

Introduction to Fortran - Hands On Sessions

Table of Contents
Introductory Comments .. 2

Exercises for Day 1 ... 3

Session 1 (obligatory) – Build and run a simple program .. 3

Session 1 (obligatory) – Sums of squares .. 3

Session 1 (obligatory) – Calculating an approximation of π .. 4

Session 1 (obligatory) – Sorting a String .. 4

Session 1 (optional) – Sieve of Eratosthenes ... 4

Session 1 (optional) – Calculate the area of a triangle .. 5

Session 2 (part 1 obligatory) – Greatest common divisor ... 5

Session 2 (part 1+2 obligatory) – procedure for solving quadratic equation .. 6

Session 2 (obligatory) – Calculate a dot product using BLAS ... 7

Session 2 (obligatory) – the PURE attribute .. 7

Exercises for Day 2 ... 8

Session 3 (obligatory) – Bodies and charged bodies ... 8

Session 3 (obligatory) – Using array intrinsics ... 8

Session 3 (obligatory) – Initializing data .. 9

Session 4 (obligatory) – Simulating heat conduction .. 9

Session 4 (obligatory) – Command line processing ... 10

Session 4 (optional) – Prime numbers with arrays .. 11

Exercises for Day 3 ... 12

Session 5 (obligatory) - Heat conduction using heap memory .. 12

Session 5 (optional) – Some performance tuning of the heat conduction example 12

Session 5 (optional) – Transposing a rank 3 array ... 12

Session 5 (obligatory) – Handling rational numbers .. 12

Session 5 (optional) – Reduction on fractions ... 13

Session 6 (obligatory) - Checkpointing a simulation .. 13

Session 6 (optional) - Heat conduction: control from configuration file ... 13

Session 6 (optional) – An internal I/O scenario ... 14

Introductory Comments

• Please consult the web site

https://doku.lrz.de/display/PUBLIC/Materials+-+Programming+with+Fortran

for further information on how the exercises should be prepared and conducted. The web site

also features downloads for all course materials.

• There is no need to do all the exercises.

• You are bound to make mistakes. Therefore, writing test programs (comparing expected with

actual results) is a vitally important step in the development cycle. And one learns more from

the mistakes than from the successes.

https://doku.lrz.de/display/PUBLIC/Materials+-+Programming+with+Fortran

Exercises for Day 1

Session 1 (obligatory) – Build and run a simple program
The folder examples/skel_day1 contains the example program solve_my_quadratic.f90

(real solutions of a quadratic equation) from the slide talk.

1. Compile and run this program with the various compilers at your disposal. You can use the

Makefile that is also available in the examples/skel_day1 folder (“make

solve_my_quadratic.exe”), or compile directly via the command line.

2. In order to be able to run a single compiled executable with various values of the coefficients a,

b, c, change the program so it repeatedly reads these three real values from standard input.

Then, run the program at least with the following combinations:

a b c

2.0 -2.0 -1.5

2.0 -2.0 +1.5

Fix the problem that arises when the second set of values is used. What happens if you supply

non-numerical input?

3. Modify the program to deal more gracefully with non-numerical input by catching the I/O error.

This can be done by adding an iostat=<integer_variable> specification (separated by a

comma) in the I/O statement and checking the integer result for being a nonzero value. What

other problems might you encounter when reading data from standard input?

4. Replace the “*” format used for output by a format string that displays 10 digits after the decimal

point, using scientific notation. Then re-execute the program with

a b c

2.0 -2.31 -1.76

The solution for this exercise will be contained in the file solve_my_quadratic.f90 of the

folder examples/solutions_day1/.

Session 1 (obligatory) – Sums of squares
Declare an array of integers and write statements to store squares j2 (j=1, ...) in that array. Then,

calculate those integers n for which

∑ 𝑗2

𝑛

𝑗=1

≤ 100

What do you need to do if the right hand side of the inequality is 10,000,000,000 instead of 100?

How can the required amount of changes to the program be minimized? Print out the resulting list

of numbers with a suitably integer-formatted write statement.

The solution for this exercise will be contained in the file sum_of_squares.f90 of the folder

examples/solutions_day1/.

Session 1 (obligatory) – Calculating an approximation of π
The program examples/skel_day1/pi_approx.f90 calculates an approximation of the

integral

𝜋

4
= ∫

𝑑𝑥

1 + 𝑥2

∞

0

through a discretization process. How is the expression in the summation loop evaluated? Build the

program and run it, measuring the execution time via the UNIX time command. Modify the program

to avoid conversions and both check the results and re-measure the performance.

The solution for this exercise will be contained in the file pi_approx.f90 of the folder

examples/solutions_day1/.

Session 1 (obligatory) – Sorting a String
(This exercise is from “Modern Fortran Explained”, Section 4.6)

Define a character variable of length 80. Write a program that reads a value for this variable.

Assuming that each character in the variable is alphabetic, write code that sorts them into

alphabetic order, and prints out the frequency of occurrence of each letter.

Hint: You might want to use the intrinsic function TRIM that removes trailing blanks from a string.

For example,

character(len=5) :: c

character(len=4) :: a

a = 'w'

c = TRIM(a) // 'x'

produces a value of c equal to 'wxbbb', while the assignment c = a // x would produce

'wbbbx' (italicized b indicates a blank).

Session 1 (optional) – Sieve of Eratosthenes
Write a program which calculates all prime numbers between 2 and a given integer, say 100 or

12534 and stores these numbers in an array; once the calculation is complete, print out the results.

Hint: you might want to consult Wikipedia for the algorithm. See

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

The solution for this exercise will be contained in the file sieve.f90 of the folder

examples/solutions_day1/.

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Programming with Fortran – Hands-On Training and Table of Contents

Session 1 (optional) – Calculate the area of a triangle
This exercise is of interest for people concerned with precise numerics.

Given the lengths of the three sides of a triangle, write a program which calculates the latter's area.

A skeleton program is available in the file examples/skel_day1/triangle.f90. Try to take care

of spurious inputs, for example by skipping the processing of such input data.

Consult http://en.wikipedia.org/wiki/Heron's_formula for information on how to calculate the

required quantities.

The solution for this exercise will be contained in the file triangle.f90 of the folder

examples/solutions_day1/. If you are interested in the numerical properties of this problem,

you might also want to read the paper by W. Kahan, included as Triangle.pdf.

Session 2 (part 1 obligatory) – Greatest common divisor
1. The GCD of two integer numbers a, b is the largest integer that divides both numbers without a

remainder. To calculate this quantity an algorithm based on that invented by Euclid of Alexandria

can be used, which performs the following steps for positive integers a, b:

Step Action

1 If |a| < |b| swap a and b

2 Perform division with remainder a / b, assign the result to d

and the remainder to r

3 If r is zero, go to Step 6

4 Replace a by b and b by r

5 Go to Step 2

6 b now contains the GCD

Write a module containing a module function that calculates the GCD. A main program is
provided in examples/skel_day1/test_gcd.f90; it invokes the function for a number
of datasets and checks the calculated results.

The solution will be in the program files mod_gcd.f90 and test_gcd.f90 in the

examples/solutions_day1 folder. The executable can be built via the command make

test_gcd.exe.

http://en.wikipedia.org/wiki/Heron's_formula

Programming with Fortran – Hands-On Training and Table of Contents

2. (This part is optional) The GCD can alternatively also be represented by the following recursive

definition:

GCD(a, b) = b if a mod b equals zero,

GCD(a, b) = GCD(a mod b, b) otherwise

Write a function that uses this definition to calculate the GCD and check against the first

implementation for correctness. Which implementation do you expect to be faster?

Session 2 (part 1+2 obligatory) – procedure for solving quadratic equation
Improve on the program from session 1.

1. Write a module procedure as indicated in the talk, and make the main program invoke this

procedure; the procedure should return the results in ascending order. Depending on the

number of solutions found, zero, one, or two results should be printed. Try compiling an

invocation of the procedure with incorrectly typed arguments, or the wrong number of

arguments.

2. Add statements to the main program that check the solutions by evaluating the expression

(𝑎 ∙ 𝑥2 + 𝑏 ∙ 𝑥 + 𝑐)/|𝑥| via use of an internal function. Run the main program for the following

values of the coefficients:

a b c

2.0 -2.0 -1.5

2.0 7.4 0.2

0.0 7.4 0.2

2.0 7.4 0.00002

3. (This part is optional) Improve your module procedure by accounting for the degenerate cases.

What is causing the problems for the last table row above? How can the relative accuracy be

improved? Hint: If x1 and x2 are the solutions, then the quadratic expression must be equal to

𝑎 ∙ (𝑥 − 𝑥1) ∙ (𝑥 − 𝑥2); if one of the solutions is known, the other one can be obtained without

requiring a subtraction.

The solution will be in the program files mod_solver.f90 and test_quadratic.f90 in the

examples/solutions_day1 folder. The executable can be built via the command make

test_quadratic.exe.

Programming with Fortran – Hands-On Training and Table of Contents

Session 2 (obligatory) – Calculate a dot product using BLAS
Skeleton code for this exercise is contained in the files blas77.f90 and

calculate_dot_product.f90 of the folder examples/skel_day1/.

The web page http://www.netlib.org/blas/ documents the interfaces for the Basic Linear Algebra

Subroutines. Look up the description for calculating a dot product, using default real argument

arrays. Then write a program that calculates and prints the dot product of the following arrays of

size 100:

X: 1.0, 1.0, 1.0, ...

Y: 1.0, 2.0, 1.0, -2.0, 1.0, 2.0, 1.0, -2.0, ...

The program should make use of a manually created explicit interface for the used procedure. An

optimized implementation of BLAS is available via Intel’s Math Kernel Library (MKL); check your

environment for variables whose name starts with “MKL” and make appropriate use of one of these

in order to link against the MKL library routines (the provided Makefile makes use of this).

Note 1: There also exists source code for a Fortran 90 style MKL add-on module that contains the interface definitions;

if you are interested, look for blas.f90, and then identify and compare the interface provided there with your solution.

The module uses language features that will be explained later.

The solution will become available as the program files blas77.f90 and

calculate_dot_product.f90 in the examples/solutions_day1 folder.

Note 2: a multitude of more complex linear algebra problem solvers is available in the LAPACK library, which is layered

on top of BLAS. An implementation of the LAPACK routines is also contained in the MKL.

Session 2 (obligatory) – the PURE attribute
Returning to the GCD code you wrote in session 3 – what happens if you add the PURE attribute to

the function you wrote in that exercise and attempt to recompile? If problems appear, please fix

them. Otherwise, you can congratulate yourself on your good programming discipline.

http://www.netlib.org/blas/

Programming with Fortran – Hands-On Training and Table of Contents

Exercises for Day 2

Session 3 (obligatory) – Bodies and charged bodies
Skeleton files are provided as files mod_body.f90 and prog_body.f90 of the folder

examples/skel_day2/.

1. Try building the executable. Why does it fail? What is the simplest way to make it build anyway?

2. Perform the necessary additions of procedures etc. to mod_body and prog_body to enable the

program to build and run without removing the private attribute from the type definition.

3. Suppose you want to add a further physical property to your objects, namely electrical charge.

How might you achieve this without needing to change code that uses the original module, and

with only minimal changes to the original module? Hint: Apart from necessary expansion of the

type declaration in mod_body, introduce a second module mod_charged_body with suitably

configured use statements that rename body to charged_body. Add statements to the test

program and convince yourself that both type names can be used simultaneously. Can you

assign an object declared with one type name to one declared with the other?

The solutions are provided as files mod_body.f90, mod_charged_body.f90 and

prog_body.f90 of the folder examples/solutions_day2/.

Note: The advanced course covers language features (e.g., inheritance via type extension) that make

doing the above much more painless and efficient.

Session 3 (obligatory) – Using array intrinsics
(This problem is based on an example in section 8.8 of „Guide to Fortran 2008 programming“)
Suppose a group of 3 students writes 4 tests, and each student receives a score between 0 and 100
(a percentage), as indicated in the following table:

 Test 1 Test 2 Test 3 Test 4

Student 1 85 76 90 60

Student 2 71 45 50 80

Student 3 66 45 21 55

Write a program that stores the scores in a suitably defined array and, using array intrinsics,
computes

1. the average score for each test across all students
2. the number of scores above the total average over all scores
3. the average absolute deviation (see http://en.wikipedia.org/wiki/Absolute_deviation for a

definition) for each student across all tests. Hint: study the compiler documentation for the
intrinsic function spread.

4. whether any of the students always scored above the overall average.

http://en.wikipedia.org/wiki/Absolute_deviation

Programming with Fortran – Hands-On Training and Table of Contents

You may want to temporarily modify the input data to test your statements.
The solution is in the program files scores.f90 in the examples/solutions_day2 folder. The
executable can be built via the command make scores.exe.

Session 3 (obligatory) – Initializing data
Returning to yesterday’s dot product program: Instead of setting up the input vectors in executable

statements (with the values specified in the earlier exercise), write data initialization statements

that make x and y defined at their declaration. The solution will be made available as the program

files blas77.f90 and calculate_dot_product_const.f90 in the

examples/solutions_day2 folder.

Session 4 (obligatory) – Simulating heat conduction
Notes: This is a large exercise that is going to be continued later. Skeleton code for this exercise
can be found in the files mod_heat_static.f90 and heat_static.f90 in the
examples/skel_day2/ folder.

Consider a unit square made of a metal, as indicated by the left hand side of the drawing below:

At the edges of the square, it is clamped to heat sources that keep the temperature constant at 0
on the north edge, at some fixed value Φ > 0 at the south edge, and a linear interpolation between
0 and T on the east and west edges, at all times. At time 0, the inside of the square is assumed to
have the temperature Φ=0. The temporal change of the temperature field Φ(x, y, t) is described by
the partial differential equation

𝜕𝛷

𝜕𝑡
=

𝜕2𝛷

𝜕𝑥2
+

𝜕2𝛷

𝜕𝑦2

which over time converges to a stationary solution i.e., one for which the left hand side of the
differential equation is equal to zero, as illustrated in the right part of the above figure. The right
hand side is also often written as ∇2𝛷 (see also below).

1. The temperature field can be simulated by discretizing it along the x and y directions. Establish
the necessary declarations in the module mod_heat_static.f90 for an extended precision
temperature field, stored in a private array of rank 2.

Programming with Fortran – Hands-On Training and Table of Contents

2. The boundary (and initial) values for this temperature field need to be set up. Assuming the
physicist knowledgeable about the boundary conditions can supply suitable real functions (to
be implemented in heat_static.f90 that calls heat_bval and heat_ival), complete the
implementations of the procedures heat_bval and heat_ival that take such functions as
arguments to perform the necessary settings of the temperature field. For the boundary values,
an additional argument will be needed that describes which part of the boundary should be
defined. The function argument declarations should make use of suitably defined abstract
interfaces.

3. The temperature values for time t + δt is obtained from those for time t via incrementation by
the temperature differential

𝛿𝛷 = 𝛿𝑡 ∙ [∇2Φ (𝑥𝑖, 𝑦
𝑗
)] 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑑

Implement that discretization in the module procedure heat_iter that performs this
calculation for a specified number of iterations; the discretized differential operator can be
defined by the stencil approximation

[∇2Φ(𝑥𝑖, 𝑦𝑗)] 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑑 =

=
Φ(𝑥𝑖+1,𝑦𝑗)+ Φ(𝑥𝑖−1,𝑦𝑗)−2 Φ(𝑥𝑖,𝑦𝑗)

𝑑𝑥2
+

Φ(𝑥𝑖,𝑦𝑗+1)+ Φ(𝑥𝑖,𝑦𝑗−1)−2 Φ(𝑥𝑖,𝑦𝑗)

𝑑𝑦2

Note: the time differential must be chosen such that δt ≤ 1/(4n2), where n is the number of
discretization points along one dimension, for the calculation to converge; this is set in the main
program. What needs to be done to assure that the dependencies induced by the stencil
calculation are properly accounted for?

4. The main program will need to invoke the iteration procedure repeatedly, until the calculation
has converged. Check the correct execution of the code by running a small problem size. Then,
run a problem size of 150 x 150 and measure the performance.

The solution for this exercise will be in
 examples/solutions_day2/[mod_heat_static.f90, heat_static.f90].

Session 4 (obligatory) – Command line processing
The slide talk introduced intrinsic functions for command line processing. In practice, it may be more

useful to deploy a convenience library interface, for example one that works like the C libraries’

getopt interface. An implementation for this is available as a Fortran module in the file

examples/skel_day2/ftn_getopt.f90. Read the introductory documentation (main page is

sufficient) at https://doku.lrz.de/dyn/Doku_Kurse/Fortran/getopt/.

Then, write a program that reads the following command line into appropriately typed variables

(making use of the supplied module) and then prints out the result:

./example_getopt.exe --len 123 --key 'hello world' --verbose

https://doku.lrz.de/dyn/Doku_Kurse/Fortran/getopt/

Programming with Fortran – Hands-On Training and Table of Contents

Session 4 (optional) – Prime numbers with arrays
Rewrite the Sieve of Eratosthenes program from day 1 (you can start out from the provided solution

if you didn’t do the exercise yourself), using array syntax and intrinsics. Note that various solutions

are possible. Furthermore, the upper limit should be read from the command line using the

previously supplied ftn_getopt module, and the necessary array should be established

dynamically (hint: use an internal procedure). What happens if you attempt to run the program with

an upper limit of 100,000,000? If a problem arises, how can one circumvent it?

The solution for this exercise will be in the file

examples/solutions_day2/sieve_arrays.f90

Programming with Fortran – Hands-On Training and Table of Contents

Exercises for Day 3

Session 5 (obligatory) - Heat conduction using heap memory
Make changes to copies of the previously written heat conduction source files (or the supplied
solutions) that allow you to determine the problem size (i.e., the array dimensions nx and ny) at
run time. The following additional steps will be needed to accomplish this:
1. Make the necessary changes to the declarations of the fields phi and phinew. What else is

needed to assure the fields are set up correctly?
2. The x and y directions now may be differently discretized, and the space differentials must also

be set up at run time. Use the ftn_getopt module to enable command line arguments, e.g.

./heat_dynamic.exe --nx 50 --ny 100

for a problem size 50 x 100.

3. Re-do the performance measurements for the problem size 150 x 150.

The solution for this exercise will be in the files
examples/solutions_day3/[mod_heat_dynamic.f90, heat_dynamic.f90].

Session 5 (optional) – Some performance tuning of the heat conduction
example
After the stencil calculation, the field phinew is copied back to the original field phi. The data

traffic caused by this copy is unnecessary overhead. How can this overhead be avoided?

Hints: Use POINTER objects. How can you compensate for the optimization reduction caused by

use of POINTERs? This version of the program should run faster than the previous one!

The solution for this exercise will be in the files
examples/solutions_day3/[mod_heat_ptr.f90, heat_ptr.f90].

Session 5 (optional) – Transposing a rank 3 array
On day 2, the transpose intrinsic was mentioned which allows to transpose rank 2 arrays of

arbitrary type. Now, write a procedure which “transposes” a rank 3 array of type real (in the sense

that A(k,j,i) = B(i,j,k)), avoiding the use of DO loops. The result array should be dynamically

allocated inside the procedure.

The solution for this exercise will be in the file

examples/solutions_day3/transpose_rank3.f90

Session 5 (obligatory) – Handling rational numbers
Write a module containing an opaque type definition for rational numbers i.e., numbers of the form

𝑓 =
𝑛

𝑚
, with n, m integer numbers.

Implement procedures to set up an object of that type, as well as to deal with various operations

which can be performed on such numbers. What pitfalls do you need to avoid for a robust library

suitable for production work (Hint: reuse some of the code written earlier in the course)? Make the

Programming with Fortran – Hands-On Training and Table of Contents

facility easy-to-use by introducing suitable overloaded operators. How can you assure that the

following code fragment works?

type(fraction) :: f

real :: x

integer :: i = 4

f = i

x = f

Finally, add a user-defined operator .inv. that produces the inverse of a rational number.

As usual, write a test program that checks the correct operation of all your code.

The solution for this exercise consists of the files rational.f90 and test_rational.f90 in the

examples/solutions_day3 folder.

Session 5 (optional) – Reduction on fractions
Write an extension of the SUM intrinsic function that works on an array object of

type(fraction). It should be capable of operating on arrays of ranks 1, 2, and 3. Only the case of

a scalar result needs to be covered.

The solution for this exercise consists of the files rational_reduction.f90 and

test_rational_reduction.f90 in the examples/solutions_day3 folder.

Session 6 (obligatory) - Checkpointing a simulation
Add a facility to generate as well as to read an unformatted checkpoint file heat.ckp for the

temperature fields of the heat conduction program. A command line switch should be used to toggle

this facility. Reading the checkpoint should of course only be done on the first iteration. Add

statements to the module procedure heat_iter that handles the writing of checkpoints. Also,

modify the module procedure heat_print to produce a formatted output file heat.dat instead

of writing to standard output. Data should be written with 13 digits at the end of the computation.

Compare the size of that output with that of the checkpoint file.

Hint: the EXIST option of an INQUIRE statement can also be used with a file instead of a unit.

Session 6 (optional) - Heat conduction: control from configuration file
Further improve the usability of the heat conduction example by supporting a configuration file

heat.cfg that contains NAMELIST entries that control problem sizes, checkpointing

options/intervals etc. If a command line argument appears, no use should be made of the

configuration file.

The solution for both above exercises (checkpointing and input value processing) consists of the

files mod_heat_io.f90 and heat_io.f90 in the examples/solutions_day3 folder.

Programming with Fortran – Hands-On Training and Table of Contents

Session 6 (optional) – An internal I/O scenario
Write a subroutine that returns a unit connected to a date-stamped output file, which can be used

for logging. The file name should be of the form

log_<application>_<month>_<day>_<year>.txt

where „application“ is specified as an argument, and „month“ is a 3-letter string of the form „Jan“,

„Feb“ etc. Hint: Study the documentation for the intrinsic procedure DATE_AND_TIME.

