

Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities

Motivation

- Software stack on compute resources
- How do we manage HPC Software at LRZ
- General info about Software Stack
- Environmental Modules
- Flow chart to get my application ready for HPC
- Spack Introduction and user spack.
- Spack and Conda envs

HPC users We have highly diverse users (< 4500 active users) with unique needs

Software Provisioning at LRZ & more

Software in form of "modules" on compute resources at LRZ

Software stack on compute resources

- About ~400 environment modules on these machines,
 - SuperMUC-NG Phase I & II
 - CoolMUC-2
 - CoolMUC-3
 - Housing Clusters
- Libraries and applications are build for,
 - Specific architectures
 - Saphirerapids
 - Skylake_avx512
 - Haswell
 - KNL
 - General build
 - x86_64
- Baring most commercial applications, **about >90%** of all software/libraries are provided with the help of **Spack**.

Catering software needs for HPC users

- Why do we provide software support at all?
 - We have conventional HPC users + novice users + extremely complicated systems (multiple of them)
 - We provide software support to facilitate and expedite the usage of HPC as easily as possible.
 - Efficient and correct software enables users to effectively utilize the system.
- To cater large and highly diverse group of users, we in CXS+HPC group manage HPC software either,
 - Manually by each individual application maintainer
 - In semi-automated manner, using Spack
- Each software (module) that you see on LRZ systems, someone from CXS or HPC department is responsible
 - for managing the state of installations
 - providing modules
 - support users with individual software

Software Provisioning at LRZ & more 7

Getting user application ready for HPC

Why do we provide software? The dependency-hell

- A high-level application may just be the "tip of an iceberg" when considering a feature-rich configuration of the software with all it's dependencies.
- Feature-rich CFD-Package OpenFOAM incl. vtk & paraview (with 140 dependencies) looks like,

Software available as Environmental Modules!

- Modules provide a flexible way to configure and access various applications, compilers, tools and libraries dynamically by managing the shell environment
- In other words modules allow for the dynamic modification of environment variables which handles;
 - library paths
 - binary paths
 - license server settings
 - application specific configurations
 - header files
 - pkg-config files
 - wrapper commands or scripts

Examples of using modules

11

```
Terminal
[CoolMUC-2>module list
Currently Loaded Modulefiles:
 1) admin/1.0
                   5) intel-oneapi-compilers/2021.4.0(default:intel)
 2) tempdir/1.0
                   6) <u>intel-mkl/2020</u>
                   7) intel-mpi/2019-intel
 3) lrz/1.0
 4) spack/22.2.1
Key:
(symbolic-version) <u>default-version</u> sticky
CoolMUC-2>
```

Examples of Modules


```
Terminal
[CoolMUC-2>module avail gcc python | cat
------/lrz/sys/spack/release/22.2.1/modules/x86_64/linux-sles15-x86_64 --------
gcc/8(@) gcc/9(@) gcc/10(@) gcc/11(default:@)
gcc/8.5.0 gcc/9.4.0 gcc/10.3.0 gcc/11.2.0(default)
------/lrz/sys/spack/release/22.2.1/modules/x86_64/linux-sles15-x86_64 ---------
python/3.7.11-base python/3.7.11-extended python/3.8.11-base(default) python/3.8.11-extended
------/lrz/sys/share/modules/files_sles15/tools -------------
python/2.7_intel(default) python/3.6_intel
Key:
(@)=module-alias (symbolic-version)
CoolMUC-2>
```

Examples of Modules


```
Terminal
[CoolMUC-2>module show openmpi
/lrz/sys/spack/release/22.2.1/modules/haswell/linux-sles15-haswell/openmpi/4.1.2-gcc11:
               OPENMPI_SPEC /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-gcc-amct7nx/.spack/spec.json
setenv
conflict
                openmpi
               LD_LIBRARY_PATH /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-gcc-amct7nx/lib
prepend-path
               PATH /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-gcc-amct7nx/bin
prepend-path
               MANPATH /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-gcc-amct7nx/share/man
prepend-path
               PKG_CONFIG_PATH /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-gcc-amct7nx/lib/pkgconfig
prepend-path
               CMAKE_PREFIX_PATH /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-gcc-amct7nx/
prepend-path
               MPICC /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-gcc-amct7nx/bin/mpicc
setenv
               MPICXX /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-acc-amct7nx/bin/mpic++
setenv
               MPIF77 /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-acc-amct7nx/bin/mpif77
setenv
               MPIF90 /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-gcc-amct7nx/bin/mpif90
setenv
               OPENMPI_BASE /dss/dsshome1/lrz/svs/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-acc-amct7nx
setenv
               OMPI_MCA_shmem_mmap_relocate_backing_file -1
setenv
               mpi.intel
conflict
conflict
               intel-mpi
               intel-parallel-studio
conflict
conflict
               intel-oneapi-mpi
               MPI_BASE /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/openmpi/4.1.2-gcc-amct7nx
setenv
               OPENMPI_WWW https://www.open-mpi.org
setenv
               SLURM_EXPORT_ENV
unsetenv
               MPI_CC mpicc
setenv
               MPI_CXX mpicxx
setenv
               MPI_FC mpif77
setenv
               MPI_F77 mpif77
setenv
setenv
               MPI_F90 mpif90
                {parallel:message passing interface:OPENMPI}
CoolMUC-2>
```

Examples of Modules

14

```
Terminal
CoolMUC-2>module load r
Loading r/4.1.2-gcc11-mkl
  Unloading conflict: intel-mpi/2019-intel intel-oneapi-compilers/2021.4.0
  Loading requirement: gcc/11.2.0
[CoolMUC-2>
[CoolMUC-2>module list
Currently Loaded Modulefiles:
 1) admin/1.0 3) lrz/1.0
                                                       7) r/4.1.2-gcc11-mkl
                                   5) <u>intel-mkl/2020</u>
 2) tempdir/1.0 4) spack/22.2.1 6) gcc/11.2.0
Key:
             default-version sticky
auto-loaded
CoolMUC-2>
[CoolMUC-2>which R
/dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/r/4.1.2-gcc-hn44a5f/bin/R
[CoolMUC-2>
CoolMUC-2>
```

Screenshot of modules in the software stack


```
------/lrz/sys/spack/release/23.1.0/modules/compilers --------------------------
gcc/8.5.0 gcc/10.4.0 gcc/12.2.0 intel/19.1.2 intel/2021.4.0 intel/2023.1.0 llvm/10.0.1 nag/7.1
                                                                                                     nvhpc/22.11 nvhpc/23.3
gcc/9.5.0 gcc/11.3.0 intel/18.0.5 intel/20.0.4 intel/2022.2.0 llvm/9.0.1
                                                                             llvm/16.0.2 nvhpc/22.9 nvhpc/23.1
                      ------MPI ------ /lrz/sys/spack/release/23.1.0/modules/MPI ---------------------
                                         openmpi/3.1.6-intel23 openmpi/4.0.7-intel23 openmpi/4.1.5-intel23
intel-mpi/2018.4.274
                     intel-mpi/2021.7.0
intel-mpi/2019.12.320 intel-mpi/2021.9.0
                                         openmpi/3.1.6-nag7.1
                                                              openmpi/4.0.7-nag7.1 openmpi/4.1.5-nag7.1
intel-mpi/2021.6.0
                     openmpi/3.1.6-gcc12 openmpi/4.0.7-gcc12
                                                               openmpi/4.1.5-gcc12
                                       ------/lrz/sys/spack/release/23.1.0/modules/x86_64 -----------------------------
                                       imagemagick/7.0.8-7
                                                                mercurial/5.8
                                                                                              per1/5.36.0
ace/7.1.0
                    cube/4.8
                                                                                                                     scons/3.1.2
anaconda3/2020.02
                    cuda/11.8.0
                                       intel-mk1/2020.4.304
                                                                 mesa/22.1.6
                                                                                              pkg-config/0.29.2
                                                                                                                     scons/4.0.1
anaconda3/2022.10
                    cuda/12.0.0
                                       intel-mkl/2021.4.0
                                                                miniconda3/22.11.1
                                                                                              pkgconf/1.8.0
                                                                                                                     scons/4.1.0.post1
                    doxygen/1.9.6
                                       intel-mkl/2023.1.0
                                                                                              plplot/5.15.0
                                                                                                                     scons/4.2.0
autoconf/2.69
                                                                 molden/6.7
autoconf/2.71
                    dyninst/12.3.0
                                       intel-toolkit/2021.4.0
                                                                 nano/7.2
                                                                                              prng/3.0.2
                                                                                                                     scons/4.5.2
automake/1.16.1
                    emacs/27.2-console intel-toolkit/2023.1.0
                                                                 ncurses/6.4
                                                                                                                     squashfs/4.5.1
                                                                                              protobuf/3.22.2
automake/1.16.5
                    emacs/27.2-qtk
                                       imol/14.31.0
                                                                 openidk/1.8.0 202-b08
                                                                                              pv-pvmo1/2.5.0
                                                                                                                     strace/5.19
                    emacs/28.2-console libszip/2.1.1
                                                                                              pv-testing-lrz/0.2.0
autotools/v1
                                                                 openjdk/11.0.17_8
                                                                                                                      subversion/1.14.1
binutils/2.31.1
                    emacs/28.2-qtk
                                       libtirpc/1.2.6
                                                                                                                     tcsh/6.24.00
                                                                 paralle1/20220522
                                                                                              python/3.7.16-base
bison/3.8.2
                    flex/2.6.3
                                       libtoo1/2.4.6
                                                                 paraview-prebuild/5.6.0
                                                                                              python/3.7.16-extended
                                                                                                                     texlive/2019
                                                                                              python/3.8.16-base
cgdb/0.8.0
                    gaussian/16-C.02
                                       libtool/2.4.7
                                                                 paraview-prebuild/5.6.0_mesa
                                                                                                                     tmux/3.3a
charliecloud/0.30
                    qdal/3.6.4
                                       ltrace/0.7.3
                                                                 paraview-prebuild/5.8.0
                                                                                              python/3.8.16-extended
                                                                                                                     vmd/1.9.3
charliecloud/0.32
                    adb/13.1
                                       m4/1.4.18
                                                                 paraview-prebuild/5.8.0 mesa
                                                                                                                     vmd/1.9.3-bash
                                                                                              python/3.10.10-base
clingo/5.4.0
                    git/2.40.0
                                       m4/1.4.19
                                                                 paraview-prebuild/5.10.0
                                                                                              python/3.10.10-extended xerces-c/3.2.1
cmake/3.14.5
                    gmake/4.4.1
                                       matlab-mcr/R2022a_Update5
                                                                paraview-prebuild/5.10.0_mesa qt/5.15.9-gl
                                                                                                                     yaml-cpp/0.7.0
                                                                paraview-prebuild/5.11.0
cmake/3.26.3
                    amp/6.2.1
                                       matlab-mcr/R2022b Update5
                                                                                              qt/5.15.9-gl-gtk
                                                                                                                     zlib/1.2.13
coccinelle/gh-201904 grace/5.1.25
                                       matlab-mcr/R2023a_Update1
                                                                paraview-prebuild/5.11.0_mesa redis/7.0.5
                                    ------ /lrz/sys/spack/release/23.1.0/modules/skylake_avx512 --------------------
adios/1.13.1-gcc12-impi
                                     hdf5/1.8.23-intel23-impi
                                                                                 numact1/2.0.14-intel23
adios2/2.9.0-intel23-impi
                                     hdf5/1.10.9-gcc12
                                                                                 openblas/0.3.23-gcc12
```

Flow chart to get my Scientific application ready for HPC

Software Provisioning at LRZ & more

Spack is one of many package-managers

- Functional Cross-Platform Package Managers:
 e.g Nix (NixOs), Gnu Guix (Gnu Guix Linux) ... use hashes in install-dirs
- Build-from-source Package Managers e.g. HomeBrew/LinuxBrew
- Package Managers for specific scripting languages e.g. Pip (Python), NPM (Javascript)
- Easy Build: installation framework for managing scientific software on HPC-systems
- Conda:
 nonular hinary nackage managers for

popular binary package managers for Python and R (but also for other rpm–like packaging in user-space). Easy to use.

In general no architecture optimized binaries, not targeted at HPC

If you want to use Spack, you might want to know about it

What is Spack? In a nutshell

- Spack (package manager and not build tool) automates the fetch, configure and installation of scientific software.
- Spack works out of the box, Simply clone Spack repository to get going.

```
>git clone https://github.com/spack/spack
Cloning into 'spack'...
remote: Enumerating objects: 355317, done.
remote: Total 355317 (delta 0), reused 0 (delta 0), pack-reused 355317
Receiving objects: 100% (355317/355317), 159.99 MiB | 23.13 MiB/s, done.
Resolving deltas: 100% (151370/151370), done.
Updating files: 100% (9087/9087), done.
>. spack/share/spack/setup-env.sh
>spack install zlib
==> Installing zlib-1.2.11-fy5vijvec3tmqbdnsh4q3wkmqsqpzb5a
> No binary for zlib-1.2.11-fy5vijvec3tmqbdnsh4q3wkmqsqpzb5a found: installing from source
==> Fetching https://mirror.spack.io/_source-cache/archive/c3/c3e5e9fdd5004dcb542feda5ee4f0ff0744628baf8ed2dd5d66f8ca1197cb1a1.tar.gz
==> No patches needed for zlib
==> zlib: Executing phase: 'install'
==> zlib: Successfully installed zlib-1.2.11-fy5vijvec3tmqbdnsh4q3wkmqsqpzb5a
  Fetch: 0.29s. Build: 2.18s. Total: 2.48s.
[+] /dss/dsshome1/09/di36pex/demo_spack/spack/opt/spack/linux-sles15-haswell/gcc-8.4.0/zlib-1.2.11-fy5vijvec3tmqbdnsh4q3wkmqsqpzb5a
```

What is Spack? In a nutshell

- Spack can install many different variants of the same package, to name a few:
 - package-versions
 - · different compilers
 - different MPI-implementations
 - different build options
- Most important terminology using Spack is "spec"
 - Spec is what comes after "spack install" command.
 - Specs refer to a particular build configuration of a package.
 - "Specs" are more than package name. It can contain the compiler, compiler version, architecture, compile options, and dependency options for a build.
- Installation locations are separated via unique hashes
 - installations may peacefully coexist (dynamic linking with RPATH)
- The installation location of any package will also contain,
 - dump (in form of text files) of environment during installation, output from installation, configure arguments, and concretized spack-specs

What is Spack? In a nutshell

- Install a package
 - spack install hdf5
- Install a particular version by appending @
 - spack install hdf5@1.12.1
- Specify a compiler (and its version), with %
 - > spack install hdf5%gcc@11.2.0
- Add special variants with +
 - > spack install hdf5@1.12.1%gcc@11.2.0 +fortran +hl
- Add compiler flags using the conventional names
 - spack install hdf5%gcc@11.2.0 +cxx cppflags="-O3 -floop-block"
- Add micro-architecture with target (for cross compiling)
 - \$ spack install hdf5@1.12.1%gcc target=skylake_avx512

- Spack will fetch all the information from a "package file" of a package.
 - Spack info <package name>

```
>spack info hdf5
CMakePackage: hdf5
Description:
   HDF5 is a data model, library, and file format for storing and managing
   data. It supports an unlimited variety of datatypes, and is designed for
   flexible and efficient I/O and for high volume and complex data.
Homepage: https://portal.hdfgroup.org
Maintainers: @lrknox @brtnfld @byrnHDF @ChristopherHogan @epourmal @gheber @hyoklee @lkurz @soumagne
Externally Detectable:
   False
Tags:
   e4s
Preferred version:
   1.12.1
                    https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.12/hdf5-1.12.1/src/hdf5-1.12.1.tar.gz
Safe versions:
                    [git] https://github.com/HDFGroup/hdf5.git on branch develop
    develop-1.13
   1.8.10
                    https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8/hdf5-1.8.10/src/hdf5-1.8.10.tar.gz
Deprecated versions:
   None
Variants:
                                          Allowed values
   Name [Default]
                                  When
                                                                  Description
   api [default]
                                          default, v114, v112,
                                                                  Choose api compatibility for earlier version
                                          v110, v18, v16
   build_type [RelWithDebInfo]
                                          Debug, Release,
                                                                  CMake build type
                                          RelWithDebInfo,
                                          MinSizeRel
   cxx [off]
                                          on, off
                                                                  Enable C++ support
   fortran [off]
                                          on, off
                                                                  Enable Fortran support
   hl [off]
                                          on, off
                                                                  Enable the high-level library
   ipo [off]
                                          on, off
                                                                  CMake interprocedural optimization
                                          on, off
   java [off]
                                                                  Enable Java support
   mpi [on]
                                          on, off
                                                                  Enable MPI support
                                                                  Enable thread-safe capabilities
   threadsafe [off]
                                          on, off
                                                                  Enable building tools
   tools [on]
                                          on, off
Installation Phases:
   cmake
            build
                     install
Build Dependencies:
   cmake java mpi numactl szip zlib
Link Dependencies:
   mpi numactl szip zlib
Run Dependencies:
   java pkgconfig
```

Concretization: dependency tree of a package

- Spack will fetch all the information from a "package file" of a package.
 - Spack info <package name>
- Listing a dependency graph before you go ahead with an installation
 - Spack spec –INtl <package name>
- Spack spec gives you full concretized map of the package

```
>spack spec -lINt hdf5 +fortran +hl
[Input spec
         1 .hdf5+fortran+hl
Concretized
     ghat2bv [
                      builtin.hdf5@1.12.1%qcc@8.4.0~cxx+fortran+hl~ipo~java+mpi+shared~szip~threadsa
     i5dqbwv [b
                          ^builtin.cmake@3.22.2%gcc@8.4.0~doc+ncurses+openssl+ownlibs~qt build_type=
     lg6uazi [bl ]
                              ^builtin.ncurses@6.2%gcc@8.4.0~symlinks+termlib abi=none arch=linux-s1
              [b r ]
                                  ^builtin.pkgconf@1.8.0%gcc@8.4.0 arch=linux-sles15-haswell
     dagug65
             [bl ]
                              ^builtin.openssl@1.1.1m%gcc@8.4.0~docs certs=system arch=linux-sles15-
     2zfrt75
                                  ^builtin.perl@5.34.0%gcc@8.4.0+cpanm+shared+threads arch=linux-sle
              [b r ]
     zveoqua
     t5a6kgl
              [bl ]
                                      ^builtin.berkeley-db@18.1.40%gcc@8.4.0+cxx~docs+stl patches=b2
     dpfohvz
             [bl ]
                                      ^builtin.bzip2@1.0.8%qcc@8.4.0~debug~pic+shared arch=linux-sle
                                          ^builtin.diffutils@3.8%gcc@8.4.0 arch=linux-sles15-haswell
             [b
              [bl
                                              ^builtin.libiconv@1.16%gcc@8.4.0 libs=shared, static ar
             [bl
                                      ^builtin.gdbm@1.19%gcc@8.4.0 arch=linux-sles15-haswell
     tisehf3 [bl ]
                                          ^builtin.readline@8.1%gcc@8.4.0 arch=linux-sles15-haswell
    fv5viiv
             [bl ]
                                      ^builtin.zlib@1.2.11%gcc@8.4.0+optimize+pic+shared arch=linux-
     sklqwij [bl ]
                          ^builtin.numactl@2.0.14%gcc@8.4.0 patches=4e1d78cbbb85de625bad28705e748856
f599cfabf0740518b91ec8daaf18e8f288b19adaae5364dc1f6b2296 arch=linux-sles15-haswell
     kyq3asj [b ]
                              ^builtin.autoconf@2.69%gcc@8.4.0 patches=35c449281546376449766f92d49fc
5bac3b62daa0ff688ab4d508d71dbd2f4f8d7e2a02321926346161bf3ee arch=linux-sles15-haswell
     lx4bpfg [b r ]
                                  ^builtin.m4@1.4.19%gcc@8.4.0+sigseqv patches=9dc5fbd0d5cb1037ab1e6
89 arch=linux-sles15-haswell
     6zmn6dv [bl ]
                                      ^builtin.libsigsegv@2.13%gcc@8.4.0 arch=linux-sles15-haswell
     y77iduv
             [b
                              ^builtin.automake@1.16.5%gcc@8.4.0 arch=linux-sles15-haswell
     kyyaw3y [b
                              ^builtin.libtool@2.4.6%qcc@8.4.0 arch=linux-sles15-haswell
                          ^builtin.openmpi@4.1.2%gcc@8.4.0~atomics~cuda~cxx~cxx_exceptions+gpfs~inte
     17ukpnd [bl
e+vt+wrapper-rpath fabrics=none schedulers=none arch=linux-sles15-haswell
     gzlecom [bl ]
                              ^builtin.hwloc@2.7.0%gcc@8.4.0~cairo~cuda~gl~libudev+libxml2~netloc~nv
     qxup3jq [bl ]
                                  ^builtin.libpciaccess@0.16%gcc@8.4.0 arch=linux-sles15-haswell
                                      ^builtin.util-macros@1.19.3%gcc@8.4.0 arch=linux-sles15-haswel
     kg3gaar [b
     wwlegep [bl
                                  ^builtin.libxml2@2.9.12%gcc@8.4.0~python arch=linux-sles15-haswell
     4syc2vd [bl ]
                                      ^builtin.xz@5.2.5%qcc@8.4.0~pic libs=shared,static arch=linux-
             [bl ]
                              ^builtin.libevent@2.1.12%gcc@8.4.0+openssl arch=linux-sles15-haswell
     4soggx7
                              ^builtin.openssh@8.8p1%gcc@8.4.0 arch=linux-sles15-haswell
     iitriio [ r ]
                                  ^builtin.libedit@3.1-20210216%gcc@8.4.0 arch=linux-sles15-haswell
     jkppbin [bl ]
```

Useful Spack commands


```
$ spack help
usage: spack [-hkV] [--color {always,never,auto}] COMMAND ...
A flexible package manager that supports multiple versions,
configurations, platforms, and compilers.
These are common spack commands:
query packages:
 list
                        list and search available packages
 info
                       get detailed information on a particular package
  find
                       list and search installed packages
build packages:
 install
                       build and install packages
 uninstall
                       remove installed packages
                       remove specs that are now no longer needed
 gc
                       show what would be installed, given a spec
  spec
configuration:
 external
                        manage external packages in Spack configuration
environments:
                        manage virtual environments
 env
                       project packages to a compact naming scheme on the filesystem.
  view
create packages:
                       create a new package file
 create
                       open package files in $EDITOR
  edit
system:
 arch
                        print architecture information about this machine
                       audit configuration files, packages, etc.
  audit
                       list available compilers
  compilers
```


Can I use Spack to extend the existing software stack?

User_spack: Spack in User space

- Chaining the existing Installations (software stack provided by the LRZ) into your own Spack Environment
- How do I activate user_spack?
 - module load user_spack
- Why do I use it?
 - making use of already installed packages via chaining of software stack provided by the LRZ
 - · avoids recompiling low level packages in many situations
 - has working defaults configurated for some essential dependencies (e.g. MPI)
- What does loading "user spack" module do actually?
 - loads a setup script that adds the "spack" command to your shell.
 - · spack version matches the version the default software stack has been built with
 - LRZ specific configurations are preconfigured for you

User_spack: Installing software

- HDF5 dependency tree is shown in the image.
- The library itself is not yet installed (-).
- But all of its dependencies are already available via the upstream LRZ installation ([^]).
- A package that you have installed locally in your home directory with Spack is marked by [+].

```
>spack spec -INlt hdf5 +fortran ~threadsafe
Input spec
          1 .hdf5+fortran~threadsafe
Concretized
     ohhl2i4 [
                     builtin.hdf5@1.10.7%gcc@11.2.0~cx)
h=linux-sles15-haswell
                          ^builtin.cmake@3.21.4%gcc@11.2
     kdevmh2
     47oirrv
                              ^builtin.ncurses@6.2%gcc@1
              [bl ]
     6dgwgxm
              [b r ]
                                  ^builtin.pkgconf@1.8.(
                              ^builtin.openssl@1.1.11%gc
     oeopnpj
              [bl ]
    rken265
                                  ^builtin.perl@5.34.0%
              [b r ]
     dp5zt2x
                                      ^builtin.berkelev-
              [bl ]
05aff41de522 arch=linux-sles15-haswell
     ybteog6
              [bl ]
                                      ^builtin.bzip2@1.(
                                          ^builtin.diffu
     gweivgh
              [b
     a6m4kz6
              [bl ]
                                              ^builtin.
```

User_spack: Installing software

- Dependencies are chained from the LRZ installation
 - see /dss/.../lrz/... paths
- Spack checks if the source tar ball is available in the LRZ cache
- If not present, tar files can be download from external site
- installation location of the library in \$HOME/spack/opt/...

```
>spack install hdf5 +fortran ~threadsafe
[+] /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/pkg
[+] /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/bei
[+] /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/lik
[+] /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/zl:
[+] /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/aut
[+] /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/cma
[+] /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/aut
[+] /dss/dsshome1/lrz/sys/spack/release/22.2.1/opt/haswell/nur
==> Installing hdf5-1.10.7-ohhl2i4g4ztco53okwghc5zcre332lk2
==> No binary for hdf5-1.10.7-ohhl2i4g4ztco53okwghc5zcre332lk/
==> Fetching file:///lrz/sys/spack/cache/_source-cache/archive
==> Ran patch() for hdf5
==> hdf5: Executing phase: 'cmake'
==> hdf5: Executing phase: 'build'
==> hdf5: Executing phase: 'install'
==> hdf5: Successfully installed hdf5-1.10.7-ohhl2i4g4ztco53ol
 Fetch: 0.04s. Build: 2m 2.08s. Total: 2m 2.12s.
[+] /dss/dsshome1/09/di36pex/spack/opt/linux-sles15-haswell/hc
```

User_spack: Generating Modules for your software

We have configured Spack such that modules will only be generated for explicitly installed packages.

```
>>spack module tcl refresh hdf5
==> You are about to regenerate tcl mod
-- linux-sles15-haswell / gcc@11.2.0 --
ohhl2i4 hdf5@1.10.7

==> Do you want to proceed? [y/n] y
==> Regenerating tcl module files
```

- Modules are installed in
 - \$HOME/spack/modules/\$LRZ_INSTRSET/ <architecture>/<package>/<version>
- The path to the modules is added to \$MODULEPATH when you load the user_spack module, but only
 if it already exists. You might want to reload user_spack.
- One could also add module path manually
 - module use <path to local modules>

User_spack: Configuring your Spack Instance

- LRZ provides a configuration that is very similar to the one the software stack was built with.
- You may want to change some or all of these settings to serve your needs, e.g. for the package selection, generation of modules, etc.
- Your individual configuration files are stored in the directory ~/.spack/.
 - spack config edit repos
 - spack config edit config
 - > spack config edit modules
- User config files take precedence over system provided config file, that is they are loaded after the system config files and overwrite their settings.

User_spack: Generating modules for upstream packages

- For packages that have been implicitly installed in the upstream software stack (LRZ installed) no modules are generated by default.
- You can configure your `user_spack` such that you generate modules in your \$HOME directory.
- You may want to change some or all of these settings to serve your needs, e.g. for the package selection, generation
 of modules, etc.
 - > spack config edit modules
 - cat ~/.spack/modules.yaml

```
modules:
    tcl:
       exclude_implicits: false
       hash_length: 7
```

- Now modules are generated for all installed packages and each newly created module gets a hash suffix of length 7
 to avoid naming conflicts.
- Modules are generated with
 - > spack module tcl refresh --upstream-modules

User_spack: User configurations

Adding compilers

- Spack searches for compilers on your machine automatically the first time it is run. It does this by inspecting your \$PATH
- One could use "spack compiler add" command,
 - spack compiler add /path/to/my compiler
 - > spack compiler list
- For example the output of spack compiler list could look like,

```
==> Available compilers
-- gcc sles15-x86_64 ------
gcc@8.4.0 gcc@7.5.0
-- intel sles15-x86_64 ------
intel@19.0.5.281
```

Spack package repositories

- Spack supports external package repositories
 - Separate directories of package files
- Many reasons for doing this,
 - You want to write a package file for an in-house code that you may not want to release publicly.
 - Overwrite default package files with site specific versions or restrictions
- One could use "spack repo create" command,
 - spack repo create /path/to/my repo
 - spack repo add my_repo
 - > spack repo list
- This will show 2 package repositories.
 - my repo /path/to/my repo builtin
 - spack/var/spack/repos/builtin

Chaining: Chain Spack Installations

- You can point your Spack installation to another installation to use any packages that are installed there.
- To register the other Spack instance, you can add it as an entry to upstreams.yaml

```
upstreams:
    spack-instance-1:
        install_tree: /path/to/other/spack/opt/spack
    spack-instance-2:
        install_tree: /path/to/another/spack/opt/spack
```



```
>spack spec -INlt hdf5 +fortran~hl
Input spec
             .hdf5+fortran~hl
Concretized
                      fixes015x.hdf5@1.10.7%gcc@8.4.0~cxx~debug+fc
     zt4lxrl
                          ^fixes015x.intel-mpi@2019.8.254%gcc@8.4.
     cvoicvv
              [bl ]
     wz47lgr
              [bl ]
                          ^builtin.numactl@2.0.12%gcc@8.4.0 arch=]
     ins7liw
                              ^builtin.autoconf@2.69%gcc@8.4.0 arc
     6vxvnrt [b r]
                                   ^builtin.m4@1.4.18%gcc@8.4.0+sic
c8 arch=linux-sles15-haswell
     av36h32
              [bl ]
                                       ^builtin.libsigsegv@2.12%gcc
                                  ^builtin.perl@5.30.3%gcc@8.4.0+c
     bhpjih4
              [b r ]
                                       ^builtin.gdbm@1.18.1%gcc@8.4
     szzheyp
              [bl ]
                                           ^builtin.readline@8.0%gc
     3kfx6pu
              [bl
     6ghv5ta
              [bl
                                               ^fixes015x.ncurses@6
     cfijkws
                                                   ^builtin.pkgconf
                              ^builtin.automake@1.16.2%gcc@8.4.0 a
     zzoup2h
              [b
```

^builtin.libtool@2.4.6%gcc@8.4.0 arc

^builtin.zlib@1.2.11%gcc@8.4.0+optimize+

4nva677

m2bfsoy

[bl

Spack Environments

lrz

- A spack environment is used to group together a set of specs for the purpose of building, rebuilding and deploying in a coherent fashion.
- An Environment that is built as a whole can be loaded as a whole into the user environment.
- spack.yaml (example: python-extended.yaml) describes a project requirements
 - Spack stores metadata in the .spack-env directory. User interaction will occur through the spack.yaml
 - When the environment is concretized, Spack will create a file spack.lock. This file describes exactly what versions /configurations were installed, allows them to be reproduced.
- You can give this file to any one in the project and he would get the exact same customized sets of packages installed, without any differences. A very robust reproducible software environment!

```
spack:
  config:
    install tree:
      root: $spack/../opt/${LRZ_TARGET}/autootols/v1
  specs:
    - autotools@v1
    autoconf@2.71

    automake

    libtool
    -m4

    pkg-config

    - autoconf@2.69

    automake@1.16.1

    libtool@2.4.6
    - m401.4.18
  view:
    autotools:
      root: ../../views/autotools/v1
      exclude:
        autoconf@2.69

    automake@1.16.1

        libtool@2.4.6
        - m401.4.18
  concretizer:
   unify: false
```

Conda Environments

- What is Conda?
 - A package manager and environment management system.
 - Ideal for creating isolated environments for projects.
- Benefits of Using Conda Environments
 - Avoids version conflicts between libraries.
 - Ensures project reproducibility.
- Creating and Activating a Conda Environment
 - Create: conda create --name myenv python=3.8
 - Activate: source activate myenv
- Installing mpi4py
 - mpi4py allows Python programs to use MPI for parallel processing.
- Install with: conda install mpi4py
- Exporting and Sharing Environments
 - Export with: conda env export > environment.yml.
 - Share the environment.yml for reproducible setups.

```
di36pex@cm2login1:~> conda activate myenv
(myenv) conda install mpi4py
Collecting package metadata (current_repodata.json): done
Solving environment: done

==> WARNING: A newer version of conda exists. <==
    current version: 22.9.0
    latest version: 23.10.0

Please update conda by running
    $ conda update -n base -c defaults conda

## Package Plan ##
    environment location: /dss/dsshome1/09/di36pex/.conda/envs/myenv</pre>
```

The following NEW packages will be INSTALLED:

```
pkgs/main/linux-64::_libgcc_mutex-0.1-main None
_libgcc_mutex
_openmp_mutex
                   pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu None
bzip2
                   pkgs/main/linux-64::bzip2-1.0.8-h7b6447c_0 None
ca-certificates
                   pkgs/main/linux-64::ca-certificates-2023.08.22-h06a4308_0 None
                   pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1 None
ld impl linux-64
libffi
                   pkgs/main/linux-64::libffi-3.4.4-h6a678d5 0 None
                   pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1 None
libgcc-ng
libgfortran-ng
                   pkgs/main/linux-64::libgfortran-ng-7.5.0-ha8ba4b0_17 None
libafortran4
                   pkgs/main/linux-64::libgfortran4-7.5.0-ha8ba4b0_17 None
                   pkgs/main/linux-64::libgomp-11.2.0-h1234567_1 None
libgomp
libstdcxx-ng
                   pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1 None
libuuid
                   pkgs/main/linux-64::libuuid-1.41.5-h5eee18b_0 None
mpi
                   pkgs/main/linux-64::mpi-1.0-mpich None
```

Software Stack on SMNG Phase 2: Spack/24.1.0

- Rolled out Software Stack Spack/24.1.0 on SuperMUC-NG Phase II.
- Compilers and MPI's:
 - OneAPI 24x release, support for Intel PVC, will be made available.
 - Al toolkit from OneAPI will be made available.
 - Intel compiler drivers LLVM based (e.g., icx, ifx, icpx, etc.) will replace traditional drivers (ifort, icpc, and icc).
 - Intel oneAPI AI toolkits for AI BD workloads will be provided as modules.
 - Both, generic build and optimized software builds for Sapphirerapids will be made available
- Improved Module Interactions
 - We have made significant changes to enhance the maintainability and long-term support of the software stack, particularly in terms of module interactions.
 - Simplified module names
 - Adhering the compatibility of compilers and MPI with all its dependents by adding meaning prerequisites
 - Have provided bundle modules; collection of frequently used software in a single module.
- `user_spack` enabling the possibility to address unique needs of users to install / build on top of LRZ software stack.

Questions?