_spack` such that you generate modules in your $HOME directory.

• You may want to change some or all of these settings to serve your needs, e.g. for the package selection, generation
of modules, etc.

Ø spack config edit modules
Ø cat ~/.spack/modules.yaml

• Now modules are generated for all installed modules and each newly created module gets a hash suffix of length 7 to
avoid naming conflicts.

• Modules are generated with

Ø spack module tcl refresh --upstream-modules

modules:
tcl:

blacklist_implicits: False
hash_length: 7

27Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Configuring your Spack Instance

• Spack package repositories

• Spack supports external package repositories
• Separate directories of package files

• Many reasons for doing this,
• You want to write a package file for an in-house code

that you may not want to release publicly.
• Overwrite default package files with site specific versions

or restrictions

• One could use “spack repo create” command,
Ø spack repo create /path/to/my_repo
Ø spack repo add my_repo
Ø spack repo list

• This will show 2 package repositories.
• my_repo /path/to/my_repo builtin
• spack/var/spack/repos/builtin

• Adding compilers

• Spack searches for compilers on your machine
automatically the first time it is run. It does this
by inspecting your $PATH

• One could use “spack compiler add” command,
Ø spack compiler add /path/to/my_compiler
Ø spack compiler list

• For example the output of spack compiler list could
look like,

==> Available compilers

-- gcc sles15-x86_64 --
gcc@8.4.0 gcc@7.5.0

-- intel sles15-x86_64 --
intel@19.0.5.281

28Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Chaining Spack Installations

• You can point your Spack installation to another
installation to use any packages that are
installed there.

• To register the other Spack instance, you can
add it as an entry to upstreams.yaml

upstreams:
spack-instance-1:

install_tree: /path/to/other/spack/opt/spack
spack-instance-2:

install_tree: /path/to/another/spack/opt/spack

29Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Spack Environments

• A spack environment is used to group together a set of specs for the
purpose of building, rebuilding and deploying in a coherent fashion.

• Lets say you want to create an spack environment for your group / team /
project.

Ø spack env create XYZ_env

• Spack then creates the directory var/spack/environments/ XYZ_env
• Within this directory, a file spack.yaml and the hidden

directory .spack-env will exists
• Spack stores metadata in the .spack-env directory. User interaction

will occur through the spack.yaml
• In short, spack.yaml describes project requirements
• When the environment is concretized, Spack will create a

file spack.lock. This file describes exactly what
versions/configurations were installed, allows them to be reproduced.

• You can give this file to any one in the project and he would get the
exact same customized sets of packages installed, without any
differences. A very robust reproducible software environment!

42Software Ecosystem at LRZ | 14.10.2022 | Gerald Matthias, Gilbert Brietzke & Nisarg Patel

Questions?

