

2

Leibniz Supercomputing Centre
Software Provisioning at LRZ | Nisarg Patel

Software Provisioning at LRZ | Nisarg Patel

• Software stack on compute resources

• How do we manage HPC Software at LRZ

• General info about Software Stack

• Environmental Modules

• Flow chart to get my application ready for HPC

• Spack Introduction and user spack.

• Spack and Conda envs

3

Motivation

Software Provisioning at LRZ | Nisarg Patel

HPC users
We have highly diverse users (< 4500 active users) with unique needs

4Software Provisioning at LRZ & more

toolkits

environments

io tools

commercial
applications

libraries

open source
applications

compilers

graphics

parallelization
tools

build tools

editors

Software in form of “modules” on compute resources at LRZ

5Software Provisioning at LRZ | Nisarg Patel

SuperMUC-NG Phase I

CoolMUC-3

CoolMUC-2

Teramem

LRZ Managed
Housing
systems

SuperMUC-NG Phase II

Software stack on compute resources

6Software Provisioning at LRZ | Nisarg Patel

Open source & Commercial
Applications (CFD, Astro, Bio, Geo,

QCD)

Performance libraries, debug
tools, graphics applications,

etc.

Parallel tools (Intel-MPI,
OpenMP, OpenMPI, IO

libs)

Compilers
(GCC, Intel,
nvhpc, NAG)

System config &
envs

• About ~400 environment modules on these machines,
• SuperMUC-NG Phase I & II
• CoolMUC-2
• CoolMUC-3
• Housing Clusters

• Libraries and applications are build for,
• Specific architectures

• Saphirerapids
• Skylake_avx512
• Haswell
• KNL

• General build
• x86_64

• Baring most commercial applications, about >90% of all
software/libraries are provided with the help of Spack.

Catering software needs for HPC users

7Software Provisioning at LRZ & more

• Why do we provide software support at all?

• We have conventional HPC users + novice users + extremely complicated systems (multiple of them)
• We provide software support to facilitate and expedite the usage of HPC as easily as possible.
• Efficient and correct software enables users to effectively utilize the system.

• To cater large and highly diverse group of users, we in CXS+HPC group manage HPC software either,

• Manually by each individual application maintainer
• In semi-automated manner, using Spack

• Each software (module) that you see on LRZ systems, someone from CXS or HPC department is
responsible

• for managing the state of installations
• providing modules
• support users with individual software

Getting user application ready for HPC

8Software Provisioning at LRZ | Nisarg Patel

Do your own stuff;

User is responsible for;
copy, configure, build, Install

compilers
middleware

dependencies
license setups

environment set ups

+ user specific applications

Use LRZ software stack;

provided via modules

compilers
middleware

dependencies
license setups

environment set ups

+ user specific applications

HPC systems at LRZ

• A high-level application may just be the „tip of an iceberg“ when considering a feature-rich
configuration of the software with all it‘s dependencies.

• Feature-rich CFD-Package OpenFOAM incl. vtk & paraview (with 140 dependencies) looks like,

9

Why do we provide software? The dependency-hell

Software Provisioning at LRZ | Nisarg Patel

Software available as Environmental Modules!

10Software Provisioning at LRZ | Nisarg Patel

• Modules provide a flexible way to configure and access various applications, compilers, tools and libraries dynamically by
managing the shell environment

• In other words modules allow for the dynamic modification of environment variables which handles;
• library paths
• binary paths
• license server settings
• application specific configurations
• header files
• pkg-config files
• wrapper commands or scripts

Examples of using modules

11Software Provisioning at LRZ | Nisarg Patel

Examples of Modules

12Software Provisioning at LRZ | Nisarg Patel

Examples of Modules

13Software Provisioning at LRZ | Nisarg Patel

Examples of Modules

14Software Provisioning at LRZ | Nisarg Patel

15Software Provisioning at LRZ | Nisarg Patel

Screenshot of modules in the software stack

Flow chart to get my Scientific application ready for HPC

16Software Provisioning at LRZ & more

Do your own stuff

I am happy with available modules

I am using available modules but Its
not sufficient

How can I
build further applications
on top of installed software?

user_spack

Use LRZ provided software via modules

How do I get
my application

ready for
HPC?

Someone from
CXS+HPC group

installs software either
manually or uses
Spack package

manager

hmm; if LRZ is using Spack, can I use it to
extend the existing software to build my

applications?

Spack is one of many package-managers

• Functional Cross-Platform Package Managers:
e.g Nix (NixOs), Gnu Guix (Gnu Guix Linux) … use hashes in install-dirs

• Build-from-source Package Managers
e.g. HomeBrew/LinuxBrew

• Package Managers for specific scripting languages
e.g. Pip (Python), NPM (Javascript)

• Easy Build:
installation framework for managing scientific software on HPC-systems

• Conda:
popular binary package managers for Python and R (but also for other rpm–like
packaging in user-space). Easy to use.
In general no architecture optimized binaries, not targeted at HPC

Software Provisioning at LRZ | Nisarg Patel 17

18Software Provisioning at LRZ | Nisarg Patel

If you want to use Spack,
you might want to know about it

• Spack (package manager and not build tool) automates the fetch, configure and installation of scientific
software.

• Spack works out of the box, Simply clone Spack repository to get going.

19Software Provisioning at LRZ | Nisarg Patel

What is Spack? In a nutshell

• Spack can install many different variants of the same package, to name a few:
• package-versions
• different compilers
• different MPI-implementations
• different build options

• Most important terminology using Spack is “spec”
• Spec is what comes after “spack install” command.
• Specs refer to a particular build configuration of a package.
• “Specs” are more than package name. It can contain the compiler, compiler version, architecture, compile options, and

dependency options for a build.

• Installation locations are separated via unique hashes
• installations may peacefully coexist (dynamic linking with RPATH)

• The installation location of any package will also contain,
• dump (in form of text files) of environment during installation, output from installation, configure arguments, and concretized

spack-specs

20Software Provisioning at LRZ | Nisarg Patel

What is Spack? In a nutshell

21Software Provisioning at LRZ | Nisarg Patel

What is Spack? In a nutshell

• Install a package

Ø spack install hdf5

• Install a particular version by appending @

Ø spack install hdf5@1.12.1

• Specify a compiler (and its version), with %

Ø spack install hdf5%gcc@11.2.0

• Add special variants with +

Ø spack install hdf5@1.12.1%gcc@11.2.0 +fortran +hl

• Add compiler flags using the conventional names

Ø spack install hdf5%gcc@11.2.0 +cxx cppflags="-O3 -floop-block"

• Add micro-architecture with target (for cross compiling)

Ø $ spack install hdf5@1.12.1%gcc target=skylake_avx512

22Software Provisioning at LRZ | Nisarg Patel

Finding versions and variants of a package

• Spack will fetch all the information from a
“package file” of a package.

Ø Spack info <package name>

23Software Provisioning at LRZ | Nisarg Patel

Concretization: dependency tree of a package

• Spack will fetch all the information from a
“package file” of a package.

Ø Spack info <package name>

• Listing a dependency graph before you go
ahead with an installation

Ø Spack spec –INtl <package name>

• Spack spec gives you full concretized map of
the package

24Software Provisioning at LRZ | Nisarg Patel

Useful Spack commands

https://spack.readthedocs.io/en/latest/index.html

25Software Provisioning at LRZ | Nisarg Patel

Can I use Spack
to extend the existing software stack?

26Software Provisioning at LRZ | Nisarg Patel

• User_spack: Spack in User space

• Chaining the existing Installations (software stack provided by the LRZ) into your own Spack
Environment

• How do I activate user_spack?

Ø module load user_spack

• Why do I use it?

• making use of already installed packages via chaining of software stack provided by the LRZ
• avoids recompiling low level packages in many situations
• has working defaults configurated for some essential dependencies (e.g. MPI)

• What does loading “user_spack” module do actually?

• loads a setup script that adds the “spack” command to your shell.
• spack version matches the version the default software stack has been built with
• LRZ specific configurations are preconfigured for you

27Software Provisioning at LRZ | Nisarg Patel

• User_spack: Installing software

• HDF5 dependency tree is shown in the image.

• The library itself is not yet installed (-).

• But all of its dependencies are already available
via the upstream LRZ installation ([^]).

• A package that you have installed locally in your
home directory with Spack is marked by [+].

28Software Provisioning at LRZ | Nisarg Patel

• User_spack: Installing software

• Dependencies are chained from the LRZ
installation

• see /dss/…/lrz/… paths

• Spack checks if the source tar ball is available in
the LRZ cache

• If not present, tar files can be download from
external site

• installation location of the library
in $HOME/spack/opt/...

29Software Provisioning at LRZ | Nisarg Patel

User_spack: Generating Modules for your software

• We have configured Spack such that modules will only be generated for explicitly installed packages.

• Modules are installed in

• $HOME/spack/modules/$LRZ_INSTRSET/ <architecture>/<package>/<version>

• The path to the modules is added to $MODULEPATH when you load the user_spack module, but only
if it already exists. You might want to reload user_spack.

• One could also add module path manually

Ø module use <path to local modules>

30Software Provisioning at LRZ | Nisarg Patel

User_spack: Configuring your Spack Instance

• LRZ provides a configuration that is very similar to the one the software stack was built with.

• You may want to change some or all of these settings to serve your needs, e.g. for the package
selection, generation of modules, etc.

• Your individual configuration files are stored in the directory ~/.spack/.

Ø spack config edit repos
Ø spack config edit config
Ø spack config edit modules

• User config files take precedence over system provided config file, that is they are loaded after the
system config files and overwrite their settings.

31Software Provisioning at LRZ | Nisarg Patel

User_spack: Generating modules for upstream packages

• For packages that have been implicitly installed in the upstream software stack (LRZ installed) no modules are
generated by default.

• You can configure your `user_spack` such that you generate modules in your $HOME directory.

• You may want to change some or all of these settings to serve your needs, e.g. for the package selection, generation
of modules, etc.

Ø spack config edit modules
Ø cat ~/.spack/modules.yaml

• Now modules are generated for all installed packages and each newly created module gets a hash suffix of length 7
to avoid naming conflicts.

• Modules are generated with

Ø spack module tcl refresh --upstream-modules

modules:
tcl:

exclude_implicits: false
hash_length: 7

32Software Provisioning at LRZ | Nisarg Patel

User_spack: User configurations

• Spack package repositories

• Spack supports external package repositories
• Separate directories of package files

• Many reasons for doing this,
• You want to write a package file for an in-house code

that you may not want to release publicly.
• Overwrite default package files with site specific versions

or restrictions

• One could use “spack repo create” command,
Ø spack repo create /path/to/my_repo
Ø spack repo add my_repo
Ø spack repo list

• This will show 2 package repositories.
• my_repo /path/to/my_repo builtin
• spack/var/spack/repos/builtin

• Adding compilers

• Spack searches for compilers on your machine
automatically the first time it is run. It does this
by inspecting your $PATH

• One could use “spack compiler add” command,
Ø spack compiler add /path/to/my_compiler
Ø spack compiler list

• For example the output of spack compiler list could
look like,

==> Available compilers

-- gcc sles15-x86_64 --
gcc@8.4.0 gcc@7.5.0

-- intel sles15-x86_64 --
intel@19.0.5.281

33Software Provisioning at LRZ | Nisarg Patel

Chaining: Chain Spack Installations

• You can point your Spack installation to another
installation to use any packages that are
installed there.

• To register the other Spack instance, you can
add it as an entry to upstreams.yaml

upstreams:
spack-instance-1:

install_tree: /path/to/other/spack/opt/spack
spack-instance-2:

install_tree: /path/to/another/spack/opt/spack

34Software Provisioning at LRZ | Nisarg Patel

Spack Environments

• A spack environment is used to group together a set of specs for
the purpose of building, rebuilding and deploying in a coherent
fashion.

• An Environment that is built as a whole can be loaded as a whole
into the user environment.

• spack.yaml (example: python-extended.yaml) describes a
project requirements

• Spack stores metadata in the .spack-env directory. User
interaction will occur through the spack.yaml

• When the environment is concretized, Spack will create a
file spack.lock. This file describes exactly what versions
/configurations were installed, allows them to be
reproduced.

• You can give this file to any one in the project and he would get
the exact same customized sets of packages installed, without
any differences. A very robust reproducible software
environment!

35Software Provisioning at LRZ | Nisarg Patel

Conda Environments

• What is Conda?
• A package manager and environment management

system.
• Ideal for creating isolated environments for projects.

• Benefits of Using Conda Environments
• Avoids version conflicts between libraries.
• Ensures project reproducibility.

• Creating and Activating a Conda Environment
• Create: conda create --name myenv python=3.8
• Activate: source activate myenv

• Installing mpi4py
• mpi4py allows Python programs to use MPI for parallel

processing.

• Install with: conda install mpi4py

• Exporting and Sharing Environments
• Export with: conda env export > environment.yml.
• Share the environment.yml for reproducible setups.

36Software Provisioning at LRZ | Nisarg Patel

Software Stack on SMNG Phase 2: Spack/24.1.0

• Rolled out Software Stack Spack/24.1.0 on SuperMUC-NG Phase II.

• Compilers and MPI’s:
• OneAPI 24x release, support for Intel PVC, will be made available.
• AI toolkit from OneAPI will be made available.
• Intel compiler drivers – LLVM based (e.g., icx, ifx, icpx, etc.) will replace traditional drivers (ifort, icpc, and icc).
• Intel oneAPI AI toolkits for AI BD workloads will be provided as modules.
• Both, generic build and optimized software builds for Sapphirerapids will be made available

• Improved Module Interactions
• We have made significant changes to enhance the maintainability and long-term support of the software stack,

particularly in terms of module interactions.
• Simplified module names
• Adhering the compatibility of compilers and MPI with all its dependents by adding meaning prerequisites
• Have provided bundle modules; collection of frequently used software in a single module.

• `user_spack` enabling the possibility to address unique needs of users to install / build on top of LRZ software stack.

72Software Provisioning at LRZ | Nisarg Patel

Questions?

