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• Software stack on compute resources

• How do we manage HPC Software at LRZ

• General info about Software Stack

• Environmental Modules

• Flow chart to get my application ready for HPC

• Spack Introduction and user spack. 

• Spack and Conda envs
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Motivation
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HPC users 
We have highly diverse users (< 4500 active users) with unique needs
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Software in form of “modules” on compute resources at LRZ
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SuperMUC-NG Phase I

CoolMUC-3

CoolMUC-2

Teramem

LRZ Managed 
Housing 
systems

SuperMUC-NG Phase II



Software stack on compute resources
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Open source & Commercial 
Applications (CFD, Astro, Bio, Geo, 

QCD)

Performance libraries, debug 
tools, graphics applications, 

etc. 

Parallel tools (Intel-MPI, 
OpenMP, OpenMPI, IO 

libs)

Compilers 
(GCC, Intel, 
nvhpc, NAG)

System config & 
envs

• About ~400 environment modules on these machines,
• SuperMUC-NG Phase I & II
• CoolMUC-2
• CoolMUC-3
• Housing Clusters

• Libraries and applications are build for,
• Specific architectures

• Saphirerapids
• Skylake_avx512
• Haswell
• KNL

• General build
• x86_64

• Baring most commercial applications, about >90% of all 
software/libraries are provided with the help of Spack.  



Catering software needs for HPC users 
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• Why do we provide software support at all?

• We have conventional HPC users + novice users + extremely complicated systems ( multiple of them)
• We provide software support to facilitate and expedite the usage of HPC as easily as possible.
• Efficient and correct software enables users to effectively utilize the system.

• To cater large and highly diverse group of users, we in CXS+HPC group manage HPC software either, 

• Manually by each individual application maintainer
• In semi-automated manner, using Spack 

• Each software (module) that you see on LRZ systems, someone from CXS or HPC department is 
responsible

• for managing the state of installations
• providing modules
• support users with individual software



Getting user application ready for HPC

8Software Provisioning at LRZ | Nisarg Patel

Do your own stuff; 

User is responsible for;
copy, configure, build, Install

compilers
middleware

dependencies
license setups

environment set ups

+ user specific applications

Use LRZ software stack; 

provided via modules 

compilers
middleware

dependencies
license setups

environment set ups

+ user specific applications

HPC systems at LRZ



• A high-level application may just be the „tip of an iceberg“ when considering a feature-rich 
configuration of the software with all it‘s dependencies.

• Feature-rich CFD-Package OpenFOAM incl. vtk & paraview (with 140 dependencies) looks like,
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Why do we provide software? The dependency-hell
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Software available as Environmental Modules!
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• Modules provide a flexible way to configure and access various applications, compilers, tools and libraries dynamically by 
managing the shell environment 

• In other words modules allow for the dynamic modification of environment variables which handles;
• library paths
• binary paths
• license server settings
• application specific configurations
• header files
• pkg-config files 
• wrapper commands or scripts



Examples of using modules
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Examples of Modules
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Examples of Modules
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Examples of Modules
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Screenshot of modules in the software stack



Flow chart to get my Scientific application ready for HPC
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Do your own stuff

I am happy with available modules

I am using available modules but Its 
not sufficient

How can I 
build further applications
on top of installed software? 

user_spack

Use LRZ provided software via modules

How do I get 
my application 

ready for 
HPC?

Someone from 
CXS+HPC group 

installs software either 
manually or uses 
Spack package 

manager

hmm; if LRZ is using Spack, can I use it to 
extend the existing software to build my 

applications?



Spack is one of many package-managers

• Functional Cross-Platform Package Managers: 
e.g Nix (NixOs), Gnu Guix (Gnu Guix Linux)  … use hashes in install-dirs

• Build-from-source Package Managers
e.g. HomeBrew/LinuxBrew

• Package Managers for specific scripting languages
e.g. Pip (Python), NPM (Javascript)

• Easy Build: 
installation framework for managing scientific software on HPC-systems

• Conda: 
popular binary package managers for Python and R (but also for other rpm–like 
packaging in user-space). Easy to use.
In general no architecture optimized binaries, not targeted at HPC
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If you want to use Spack, 
you might want to know about it



• Spack (package manager and not build tool) automates the fetch, configure and installation of scientific 
software.

• Spack works out of the box, Simply clone Spack repository to get going.
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What is Spack? In a nutshell 



• Spack can install many different variants of the same package, to name a few:
• package-versions
• different compilers
• different MPI-implementations
• different build options 

• Most important terminology using Spack is “spec”
• Spec is what comes after “spack install” command.
• Specs refer to a particular build configuration of a package.
• “Specs” are more than package name. It can contain the compiler, compiler version, architecture, compile options, and 

dependency options for a build.

• Installation locations are separated via unique hashes
• installations may peacefully coexist (dynamic linking with RPATH)

• The installation location of any package will also contain,
• dump (in form of text files) of environment during installation, output from installation, configure arguments, and concretized 

spack-specs
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What is Spack? In a nutshell 
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What is Spack? In a nutshell 

• Install a package

Ø spack install hdf5

• Install a particular version by appending @

Ø spack install hdf5@1.12.1

• Specify a compiler (and its version), with %

Ø spack install hdf5%gcc@11.2.0

• Add special variants with +

Ø spack install hdf5@1.12.1%gcc@11.2.0 +fortran +hl

• Add compiler flags using the conventional names 

Ø spack install hdf5%gcc@11.2.0 +cxx cppflags="-O3 -floop-block" 

• Add micro-architecture with target (for cross compiling)

Ø $ spack install hdf5@1.12.1%gcc target=skylake_avx512
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Finding versions and variants of a package

• Spack will fetch all the information from a 
“package file” of a package. 

Ø Spack info <package name>
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Concretization: dependency tree of a package

• Spack will fetch all the information from a 
“package file” of a package. 

Ø Spack info <package name>

• Listing a dependency graph before you go 
ahead with an installation

Ø Spack spec –INtl <package name>

• Spack spec gives you full concretized map of 
the package
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Useful Spack commands 

https://spack.readthedocs.io/en/latest/index.html
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Can I use Spack 
to extend the existing software stack?
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• User_spack: Spack in User space

• Chaining the existing Installations (software stack provided by the LRZ) into your own Spack 
Environment

• How do I activate user_spack?

Ø module load user_spack

• Why do I use it? 

• making use of already installed packages via chaining of software stack provided by the LRZ 
• avoids recompiling low level packages in many situations
• has working defaults configurated for some essential dependencies (e.g. MPI)

• What does loading “user_spack” module do actually? 

• loads a setup script that adds the “spack” command to your shell.
• spack version matches the version the default software stack has been built with
• LRZ specific configurations are preconfigured for you
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• User_spack: Installing software

• HDF5 dependency tree is shown in the image.

• The library itself is not yet installed (-).

• But all of its dependencies are already available 
via the upstream LRZ installation ([^]).

• A package that you have installed locally in your 
home directory with Spack is marked by [+].
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• User_spack: Installing software

• Dependencies are chained from the LRZ 
installation

• see /dss/…/lrz/… paths

• Spack checks if the source tar ball is available in 
the LRZ cache

• If not present, tar files can be download from 
external site

• installation location of the library 
in $HOME/spack/opt/...
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User_spack: Generating Modules for your software

• We have configured Spack such that modules will only be generated for explicitly installed packages.

• Modules are installed in 

• $HOME/spack/modules/$LRZ_INSTRSET/ <architecture>/<package>/<version>

• The path to the modules is added to $MODULEPATH when you load the user_spack module, but only 
if it already exists. You might want to reload user_spack.

• One could also add module path manually

Ø module use <path to local modules>
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User_spack: Configuring your Spack Instance

• LRZ provides a configuration that is very similar to the one the software stack was built with. 

• You may want to change some or all of these settings to serve your needs, e.g. for the package 
selection, generation of modules, etc.

• Your individual configuration files are stored in the directory ~/.spack/.

Ø spack config edit repos
Ø spack config edit config
Ø spack config edit modules

• User config files take precedence over system provided config file, that is they are loaded after the 
system config files and overwrite their settings.
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User_spack: Generating modules for upstream packages 

• For packages that have been implicitly installed in the upstream software stack (LRZ installed) no modules are 
generated by default. 

• You can configure your `user_spack` such that you generate modules in your $HOME directory.

• You may want to change some or all of these settings to serve your needs, e.g. for the package selection, generation 
of modules, etc.

Ø spack config edit modules
Ø cat ~/.spack/modules.yaml

• Now modules are generated for all installed packages and each newly created module gets a hash suffix of length 7 
to avoid naming conflicts. 

• Modules are generated with

Ø spack module tcl refresh --upstream-modules

modules:
tcl:

exclude_implicits: false
hash_length: 7
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User_spack: User configurations

• Spack package repositories

• Spack supports external package repositories
• Separate directories of package files

• Many reasons for doing this, 
• You want to write a package file for an in-house code 

that you may not want to release publicly. 
• Overwrite default package files with site specific versions 

or restrictions

• One could use “spack repo create” command, 
Ø spack repo create /path/to/my_repo
Ø spack repo add my_repo
Ø spack repo list

• This will show  2 package repositories.
• my_repo /path/to/my_repo builtin
• spack/var/spack/repos/builtin

• Adding compilers

• Spack searches for compilers on your machine 
automatically the first time it is run. It does this 
by inspecting your $PATH

• One could use “spack compiler add” command, 
Ø spack compiler add /path/to/my_compiler
Ø spack compiler list

• For example the output of spack compiler list could 
look like,

==> Available compilers

-- gcc sles15-x86_64 --------------------------------------------
gcc@8.4.0 gcc@7.5.0

-- intel sles15-x86_64 ------------------------------------------
intel@19.0.5.281
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Chaining: Chain Spack Installations

• You can point your Spack installation to another 
installation to use any packages that are 
installed there.

• To register the other Spack instance, you can 
add it as an entry to upstreams.yaml

upstreams:
spack-instance-1:

install_tree: /path/to/other/spack/opt/spack
spack-instance-2:

install_tree: /path/to/another/spack/opt/spack
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Spack Environments

• A spack environment is used to group together a set of specs for 
the purpose of building, rebuilding and deploying in a coherent 
fashion.

• An Environment that is built as a whole can be loaded as a whole 
into the user environment.

• spack.yaml (example: python-extended.yaml) describes a 
project requirements

• Spack stores metadata in the .spack-env directory. User 
interaction will occur through the spack.yaml

• When the environment is concretized, Spack will create a 
file spack.lock. This file describes exactly what versions 
/configurations were installed, allows them to be 
reproduced.

• You can give this file to any one in the project and he would get 
the exact same customized sets of packages installed, without 
any differences.  A very robust reproducible software 
environment!
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Conda Environments

• What is Conda?
• A package manager and environment management 

system.
• Ideal for creating isolated environments for projects.

• Benefits of Using Conda Environments
• Avoids version conflicts between libraries.
• Ensures project reproducibility.

• Creating and Activating a Conda Environment
• Create: conda create --name myenv python=3.8
• Activate:  source activate myenv

• Installing mpi4py
• mpi4py allows Python programs to use MPI for parallel 

processing.

• Install with: conda install mpi4py

• Exporting and Sharing Environments
• Export with: conda env export > environment.yml.
• Share the environment.yml for reproducible setups.
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Software Stack on SMNG Phase 2: Spack/24.1.0

• Rolled out Software Stack Spack/24.1.0 on SuperMUC-NG Phase II.

• Compilers and MPI’s:
• OneAPI 24x release, support for Intel PVC, will be made available. 
• AI toolkit from OneAPI will be made available.
• Intel compiler drivers – LLVM based (e.g., icx, ifx, icpx, etc.) will replace traditional drivers (ifort, icpc, and icc).
• Intel oneAPI AI toolkits for AI BD workloads will be provided as modules.
• Both, generic build and optimized software builds for Sapphirerapids will be made available

• Improved Module Interactions
• We have made significant changes to enhance the maintainability and long-term support of the software stack, 

particularly in terms of module interactions.
• Simplified module names
• Adhering the compatibility of compilers and MPI with all its dependents by adding meaning prerequisites
• Have provided bundle modules; collection of frequently used software in a single module.

• `user_spack` enabling the possibility to address unique needs of users to install / build on top of LRZ software stack. 
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Questions?


