Introduction to Multiuser Cluster Systems at LRZ
April, 12 ${ }^{\text {th }} 2023$

- Aim: provide an introduction to multiuser cluster systems in general and to those operated at the Leibniz Supercomputing Centre (LRZ), specifically
- You will probably benefit the most if you're not yet familiar with the LRZ HPC/HPDA/HPAI infrastructure, but plan to work with these systems in the future
- A majority of systems will be covered in more detail in dedicated sessions later this week \square

By the end of today's workshop, you should have a general understanding of multiuser HPC/HPDA/HPAI cluster systems and the basic skills to successfully interact remotely with such systems at LRZ

An History of Computing

An History of Computing
The Generations of Computing Devices

1672

1672: Gottrried Wilhelm von Leibniz

An History of Computing
The Generations of Computing Devices

An History of Computing

From the Jacquard loom to Electro Mechanical Devices

- 1752: Benjamin Franklin and his kite "discover" electricity
- Prove that lightnings are a electrical discharge that can charge a conductor onto the ground
- 1804: The Jacquard Loom III
- Was a mechanical loom for cloth weaving
- First demonstrated by Joseph Marie Jacquard in 1801.
- Any number of the cards could be chained together into a continuous sequence, with each card corresponding to one row of the design
- 1837: Charles Babbage's Analytical Engine

泉

- First general-purpose computing device
- Electro mechanical Device
- Ada Lovelace as the first programmer
- Herman Hollerith: Punched card tabulating machine
- Later became the "IBM Punchcards"

A standard 80 column
punched card
contains 80
bytes, so
99,981 boxes
of 2,000 cards would be required to "contain the same amount of data as a single 16 GB microSD card.

An History of Computing
The Generations of Computing Devices

1936: From Theory to the First Generation of Computers

- Alan Turing 路
- On Computable Numbers, with an Application to the Entscheidungsproblem
- Paper that demonstrates the "Turing Machines" could perform solvable computation
- Describes the principles of the modern computer
- Also the foundation of Machine Learning

A Brief History of Computing

1940s-1950s: First Generation (Vaccum tubes)

- Used Vacuum tubes made of glass
- Control flow of electricity between two electrodes: 0 || 1
- Slow, unreliable, produced a lot of heat: Often would burn and would need to be replaced
- Heavy computers take up a full room
- Used for calculation, storage, and control purposes
- Main memory: Magnetic tapes and magnetic drums, IBM 650 would provide 4 KB of storage
- No OS, no real programming language (machine code)
- Example of machines: EDVAC, UNIVAC 1101, and IBM 650.

A mainframe is a large computer system that is usually used for multi-user applications. It is so expensive it needs to be share:

- time sharing
- space sharing
- batch processing
$-$
all of which are still relevant
$-$

Until the mid-to-late 1950s, the word "computer" referred to people who performed computations, not to machines.

1940s-1950s: First Generation, the centralized model

A Brief History of Computing

1950s-1960s: Second Generation (Tranistor)

- Use transistors instead of vacuum tubes
- More reliable, smaller, and allow faster clock

The very first transistor - the foundational building block which almost all of modern speeds civilization was built from - was created at

- Transistors shaped the computer revolution and digital age: logical operations are performed by semi conductor devices
- Machine can store up to 2 MB of data and run at 1 MHz
- Emergence of OS and multi-user support
- Basic networking capabilities
- Emergence of high-level programming language: FORTRAN (1956), ALGOL (1958), and COBOL (1959).
- Example of machine: IBM1400 series

1960s-1980s: Third Generation (Integrated circuits)

- Transistors made smaller and packed into a silicon chip: towards integrated circuits
- Better speed and reliability
- Laguage: Becoming higher level: BASIC (Beginners All-purpose Symbolic Instruction Code).
- Example of machine: IBM System 360
- Beginning of minicomputers
- Macintosh 128 k released in 1984
- Powered by a microprocessor $(8 \mathrm{MHz}) / 128 \mathrm{~KB}$ RAM
- 400 KB storage space on floppy
- First "real" Personal Computer (PC)
- vs. IBM PC / Commodore 64
- Comes with a screen, mouse, keyboard
- Reaching a new audience: works without a manual
- User friendly, cute, and adorable
- OS: System I (UNIX family, GUI)
- Finder, Menu bar
- Still the current HIG
- Application: MacPaint, MacWrite
- First affordable computer made for personal use $(\$ 2,500$ ($\$ 6,500$ in modern dollars))
- Key technologies include mobile devices (smartphones, tablets), cloud computing, social networks, high-speed wireless networks, IPv6 networking protocol, touchscreens, solid state storage, virtual/augmented reality, artificial intelligence
- Human like interaction and behaviour
- Voice recognition
- Computer vision
- Programming language: Very high level programming, Natural language
- Come in pocket size / wearables / Cloud only
- Digital twins, NVIDIA omniverse, Metaverse

An History of Computing
The Generations of Computing Devices

An History of Computing

Multiuser clusters...

... Haven't always been multiuser
... They are big and expensive: They need to be shared to cost-effectively serve a large number of concurrent users.
... They are meant to be used remotely
... System administrators take care of the system for the users
... can achieve much higher performance than individual systems by aggregating resources
... They provide fault tolerance through redundancy. If any part of the cluster fails, the rest of the cluster can continue operating
.. Common architectures include...
... Server clusters: Multiple interconnected servers with shared storage and networking. Used for high availability and scalability.
... High-performance computing clusters: Powerful servers with fast interconnects, used for running highly parallel workloads.
... Cloud computing clusters: Massive clusters that run cloud platforms and services, accessed by many users over wide-area networks.
... Edge clusters: Clusters deployed at the edge (near users/devices) to support localized computing, storage and networking needs.

Moore's law

A Brief History of Computing

Moore's Law

The number of
transistors on
integrated circuits is doubling about every 18 monthe 2 years.

- Gordon Moore, 1965

A Brief History of Computing
Is Moore's Law dead?

A Brief History of Computing Is Moore's Law dead?

50 Years of Microprocessor Trend Data

- Mid 2000s:
"heat death"
- No more faster processors, only more of them.
- But:
$2 \times 3 \mathrm{GHz}!=6 \mathrm{GHz}$

A Brief History of Computing
Is Moore's Law dead?

- From \#1 to \#500: 6-8 years
- From \#500 to Notebook: 8-10 years

Aggregated LRZ Systems
Evolution of Peak Performance and Memory

What is a Supercomputer or High-Performance Cluster... (Not)?

It runs Microsoft Windows?
It will run my Excel spreadsheet? It has overclocked high-speed processors? The CPU runs faster than a desktop PC?

It has a large internal memory (RAM)? It will run my old tried and tested executable?

It will run my software without changes? It will run my program with millions of threads?

It can be used interactively?
It has shiny RGB lights?No, no worriesNo!NoNot even

Sed Usually not (except exceptions)Probably not
(o) Probably not
(6) Probably not

Probably not

Usage model

Transition to next part: UN*X \& SSH

Figure 7.1 Remote login is a lot like astral projection.

