

Introduction to
GNU/Linux and the Shell – Part 2
April 12th, 2023

Session Information

• The aim of this session is to provide an introduction to
GNU/Linux and the Unix Shell

• You will probably benefit the most if you’re not yet familiar
with GNU/Linux and the Unix Shell, but if you plan to work
on the AI, HPC and/or Compute Cloud infrastructure
provided by LRZ
-> by the end of this session, you should have the basic
skills to successfully interact with GNU/Linux-based systems

• If you have questions, please ask at any time

Introduction to GNU/Linux and the Shell | April 12th, 2023 3

A Unix-like Shell in a Terminal Application

4Introduction to GNU/Linux and the Shell | April 12th, 2023

File System Hierarchy Standard (FHS)

• On a Unix-like system (pretty much) everything is a file
• All files and directories appear (somewhere) under the root

directory “/”, even if stored on different – possibly remote –
devices. There are no drive letters like on other operating
systems.

• Use pwd to get the name of the current working directory
• Use ls to list all files and directories in the current directory
• Use ls / to list all files and directories in the root directory
• Use ls /any/other/dir to list all files and directories in the

specified directory

On Unix-like
systems:
try the commands
introduced on the
left.

5Introduction to GNU/Linux and the Shell | April 12th, 2023

Exploring the File System

/bin*: command binaries (e.g. ls)
/etc: configuration files
/home: (regular) users’ home directories
/lib*: libraries (for binaries in /bin et al.)
/media: mount points for removable media
/mnt: mounted filesystems
/root: home directory of the root user
/sbin*: system binaries
/usr: secondary hierarchy for read-only user data
/var: variable, i.e. changing files

• As an exercise, take a look at the
contents of / and /usr. Can you spot the
similar directory structure?

• Explore other directories. Are there any
(regular) user home directories on your
system?

* On modern systems, these (and /libXX) are only symlinks/shortcuts. Their former contents
have been merged into their respective /usr/… counterparts, which they then point to.

Introduction to GNU/Linux and the Shell | April 12th, 2023 6

Directories

• Create a new directory in your current (home) directory
called „my_dir“:
$ mkdir my_dir

• Change your current working directory to this folder:
$ cd my_dir

Introduction to GNU/Linux and the Shell | April 12th, 2023 8

Navigating Directories

Notice the changing prompt…

What does the “~” symbol represent?

You could use cd .. to move (back) to the parent folder.
A single dot . represents the current, two dots .. the parent folder.

Absolute vs. relative paths:
specifying a location with a leading slash / indicates a start at the root of the file
system (absolute), omitting it leads to an interpretation relative to the current
directory

Tip: use the tab key for auto-completion!
Introduction to GNU/Linux and the Shell | April 12th, 2023 9

File Manipulation

• Make sure you‘re located in the my_dir directory created earlier

• Create a new (text) file by “touching” it:
$ touch my_file

• Can you spot the newly created file it in a file listing?
• What‘s the content of this new file? How can you tell?

10Introduction to GNU/Linux and the Shell | April 12th, 2023

File Manipulation

Can you spot the size of this
(empty) file?

On most systems, you can
use editors like e.g. nano,
vi(m) or emacs to edit text
files directly in the console.

Use nano to modify the existing file (write something to it):
$ module load nano
$ nano my_file
Note the shortcuts along the bottom of the nano screen; “^” represents the Control (CTRL) key

Use nano to create another file and write a couple of lines:
$ nano another_file.txt

Be aware of (missing) file extensions: In contrast to other operating systems, GNU/Linux does not rely on file extensions to specify the type of a file.
For interoperability and clarity, file extensions can still be used, of course.

Introduction to GNU/Linux and the Shell | April 12th, 2023 11

File Manipulation and Redirection

• There is a tool called cat. What does it do?
• “Concatenate FILE(s) to standard output.

With no FILE, or when FILE is -, read standard input.”
• Use cat to display the contents of my_file
$ cat my_file

• The shell allows for input/output redirection using > (and <)
• Use cat to write something to nice_file.txt and display it afterwards

$ cat > nice_file.txt
write something nice here
and add another line
CTRL+C
$ cat nice_file.txt

12

Refer to the cat
manpage for
additional
information.

Introduction to GNU/Linux and the Shell | April 12th, 2023

File Manipulation and Redirection

• Files can be appended using >>
$ echo “yet another line of text” >> nice_file.txt
$ cat nice_file.txt

• Using << allows for the creation of here documents (input stream literals),
the general format is:
command << delimiter # (commonly EOF)
input stream
delimiter

• Try the following. Can you explain how the here document is used?
$ tr a-z A-Z << EOF
> all lower case
> o rly?
> EOF

13Introduction to GNU/Linux and the Shell | April 12th, 2023

Pipes

• Commands can be chained using | (the pipe). It will instruct the
shell to use the output of one command directly as input for
another command. Pipes can be used consecutively.

$ echo “some fancy words” | wc –l
$ echo “some fancy words” | tr “ ” “\n” | wc -l

14Introduction to GNU/Linux and the Shell | April 12th, 2023

File Manipulation

• Create a copy of “my_file” called “my_file1”:
$ cp my_file my_file1

• Rename/move the copy “my_file1” to “new_file”:
$ mv my_file1 new_file

• Delete the original file “my_file” :
$ rm my_file
Caution: there is no trash bin or undo!

• Take a look at the file listing. What is the expected output?
Does it match?

15Introduction to GNU/Linux and the Shell | April 12th, 2023

File Manipulation

16Introduction to GNU/Linux and the Shell | April 12th, 2023

File Manipulation

• Create two more copies of “new_file”, “01.bak” and “02.bak”
$ cp new_file 01.bak
$ cp new_file 02.bak

• Move to your home directory.
$ cd ..

alternatively:
$ cd or $ cd /path/to/home/dir

• Copy “new_file” to your home directory.
$ cp my_dir/new_file .

• Make a (full) copy of “my_dir” called “another_dir”.
$ cp –r my_dir another_dir

17Introduction to GNU/Linux and the Shell | April 12th, 2023

Shell Wildcards

• Wildcards can be used flexibly for character matching in the shell:
• Zero or more characters -> *
$ ls -la my_dir/n*

• Exactly one character -> ?
$ ls -la my_dir/0?.bak

• They can be combined in any way and are useful for operating on
files and directories that contain certain patterns.

• Count the combined number of words in all (created text) files with
a file extension:
$ cat */*.??? | wc -w

Can you think of
other patterns to
match certain files
or directories?

18Introduction to GNU/Linux and the Shell | April 12th, 2023

Searching: grep

• The grep command can be used to search for lines in text files that match given
regular expressions (regex). Regex are patterns that match a set of strings.

• As basic building blocks (besides characters), they can include:
• a boolean “or”, represented by the vertical bar or pipe |.
• Parentheses () are used for grouping.
• Placeholders (similar to shell wildcards) can be used for quantification. The ?

represents zero or one occurrence of the preceding element, * represents zero or
more occurrences of the preceding element and + represents one or more
occurrence(s) of the preceding element.

• The regular expression wildcard dot . matches any character and can also be
combined with the quantifiers mentioned above.

• Consider options like
-w: Select only those lines containing matches that form whole words
-n: Prefix (file name and) line number to each match
-i: Make search case-insensitive
-v: Invert search, i.e. output non-matching lines
and many more…

• Basic examples (without regex quantifiers, wildcards, etc.) are
$ grep something my_dir/nice_file.txt
$ grep -r “another line” .

Can you think of
other regular
expressions to
match specific
strings (but not
others)?

19Introduction to GNU/Linux and the Shell | April 12th, 2023

Searching: find

• The find command can be used to search for files and
directories, e.g.

$ find .
$ find . -type d
$ find . -name “*.txt”
$ find . -type f -name “a*”

Refer to the find
manpage for
additional
information.

20Introduction to GNU/Linux and the Shell | April 12th, 2023

Shell Scripting

• Use shell scripts to save and re-use commands
• Create a new file myscript.sh containing the line

echo “This script is simple.”

• Once saved, you can run it explicitly (using the Bash shell)
$ bash myscript.sh

21Introduction to GNU/Linux and the Shell | April 12th, 2023

Shell Scripting

• Modify the script to allow for argument use. Add the line:

echo “This $1 is $2.”

• Provide the needed arguments when calling the script

$ bash myscript.sh “scripting” “getting
somewhere”

22Introduction to GNU/Linux and the Shell | April 12th, 2023

Shell Scripting

• Add a shebang interpreter directive as the first line for direct
execution:

#!/bin/bash
echo “This script is simple.”

• Afterwards, call the script directly
$./myscript.sh “attempt” “failing”

• What is going on?

Can you explain
the unexpected
outcome?

23Introduction to GNU/Linux and the Shell | April 12th, 2023

Ownership and Permissions

• Every file/directory is owned by a specific user
(usually the original creator, but this can be changed)

• Every user is member of a (primary) group (and potentially additional ones)
• Notice the two “root” columns above:

the first one is the owner of the respective file/directory (here, a user called root)
the second one is the group assigned to the file/directory (here, a group called root)

Introduction to GNU/Linux and the Shell | April 12th, 2023 24

Ownership and Permissions

• Permissions (access rights) for files and directories are managed in three different
classes: user, group and others

• Three specific permissions apply to each class:
• read (a file or the names of files in a directory)
• write (modify a file or the entries of a directory)
• execute (a file or access file contents of a directory)

Introduction to GNU/Linux and the Shell | April 12th, 2023 25

Ownership and Permissions

• The leftmost column represents these permissions as they apply to files and directories
for each of these three classes

• Two examples from the output above:
dos: drwxr-xr-x This is a directory. User (root) has rwx, (members of) group (root) rx and (all) other (users) rx permissions.
hello.c: -rw-r--r-- This is a file. User has rw, group r and other r permissions.

Introduction to GNU/Linux and the Shell | April 12th, 2023 26

Shell Scripting

• In order to execute the previously created script file…

• …use chmod to change file permissions/mode bits
$ chmod +x myscript.sh

• Afterwards, call the script directly again
$./myscript.sh “time it” “executed directly”

Refer to the
chmod manpage
for additional
information.

27Introduction to GNU/Linux and the Shell | April 12th, 2023

Loops

• Loops are a programming construct which allow to repeat a
command or set of commands for each item in a list

• To demonstrate the general syntax of a for-loop, create the file
myloop.sh and execute if afterwards

#!/bin/bash

for VAR in first second third
do

echo $VAR
done

28Introduction to GNU/Linux and the Shell | April 12th, 2023

Loops

• Write a loop to print the number of words in every (text) file
(created earlier) with a file extension!

#!/bin/bash

for TEXT in */*.???; do
wc -w $TEXT

done

29Introduction to GNU/Linux and the Shell | April 12th, 2023

File Manipulation

• Finally, let‘s clean up: completely delete “another_dir”.

$ rm –r another_dir
Again, be cautious: there is no trash bin or undo!

• There is another command called rmdir? Does this also work?

30Introduction to GNU/Linux and the Shell | April 12th, 2023

Additional material

Visit https://linuxjourney.com/ for many more
interactive tutorials!

31Introduction to GNU/Linux and the Shell | April 12th, 2023

One more thing: Environment Variables

• Environment variables are named values that can influence how programs are run in the
shell environment (e.g. by providing context information)

• Use the command env to print these variables in the current environment
• To print a specific environment variable, use the echo $VARNAME command

e.g. echo $HOME
• To set (or change) a specific environment variable,

use the export VARNAME=<value> command
• On many LRZ systems, we provide advanced mechanisms to adjust these environment

variables for user-specific modifications, e.g. on the high performance computing clusters
a “module system” is available that (amongst other functionalities) allows for
providing/running different versions of the same application (making changes to
environment variables to do so).

Introduction to GNU/Linux and the Shell | April 12th, 2023 32

	Foliennummer 1
	Foliennummer 2
	Session Information
	A Unix-like Shell in a Terminal Application
	File System Hierarchy Standard (FHS)
	Exploring the File System
	Directories
	Navigating Directories
	File Manipulation
	File Manipulation
	File Manipulation and Redirection
	File Manipulation and Redirection
	Pipes
	File Manipulation
	File Manipulation
	File Manipulation
	Shell Wildcards
	Searching: grep
	Searching: find
	Shell Scripting
	Shell Scripting
	Shell Scripting
	Ownership and Permissions
	Ownership and Permissions
	Ownership and Permissions
	Shell Scripting
	Loops
	Loops
	File Manipulation
	Additional material
	One more thing: Environment Variables

