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How to build faster computers i a survey =

L—

1. Increase performance / throughput of CPU core
a) Reduce cycle time, i.e. increase clock speed (Moore)
D) Increase throughput, i.e. superscalar + SIMD

7. Improve data access time
a) Increase cache size Memory
D) Improve main memory access (bandwidth & latency)

3. Use parallel computing (shared memory)
a) Requires shared-memory parallel programming m m
D) Shared/separate caches
C) Possible memory access bottlenecks

Memory

4. Use parallel computing (distributed memory)
ACl ustero of computers tightly co

a) Almost unlimited scaling of memory and performance

D) Distributed-memory
parallel programming Q é 4 4 i

Memory Memory Memory Memory Memory
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How to build faster computers (c o n } ¢ d|[NpcE=

Use an accelerator with your compute node

Requires offload of program regions as well as data
(semantics may be limited)

Host and accelerator memory are connected, but separate

" Acceleratomemory
4 ) Accelerator | isveryfast,
m M Device #1 J but limited insize |

M 4
NI Accelerator ]

[ PCI

(8 J Device #2

\.

(Improvements are under way)

Programming complexity is higher than for shared memory systems
( hieterogeneous parallel computingfi )
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Multi-core processor [T ==

It is not a faster CPU T it is a parallel computer on a chip.

Put multiple processors (Acoreso)
(example shows a dual core that shares L2 cache and memory bandwidth)

Efficient use of all cores for a single application A programmer

&ADRAM Gapfi

L2 cache

L1 cache

Intel Xeon (Woodcrest)
diyo 10ssa20.d
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é the party is over!

Option 1 a) is not feasible any more, option 2 only in small increments

By courtesy of D. Virsalovic, Inte/

. DUAEEOrE

EEITOFaNC

. HOWE]

1.00x
Over-clocked MaXx Freguengy
(+20%)
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Paradigms supported by OpenMP i

three faces of parallelism (1=
: "~ Alsodi d
Vectorized  iiscourse |
r - : execution
. Focusof thi !
e Sj IS CoUrse J (S I M D)

Threaded Offloaded
Parallelism execution
(multi-core,shared (accelerator}
memory)

-------- Not coveredin
this course
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OpenMP and portability [T ==

Syntactic portability Performance portability
Directives / pragmas Unfortunately, performance is not
Conditional compilation permits necessarily portable
to mask API calls Has traditionally been a problem

(partly due to differences in
hardware/architectural properties)

Semantic portability : :
_ Becoming worse with recent
Standardized across platforms hardware generations

A safe-to-use interface

Unsupported/unavailable
hardware features A irrelevant

directives will be ignored
(you might need a special compiler
for your devices € )
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Compatibility with Sequential Execution [T ==

Are semantics for sequential execution retained?
yes, due to directive concept
programmer may choose not to

Do memory accesses occur in the same order?

no, due to relaxed memory
consistency (performance feature!)

Are the same numeric results obtained for parallel execution?

no associativity for model number
operations

parallel execution might reorder

operations
(programmer may need to enforce ordering
for reproducibility and/or numeric stability)
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OpenMP Standard [T ==

Responsible body: OpenMP Architecture Review Board
Published OpenMP 5.0 in November 2018

---------------------- / Historyof OpenMP
Base languages startsin 1997
Fortran (up to 2008) _
C, C++ ~\\::‘-::.: Fortranand Cexamples
(Java is not a base language) will be displayed
Resources:

http://www.openmp.org (including standard documents)
http://www.compunity.org

Note:
LRZ has become a member of the OpenMP ARB in March, 2019
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http://www.openmp.org/
http://www.compunity.org/

OpenMP history

(courtesy | nt el AT héniversefi is$uk £8) _

Vendors provide similar but different solutions for loop parallolism, causing portability and maintenance probloms.
Euck and Associatas, Inc. (AN | 5G1 | Cray | IBM | High Performance Fortran (HPF) | Parallel Cormputing Forum (POF)

-mh

Hetaragpansity
538

Lo Parallelizaticn

7 T 24y
PR

Notethe increasen
the standard'ssize
(OpenMP5.0has

666 pages
/\

Course Target:

Learnthe mostusefuland
therefore mostcommonly

usedfeaturesof OpenMP
| i l-l.ll || IIII I| |I IIIIII I| I| II || |
110 4377 &858 1020 135I‘.'| 1330 1370 1600 1880 2320 300 410 5370 SN0 &40
Ip:- 1MF ARE BMembership Evolutics rament ARE [ Ao lisry ARE Mensbens . Oipeen MP Google Schalar Hits
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OpenMP Architecture

[ YourLINEZ 3 NJL
P

Commentlines

f X

—— Application

User &é

in sourcecode

S

&

£

J

Determineresource
allocationand

I~ _ _ assignment
Compiler Environment _’~ schedulingstrategies
Directives Variables [\ etc.
Somelibraryroutines\l I I
SIEETROEEE j Runtime Library
to the programmer
, e OSthreadsare
Thregds In OS - S
CPUs in Hardware concurrentlyon
HW cores
11
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m A simple application =]

program #include  <stdio.h >
use m int  main () {
implicit none

" Aimisto execute |
call f multiple instancesof .
0 f() concurrently 0

end program return  O;

module m
implicit none
contains
subroutine f() void () {
print * ' Hello ' printt (" Hello \ n");
end subroutine }

end module
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Parallel execution model [T ==

( Program start: only
master threadruns
. (serial execution)

Parallel region entryteam of
fork —_ Wworker threads is generated

-~
worker threads
execute concurrently
. . )
— ( Parallel region exitall threads
J

join N of team synchronize

e . . N
Serial region:

only master threadexecutes
(workers usually persist, but are inactive)/

executionsequence

<€

fork-join sequence
can repeat, with differing thread counts
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m Adding a parallel region [T ==

program #include <stdio.h >
use m int  main () {
implicit none #pragma omp parallel
'$ omp parallel " enclosed \ {
call () lexicalblock j fO)
I$ omp end parallel }
end program return  O;
}
A General form of directives:
I$ omp <directive > [< clause >] #pragma omp <directive > [< clause >]
sentnel | sentinel

..........................

A clauses, if present, modifyad i r e cdemanted s

..........................

A multiple clauses per directive are possible
A continuation lines are supported for long directives: & \
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OpenMP structured block rules [T =

A statements between a beginning A delineated by braces following a
and ending directive pair directive

single point of entry
/A GOTO into block is prohibited A setjmp() into block is prohibited

single point of exit

A GOTO, RETURN, EXIT outside A longjmp() and throw() outside
block are prohibited block are prohibited

permitted: program termination

/A STOP, ERROR STOP A exit()
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m Using library calls

subroutine 10 ( OpenMPmodule:
'$ use omp_lib ———_ explicit interfaces for AP

Integer :: me returns an integer
me =0 (avoid implicit typing!)

]

print * ' Hello from thread

I$ me = omp_get thread num ()
me [

end subroutine

I$ indicatesstatementshould
be compiledconditionally

|

OpenMPinclude file:

#include  <omp.h> ————_ prototypes for API
void f() {

#include <stdio.h > }

|

int me =0; ( OpenMRspecific macrdor
©) | #ifdef OPENMP —_ conditional compilation
me = omp_get thread num ();
#endif
printf  ("Hello from thread %i\n", me);

© 201019 LRZ/RRZE Introduction to OpenMP
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Independent execution contexts [T ==

As many independent function calls as there are threads

Thread-individual memory management within function call
local variables (e.g., "me") are created in th

e
thread-specific stack a G
malloc() or ALLOCATE create memory in
the heap separately for each thread

Private variables w w

associated with a particular thread are

Inaccessible by any other thread w w
pro: safe to use

con: communication is not possible @ G

(it is needed by many parallel algorithms),

unnecessary replication of objects may happen.

Thread-individual stack limit

control via environment variable export OMP_STACKSIZE100M
(example: 100 MByte)
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OpenMP API

Classes of routines:

Execution environment (36), Locking (12), Timing (2), Device Memory (7)

Name Resulttype | Purpose
omp_set_nu_m_threads none numberof threadsto be createdfor
~ (int  num_threads ) subsequent parallgkegion
) : : :
@ omp_get_num_threads () Int numberof threadsin currently executing
2 region
D || omp_get_max_threads () int maximumnumberof threadsthat canbe
§ createdfor a subsequent paralleegion
c_% omp_get_thread_num () int thread numberof callingthread (zero
= based incurrently executingregion
g omp_get_num_procs () int numberof processorsavailable
3 | | omp_get_wtime () double return wall clocktime insecondssince
S some(fixed) time inthe past
omp_get_wtick () double resolutionof timer in seconds

© 201019 LRZ/RRZE
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Compiling and Running [T ==

Compilation: fo0 ofopenmp 8o hello.exe hello.f90

[ generic instructions J//

cc ofopenmp 6o hello.exe hello.c

Switch for OpenMP
specific spelling is compiler-dependent
toggles both directives and conditional compilation
generates threaded code and links against OpenMP run time

serial compilation may
require stub library

Execution: export OMP_NUM_THREAB®S by default, parallel regions
Jhello.exe generate a team with 4 thread
Output for example Hello  from |1
- Hello from |3
program. Hello  from |0 ordering will vary between run
Hell ‘ 5 (asynchronous execution)
ello from

Now. Firstexercisesession
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Simple work sharing,
Scoping of Data,
and Synchronization



Questions that now arise ... [T ==

We know how to set up threading, but

how can a large work item be divided up among threads?
(using the API for this works in principle, but is tedious)

what happens with objects that already exist before the parallel region
starts?

Example:
matrix-vector multiplication r

I
<

Al x ULVj® e .

~ Abunchof scalar
| products |

kcam
OO

<
X
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Concept of work sharing [T ==

The ideais to split the work among threads

-

M

X
—

Note that
all elements of x must be available to all threads

Matrix-Vector is often deployed iteratively A r becomes x in the next iteration
A copying of data must be possible

Consequence:

need for variables that are accessible to all threads
A "data sharing" is often a prerequisite for "work sharing"
A a natural concept for a shared memory programming model
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Sharing variables across threads [T ==
real :: s, a(200) Fort - shared —> fead
_____ s . Vvariables — 5 write

> = ° (S v a __::?'fork: T, T,

I$ omp parallel
select case (me)

shared( s,a)

e iR

“ threadID |
case (0) T ,
a(1:100) = é * s
case (1)
a(101:200 ) = é -%) (
end select

I$ omp end parallel

T h eshakedficlause

implies that scalar s and array a both are accessible to all threads

execution sequence

et

“disjoint |
partsof a

synchronization |
guarantees
availabilityof a

© Rules for concurrent accesses to a single object
reads/writes or writes/writes by different threads are not permitted ( data racesfi )

Note: updatedo arraya are OKbecausedisjoint parts of objectare updated

© 201019 LRZ/RRZE
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Data dependencies that prevent parallelization R

Flow dependency ("read after write", RAW):

' secondinstruction
al X cannotexecute |
b=a - . concurrentlywith first |
. yw .
=b
Anti-dependency ("write after read", WAR):
b =a b =a I resolvableat costof
al X — a2l X . introducinga new variable |
X r' | H X X I—l L ("namedependency)

Output dependency ("write after write", WAW):.

after namedependency
a IJ X a IJ X resolution statementsl
b=a meesss———) ) = 3 and3 canexecute
a |-' X a2 |-' X concurrently

. Flowdependencyemains
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Privatization

[ ==

shared <€<— private —>
al k]l = ¢; fork:
#pragma omp parallel \ @ T ' T T T
shared(a) 0 L 2 2
{int i:float s & GGG oG
s= 0.0; ' splititerationspace(?)} §)§§N
for (i=¢é;i<é;|i 1+)y" SR N
~ . . threadHlocalcopiesof =
s+= alil; O sare updated
) S
=
J z
0 L
Y join: i, s go out of scope
c
examplecalculates 2 @
. .. >
thread-individualsums | 9 _ _
x Block-local variables in C/C++
""""" \ 4 are automatically private

' uselessfrom a practicalpoint
of view. Butbearwith me -
we'll fix this, eventually

Note: Onecanexpectthe samebehaviourfor the
Fortran 2008 BLOQNnstruct butthis is currently
not specifiedin the OpenMPstandard
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Privatization with masking [Tw=

real::s Fortran

real :: a(’)
integer :: i
s = é
I$ omp parallel private(s)
I$ omp shared(a)
s= 0.0
doi = ¢é, ¢é
S=s+ a(i)
end do
I$ omp end parallel
e = é + s

&

Masking occurs

for privatized variables
declared outside the
parallel region

Loop variables
are always private

< execution sequenge

shared <— private =——>

‘‘‘‘‘‘

rd
------

persists
(inaccessible)

——————

rd
——————

..........

parallelregionto persist butside
effectsare possible
Forexample modification
via apointer (avoidthis!)

O If swereshared the programwould havearacecondition

© 201019 LRZ/RRZE
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Code for work-shared Matrix-Vector multiplication:
The DO / FOR directive

A Serial
DOk=1,n for (k=0; k<n; k++) {
DOj=1,n for (=0; j<n; j++) {
r() = r() +ag, k) * x(k) ri] = rli] + alk*n+j] * x[K];
END DO }
END DO }

A OpenMP parallel

#pragma omp parallel

ISomp parallel { ______:::;;:::? appliesto j-loop
I$omp do “ra x  are #pragma omp  for~ ‘ \.
DOj=1,n :~___§,harggby_ggfgg_l_g___ for (j=0; j<n; j++) { ' j,k areprivate

DOk=1,n e for (k=0; k<n; k++) {

r() = r(j) + aj, k) * x(k) ri] = rli] + alk*n+j] * x[K];

END DO , : }
END DO Implicitbarrier
1$ omp end do all threadssynchronize }

e = r(e) e = [ ::-_-é—--]-' no racecondition
I$ omp end parallel YT againstprevious

© 201019 LRZ/RRZE
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Further rules for work shared loops [T=

Slicing of iteration space Restrictions on loop structure
Aoop schedulingfi Trip count must be computable at
default behaviour is entry to loop
implementation dependent Disallowed:
usually as equal as possible C style loops modifying the loop
chunks of largest possible size, variable in the loop body, or using a
one chunk per thread non-evaluable exit condition, or

Fortran DO WHILE loop;

loop body must be a well-formed
structured block with single entry
and single exit point

Note:

directive (by default) acts only on
outermost enclosed loop

In the example,

slicing is done as shown some
slides earlier

loop order was switched to avoid
having many synchronizations
Additional clauses

on OMP DO / omp for will be _______ "
discussed later

' actually we're caughtbetweena
rockandahardplacehere...
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Avoiding race conditions (1):
mutual exclusion via the critical directive

[[ ==

stot =0.0
I$ omp parallel private(s) &

I$ omp shared( a, stot )
I$ omp do
" updatesare now |
. synchronized |
I$ omp end do y -----------------------
I$ omp critical
stot = stot +s

I$ omp end critical
I$ omp end parallel

shared

<— private ——>

fork:

[ parallelarray summation

3

3 i

o

’?n"' \Q ]

_§ ® ®

8 N

GJ A\ 2 \ 4

6 GGG GO
\4 join

Only one thread at a time can execute a critical region
others must wait A code in region is effectively serialized

© 201019 LRZ/RRZE
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Dealing with race conditions
through atomic updates

Properties of atomic operations

the atomic directive applies only for
a single update to a scalar shared
variable of intrinsic type

this way of updating can be done
safely when executed concurrently
(exception to the rules on race conditions!)
otherwise, no synchronising effect
iImposed by semantics

hardware atomic instructions
available A likely more efficient than
stot  +=s; R critical region

stot =0.0;
#pragma omp parallel \
shared( a, stot )

#pragma omp atomic update

[ legacynotation
: . omp atomic
| parallelarraysummation |. __isalsopermitted

C can use #pragma omp critical
Fortran can use !$ omp atomic
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The two kinds of memory in OpenMP [Ta=

U Data accessed by can be
@ G shared or private
A shared data i one instance

w IX( B MRA SN w of an entity available to all

threads (in principle)
A private data 7 each per-
thread copy only available

w to thread that owns it
’ U Data transfer transparent to
@ programmer

U Synchronization
necessary for accessing sha-
red data from different

threads to avoid race
conditions

A implicit barrier
A explicit directive
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now startingto wrapup ...

The firstprivate clause

[[ ==

real ;s

s = é
I$ omp parallel &
I$ omp firstprivate

(s)

f ST

~ usesvaluefrom |

mastercopy

I$ omp end parallel
e = ¢é + s

< execution sequengce

shared <€« private =—->

) fork:
TO

T1 T2

‘‘‘‘‘‘

rd
------

persists
(inaccessible)

join

Extension of private:

value of master copy is transferred to
private variables

restrictions: not a pointer, not assu-
med shape, not a subobject, master
copy not itself private etc.

© 201019 LRZ/RRZE
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The lastprivate clause [T ==

real s Fortran

s = é
I$ omp parallel
I$ omp do lastprivate (s)

doi=1,n
s = é

[ on work sharing

end do directive

]

I$ omp end do
€ = é + s
I$ omp end | “allel

" shasvalueproducedby |
i-loopiteration n '

When to use?
as little as possible
legacy code

execution sequence

shared <€« private =—-—>

) fork:

D) TO T1 T2 T3

persists
(inaccessible)

<€

Extension of private:

value from thread which executes last
update in the serial code is transferred
back to master copy

restrictions similar to firstprivate

© 201019 LRZ/RRZE
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Data scoping defaults

Scoping clauses can be
specified for

parallel regions
loop work sharing constructs

Defaults
apply if no clause is specified

may vary by construct, but for
the above the following apply:

pre-existing objects are by
default shared, except for loop
variables, which are private.

objects declared inside the
lexical or dynamic scope of the
construct are private.

___________

this cannotbe changed of course

Recommendation:

specify a default(none) clause
on each directive that permits

scoping:

~ othervalues |
Fortran arepossible
I$ omp parallel default (none) &

S$omp shared(é) private(§g)

é

#pragma omp parallel default (none) \

shared( é)

private(

é)

this forces you to explicitly
consider and specify scoping for
all pre-existing objects

Now. Secondexercisesession

© 201019 LRZ/RRZE Introduction to OpenMP
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Reductions



Concept of Reduction

for assomatlveand

fork

FHOT

G
\

Q =s+X %@(:hthread

R

>

o

)

o join

9

3

0 wantB i EAOA

o (not directly possible because s is private)
\4

[ new conceptis needed... ]

s T

Seen in previous exercise:

need for assembling partial
results across threads

up to now: with critical region
OpenMP reductions:

sometimes more efficient at scale
implementation tunings like

o O O O O O O

reduce complexity from

O(nthreads) to O(Iogz(nthreads))
always easier to understand and
maintain

© 201019 LRZ/RRZE
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Reduction clause

Example 1: Sum reduction in a parallel region

__________

real :: s Fortran float s;
po ; : s=22;
s=22 ez INCOMINGVAIUE || yhra0ma omp parallel reduction(+:s)
I$ omp parallel  reduction(+:s) {
ezl privatecopyofs | L : Gt
5708 (initialvalue0.0) [~ S+ = "=_operationconsistent |
I$ omp end parallel }
e = e 1. s e L= s

scanbe safelyconsumeddueto |
previousimplicit barrier

value of s after end of parallel region: i ET A

Note: multiple reductions are permitted

i Biic

I$ omp parallel reduction(

+:XY,Z )

I$ omp parallel reduction(

I$ omp reduction(

+ Xy )&
*,Z )

© 201019 LRZ/RRZE
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Reduction clause cont'd [T ==

A Example 2: Sum reduction in a work shared region

real :: s float s;
, X s=2.2;
s=2.2 e INCOMINgvalue #pragma omp parallel shared (s)
I$ omp parallel shared (s) {
é é
I$ omp do reduction(+:s) #pragma omp for reduction(+:s))
doi=1,n for( i=0, i<n, i+8){ |
é . _ . é j \
s = s -7 prvaecopyofs ..o, =" e[ operationconsistent |
(initial value0.0) | '
end do
I$ omp end do
€ = e * =8 e *= s,
$ omp end parallel e || l
scanbe safelyconsumeddueto

previousimplicit barrier

A\ value of s after end of worksharing region: i ET AT i Bic
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m Initial value of private reduction variables  [NicE

A Depends on operation
A Supported intrinsic operations:

Fortran
Initial value Initial value
+

+ 0 0

- 0 - 0

* 1 * 1

.and. true. & 0

.or. false. | 0

.eqgv. true. A 0

.neqv. false. && 1

MAX -HUGE(X) I 0

MIN HUGE(X) MAX smallest

IAND all bits set representablevalue
IEOR all bits 0 - Ir2r|c?r?esstentabla/alue
IOR all bits 0
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Array reductions [

now alsosupported
in C/C++ !

real :: a(*)
real :: b(n)

I$ omp parallel reduction(+:b) &

I$ omp reduction(*:a( 1: m))
- ristapecty |
upperbound !
Exam P le (assumed3|ze)

reduces complete array b and m
elements of array a, elementwise

uses regular Fortran array
section notation

[ [lower bound : upper bound]]

General rules:

float *a; ~. ++
" pointee created

float b[N]; e.g. viamalloq) |

#pragma omp parallel \ s
reduction(+:b[:]) e
reduction(*:a[

0O:m])

C example does the same as the

Fortran example

OpenMP-defined sectioning
syntax (differs from Fortran):

[ [lower bound :length] ]

array section must be a contiguous object (A no strides permitted)
dynamic objects must be assomated / allocated, and the status must not be

modified for the private copies

no deallocatéfree within reductionregion

© 201019 LRZ/RRZE
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User-defined reductions =

A Using derived types

Fortran
type :: fraction typedef  struct {
integer :: numerator, denominator int  numerator, denominator;
endtype | T } Fraction;
_ add Overloadedf’p?rators"‘a -, * etc. — --------------- \* provid-;]{mctionsto add, etc.
‘ or evenuserdefinedoperators ,
A And now we want to write Fraction  af ;
af = é;
type(fra,ctlon) 2 af #pragma omp parallel  \
af = ¢ reduction(+:  af)
I$ omp parallel reduction(+: af ) {
€ , é
af = af + ¢ Fraction_sum (af, &) ;
I$ omp end parallel }

A but the compiler will refuse to build it ( A + fiknowm to OpenMP) unless
further measures are taken ...
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Declaring a user-defined reduction [T ==

I$ omp declare reduction (+: fraction.omp_out =omp_out +omp_in) &
I$ omp initializer (omp_priv =fraction(0,1))
#pragma omp declare reduction (+:Fraction: \
Fraction_add (omp_out,omp_in )) \ @)
initializer (omp_priv =Fraction{0,1})
Combiner [ declare reduction(<op>:<type>:<combiner>)

connects to operator implementation
Fortran: example defers to overloaded Al C: references Araction _addfi
special OpenMP parameters omp_in, omp_out formally describe the two
operands for each operation needed

Initializer ' initializeromp_priv=...) or initializer(function(...))

implements initial value setting for private copies
Fortran: uses (overloaded) structure constructor, C similar
special OpenMP parameter omp_priv formally describes private copy
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More on Work Sharing

Loops and loop scheduling
Collapsing loop nests
Parallel sections



The schedule clause =

A Default scheduling: A 1. Static scheduling
A implementation dependent A schedule (static,10)
A typical: largest possible chunks of as- ---------
equal-as-possible size B i |

( skatic schedulingfi ) A minimal overhead (precalculate work

I . assignmen

iteration space (threads color coded) /A" default chunk value: see left

A 2. Dynamic scheduling

A after a thread has completed a
chunk, it is assigned a new one, until
no chunks are left

A User-defined scheduling:

static schedule (dynamic , 10)
I$ OMPdo schedule ( dynamic [ ,chunk ])
chmam I
_ _ both threads take long to complete
chunk : always a non-negative integer. their chunk (workload imbalance)

default value A default chunk value is 1
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3. Guided scheduling =

Size of chunks in dynamic schedule
too small A large overhead
too large A load imbalance
Guided scheduling: dynamically vary chunk size.

Size of each chunk is proportional to the number of unassigned iterations
divided by the number of threads in the team, decreasing to chunk-size.
(default: A 1)

Chunk size:
means minimum chunk size (except perhaps final chunk)
default value is 1

I e

iteration space

both dynamic and guided scheduling are useful for handling poorly balanced
and unpredictable workloads.
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OpenMP Scheduling of simple for loops

[T

ﬁ—
==

"schedule-static.out’ -

[=}
o
@
2
=
=
ol
L ! L L L ! L L L
0 20 40 60 80 100 120 140 160 180 200
Iteration number
T T T T
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4. Deferred scheduling =

Decided at run time;

auto
I$ OMPdo schedule ( runtime )

auto (automatic scheduling)

programmer gives
implementation the freedom to
use any possible mapping.

runtime

schedule is one of the above or
the previous two slides

determine by either setting
OMP_SCHEDUL, &nd/or calling
omp_set _schedule ()
(overrides env. setting)

find which is active by calling
omp_get_schedule ()

Examples:

environment setting:

export OMP_SCHEDULE guided
export OMP_NUM_THREABS
/myprog.exe

call to API routine:

omp_set_schedule (
omp_sched_dynamic,4 );

#pragma omp parallel
{
#pragma omp for schedule (runtime)
for (é&) {
é

}
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Final remarks on scheduling [T ==

Please check your compiler documentation for implementation-
dependent aspects

An implementation may add its own scheduling algorithms
code using specific scheduling may be at a disadvantage
recommendation: Allow changing of schedule during execution

If runtime scheduling is chosen and OMP_SCHEDULE is not set
execution starts with implementation-defined setting

48
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Collapsing loop nests [T ==

Example: Two nested loops Improved example:
ISOMP do ISOMP do  collapse(2)
dok=1, kmax dok=1, kmax
doj=1, jmax doj=1, jmax ..} .
: — : . specifynestinglevel
end do end do 19 Gl &g
end do end do
ISOMP end do ISOMP end do
assume kmax is 2, and jmax is 3 slicing is performed on the virtual
then the workshared loop will index |q:
I most 2 thr L~
scale to at most 2 threads oy |0|2]2]3]4 5\1\:\_\: sequencechy |
Therapy: N serial
: J 112(3[1|2(3]| | axecution
use a collapse clause to improve
scaling K 1|1(1(2|2|2]| i\ _ order
this flattens two (or more) loop Restrictions:
nests into a single iteration space rectangular iteration space
CYCLE/continue in innermost
loop only
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Collecting load imbalances
at synchronization points

Example: T, performance activelyexecuting

. slowsall others |
I$ omp parallel D T

I$ omp do reduction(+: tsum) T, T, T, T,
do k=1, kmax
tsum = tsum + foo(a, b, C)

waitingin barrier

end do
I$ omp end do
S \
- implicit | \ barrier
. . barrier | \ - completedby
\ . allthreads

é =sum ¢ v e e /

I$ omp end parallel Fortran 0
= ¢ ¥ A 4 A 4 N

Assumptions on code following the synchronization point:
does not involve tsum
has a load imbalance that is inverse to that of preceding code block
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nowait clause and explicit barrier directive

[[ ==

I$ omp parallel

I$ omp do reduction(+: tsum)
do k=1, kmax
tsum = tsum + foo(a, b, C)
end do

" nobarrier |

I$ omp barrier

é =sum é

I$ omp end parallel

activelyexecutingDO

e———o activelyexecutingpostDOcode

waitingin barrier

Reduce load imbalance

by removing the barrier via the
nowait clause

Assure code correctness

may require explicit barrier directive

before tsum (or other modified
shared variable) is accessed

To LB T, T3
®
]
| barrier
\ | - completedby |
\, ¢ . allthreads |
\ Ty !
N I I Y L
0 |
= |
. 4 v v v v
#pragma omp for reduction(+: tsum) \

nowait
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Parallel sections [T ==

/A Non-iterative work-sharing construct
A distribute a static set of structured blocks

ISOMP sections #pragma omp sections
ISOMP section #pragma omp section
code block 1 {
by thread 0 :
- }
ISOMP section #pragma omp section
code block 2 t _
by thread 1 '
}
é é
I$OMP end sections synchronization /I end sections

A each block is executed exactly once by one of the threads in the team
A Allowed clauses on sections:
A private, first/lastprivate, reduction, nowait
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Parallel sections cont'd [T ==

Restrictions:

section directive must be within lexical scope of sections directive, and
directly enclosed (no interleaved language construct is permitted)

sections directive binds to innermost enclosing parallel region

Y only the threads executing the binding parallel region participate in the
execution of the section blocks and the implicit barrier (if not eliminated with
nowait)

Scheduling to threads
implementation-dependent

if there are more threads than code blocks, excess threads wait at synchro-
nization point

In modern OpenMP,

tasking provides a much more flexible and scalable way to implement this
and much more general patterns A will be treated tomorrow
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single directive and copyprivate clause [T ==

parallel ]

D
-
o)
n
S
Q
(¢

end parallel]

inal 8
singile T
gle | 5

>

execution seq

Execution:

only one thread of the team executes

shared

<— private ——>

- . ey
, s

rd
——————

persists
(inaccessible)

S~ 7 D Y _____.o threadT,

. arrivesfirst |

optional clause
copyprivatg(s)

M . NI ROI

<€

the statements in the block
others go to the end of the block

Synchronization

of all threads at end of single
block
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single directive syntax

real :: s

s = é
I$ omp parallel private(s)

I$ omp single
é
s = é
I$ omp end single &
I$ omp copyprivate  (S)
e = é + s
I$ omp end parallel

.
/
|

blockexecutedby
j onethreadonly E

A Note:

float s;

s = ée;
#pragma omp parallel private(s)
{
#pragma omp single \
copyprivate  (s)

s = é;
} Il'end single
e = é + s;
} Il end parallel

A update of shared variables inside a single block is safe against subsequent
accesses, due to synchronization at the end of that block
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Work sharing with single:
the nowait clause

Implement a self-written work scheduler
one possible scheme (of many), sketched only:

' produce work for |

, — " _ iterationl
P — Fortran

I$ omp parallel
do iw=1, nwork
I$ omp single T

produce work for iteration |
iw+1 (using a nortrivial |
amount of time e.g. I/0) |

...............
...............................

e v ssmmnssEEIISISSIIES
I$ omp end single  nowait

@ I " other threadscontinue
I$ omp barrier . and work on iterationw |
enddo ! iw
I$ omp end parallel

not the most efficient method
A preferably use tasking (covered tomorrow); the single construct will be
relevant in that context
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Global variables
and threading



Global variables and their default scope =

A Examples: REAL :: A(1000) FORTRAN 7}
INTEGER :: MY_COUNT
module my_globals COMMOMMY_GLOBS / A, MY_COUNT
implicit none
integer :: my_count #define NMAX 1000
real, allocatable - a(l) float a]NMAX];
e void my_func () {
end module extern float a;
é
}

A Such variables by default have shared scope
A The same applies for variables with the SAVE (Fortran) or static (C)
attribute

Implication:

A code using such memory is often not thread-safe, unless mutual
exclusion mechanisms are used when accessing the objects
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Privatizing global objects [T ==

When program semantics requires that each thread work on its
own copy, privatization is necessary

not exactly the same as private variables A separate syntax needed
C:
#pragma omp threadprivate (list)

list is a comma-separated list of file-scope, namespace-scope, or
static block-scope variables that do not have incomplete types

Fortran: [ directiveplacedin declaring}
I$ omp threadprivate  (list) programunit
list is a comma-separated list of named variables and named common
blocks. Common block hames must appear between slashes.

Objects start out with master copy existing only

thread-private copies (with undefined values) spring into existence
when the first parallel region is started
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Further properties of threadprivate storage |RFCE=

Copyin clause Subsequent parallel regions:
broadcasts object values from thread-individual copies retain
master copy to thread- their values (by thread) if
individual copies 1. second parallel region not
works analogous to the nested inside first
firstprivate clause 2. same number of threads is

used

allocate(a(  ndim)) 3. no dynamic threading is

a(:) = ¢ used

a (,)mp para”el c°py'n (@) . Note: none of the potential viola-

e = 1g( + &, uses value set on

master tions of the above three rules

a(i) = é@ "‘ ” are dealt with in this course
I$ omp end parallel

Recommendations:
A Avoid using global variables in the context of threading
A Use objectbased design instead
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... useful varia
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The master construct [T ==

I$ omp master #pragma omp master
block { block }

I$ omp end master

Only thread zero (from the current team) executes the enclosed
code block

there is no implied barrier either on entry to, or exit from, the master
construct. Other threads continue without synchronization

Notes:

Not all threads must reach the construct; if the master thread does not reach
it, it will not be executed at all

this is not a work sharing construct, it only serves for execution control
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Combined constructs [TE'=

Certain combinations of constructs can be fused

the result is a single construct that behaves as if the two individual
ones were tightly nested

may be more efficient due to reduced synchronization needs
Is often easier to read

Example: joint "parallel do" (C has "parallel for" here ...)

I$ omp parallel
I$ omp do I$ omp parallel do
do i=1,n do i=1,n
: e 6
end do end do
I$ omp end do I$ omp end parallel do
I$ omp end parallel

both variants have the same semantics
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Conditional parallelism [T ==

Put an "if" clause on a
parallel region

process work

item of size O()

specify a scalar logical
argument

may require manual tuning for
properly dealing with thread
count dependency etc.

]
"

Specific uses:

execute serially for small
problem sizes

(parallel overhead may reduce
performance)

suppress nested parallelism in
a library routine:

#pragma omp parallel if\
(! omp_in_parallel 0O )
{ e
é ' logical /int function
} - from OpenMPrun time: |

. are we already parallel in

executing scope?

Now. Thirdexercisesession
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OpenMP 4.0
SIMD (vectorization) directives

Optimization of innermost
loop structures
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SIMD - single instruction multiple data [T ==

Example:

Sandy Bridge vector unit
256 Bit SIMD
addition of 8 Byte words

RO

256 Bit registers

64 bit DP word
)\

A

4 elements with 1 AVX instruction

® O 06

+

R1

R2

B

C

Instruction capability
1 vector add and 1 vector mult
per cycle A theoretical Peak 8
Flops/cycle (double precision)
LD/ST issue capability for
Sandy Bridge
4 Words LD/cycle
4 Words ST/(2 cycles)

performance boost depends on
algorithm, including its temporal
locality properties

More recent processors may
have more advanced units

more SIMD lanes
additional vector operations
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BeforeOpenMP 4. 0

A é programmers had to rely on auto-vectorization,

A or use non-portable extensions
i programming models (e.g. Intel Cilk Plus)
0 intrinsics (e.g. _mm_add_pd() )
i compiler pragmas

#pragma omp parallel for
#pragma vector always
#pragma ivdep
for ( int i=0; i<N; i++) {

al[i] = Db[i] + é&;
}

which may or may not get ignored by the compiler
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m OpenMP SIMD loop construct [T a=

A Vectorize a loop nest

A cut into chunks that fit into a SIMD vector register
A without parallelization of the loop body

A Syntax

#pragma omp simd [ clause [[,] clause ] , €]
for loops

I$ omp simd [ clause [[,] clause 1 , ¢é]
do loops
['$ omp end simd]
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m Simple example [T =

A Scalar product

void sprod (float *a, float *b, int n){
float sum = 0.0f;
#pragma omp simd reduction(+: sum)
for (  int k=0; k<n; k++) {
sum += alk] * b[k];

A Converts serial element-wise execution

I | | I
architecturesp%
) vectorlength . -
to vectorized one: J vectorization

A
( A
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Data Sharing Clauses [T ==

Existing ones adapted to SIMD-style execution
required for more complex loop bodies

private (  var - list ) 42— 2 [2[2]7
create uninitialized vectors for variables in var-list
(loop iteration variables are private by default)

lastprivate ( var - list)
copy last iteration value to variable at the end of the construct

reduction ( op:var -list )
create private copies for variables in var-list and apply the reduction

operation op at the end of the construct
12] 5[ 8 [ 17 }—42
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Loop clauses (1) [T ==

safelen  (length ) #pragma omp simd safelen (5)
maximum distance between foré ) int kkjli k<n; ‘E)*;) {
iterations that can run \ Kl =alk] =11
concurrently without breaking A N
any dependencies " A programmer assures j > 5 |

A compiler can use a vector

_ _ _ length of at most 6

linear (list[:linear - step ])

produce private copy of a variable that is in linear relationship with the
loop iteration variable: X; = Xg,1 + (1 T Ig) * liN€ar-step
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Loop clauses (2) [T ==

aligned  (list][: alignment )
specifies that variables in the list are aligned, either by the specified

Integer value of alignment in units of bytes, or in implementation-
specific manner

collapse (n)
collapse iteration space of a SIMD loop nest
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SIMD worksharing construct =

Parallelize and vectorize a loop nest
distribute iteration space of loops across threads
subdivide loop chunks to be processed in SIMD registers

Syntax

#pragma omp for simd [ clause [[,] clause 1 , €]
for loops

I$ omp do simd [ clause [[,] clause ] , é]

do loops

[!$ omp enddo simd]
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m Scalar product again é [T ==

void sprod (float *a, float *b, int  n){
float sum = 0.0f: I assume invocation by
#pragma omp for simd reduction(+:  sum) | allthreads executing ina |
for ( int k=0; k<n; k++) { parallel region '
sum += a[k] * b[K];
}

Thread O Thread 1 Thread 2

parallelization

vectorization
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Function call inside SIMD region

float min(float a, float b) {
return a<b?a:b;

}

float  distsqg (float X, float y) {
return (X & y)*(x 8 V)

may fail if functions
outside file scope
void example () {

#pragma omp for simd
for (I=0; i<N; i++) {
d[i] = min(
distsq( afi],b[i] ).c[i] );

}

Function vectorization [T ==

Therapy: explicitly declare for
use in vectorized loops

C/C++ syntax

#pragma omp declare simd
function def. or decl .

Fortran syntax

I$ omp declare simd &
I$ omp ( proc - name- list )

© 201019 LRZ/RRZE
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Code generation for SIMD functions [T ==

A vectorized versions of generated functions are shown

#pragma omp declare simd
float min(float a, float b) {
return . a<b?a:b; }

vec8 min_v (vec8 a, vec8 Db){
return. a<b?a:b;

}

#pragma omp declare simd

_ vec8 distsq v (vec8 x, vec8 vy){
float distsq(float x, float y) {

return (X 9 y)*x 9 Y);

return (X 90 y)*(x 0 v); )
}
void example () { n_oS_IMDdirec_tivespermitted
#pragma omp for simd insidevectorizedfunctiond

for (i=0; i<N; i++) {
dil=  min(
distsq(  al[i],b[i] ),c[i] ); vd =min_v(
} distsg v (va, vb), vc ):
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Clauses applicable for declare simd [T ==

simdlen (length )
generate function to support supplied vector length

uniform (argument - list)
argument has a constant value between iterations of invoking loop

inbranch  vs. notinbranch
function always / never called from inside an if statement

linear (list[:linear -step]) ]
aligned (list[:alignment]) N @

reduction ( op:var -list )
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Final remarks on SIMD [T ==

Case studies on vectorizable applications:

show performance improvements of factor 1.5 7 4.3 compared to
auto-vectorized code

you may not be as successful, but a 20% performance improvement
for 45 min optimization work is also quite nice

Resolution of dependencies
may sometimes involve code restructuring and splitting of loops

Further features available: combination of device control
directives with SIMD

platform dependence
not discussed in this talk

Now. Fourthexercisesession

© 201019 LRZ/RRZE Introduction to OpenMP /8



More on Synchronization
and Correctness

Memory model
ldentifying correctness problems
Named critical regions
Atomic operations
Loop dependencies
Mutual exclusion with locks



Concurrent updates on shared variables [T ==

A Scenario: possibleresults
; P N in first write
reala - fixnumberof threads Fortran
. for parallelexecution | ThreadO Thread 1
a=0 R S =
I$ omp parallel shared(a) num thréads (2 1 1
a=a+l 2 1
write(*,'("a on thread ',i0," is ',i0)") &
omp_get_thread_num (), a 1 2
I$ omp end parallel
write(*,'("a after construct is ',i0)") a possibleresultsin second

write :1lor2

A the above is non-conforming
A data race causes unpredictable results to be produced
A Reason:

A different threads can have different views on same variable: temporary view
(in-register value) vs. memory value

A these two views become inconsistent when a thread modifies the variable
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Memory consistency rules [T ==

Flush Operation

IS performed on a set of (shared)
variables or on the whole thread-
visible data state of a program

discards temporary view:

A modified values are forced to
cache/memory (requires exclu-
sive ownership)

A next read access must be
from cache/memory

further memory operations only
allowed after all involved threads
complete flush:

A restrictions on memory in-
struction reordering (by compiler)

F

_ | recommendto avoid
'$ omp flush [list] I useof explicitflushes |

Ensure consistent view of
memory:

Assumption: want to write a data
item with one thread, read it with
another one

Order of execution required:
thread O writes to shared variable
thread O flushes variable

thread 1 flushes same variable
thread 1 reads variable

R

A Thechallengesto assurestep 3
happensafter step 2

A OpenMPconstructsynchronization
semanticsassurethis aswell asthe
necessarymplicit flush operations(if
correctlyused
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But it is possible to make mistakes ... =

Example: update via critical region

mutual exclusion is only assured for the statements inside the block
l.e., subsequent threads executing the block are synchronized against each
other

If other statements access the shared variable, you may be in
trouble:

Sompparall el shared(x) &
$ tical A
+» 0Mp Critica Race on read to x.
X =X+Yy Most likely, a barrier is required before
I$ omp end critical this statement to assure that all threads
é have executed their mutexed updates -
a=f X, e )
I$ omp end parallel
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Using Intel Inspector on x86-based systems |[RECE=

OpenMP correctness analysis:
no special compiler option needed (except pernaps 1 g)
GUI also for Linux-based system

ldentify memory issues in addition to threading issues
leaks, dangling pointers etc.

Start up GUI
prerequisites: set up environment and possibly stack limit
then, invoke the GUI with | inspxe -gui &

command line inspxe - cl is also available, but will not be discussed
in this talk
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Eile  “iew Help

Starting up the GUI A start a new project

‘E s PB”'GI‘

Ll

Location:

Project name: [Race_1|

o000

enter projectname

then LINJ céreite pnojecti

[.Fh omelhpc/pr28fala2832balintel/inspxel/projects

‘ Create Project

‘ Cancel ‘

Current project: heat_tunel

Threading Error Analysis / Detect Deadlocks and Data Races

Mew Project...

Threading Error Analysis / Locate Deadlocks and Data Races

Cpen Project. ..

Memory Error Analysis £ Detect Leaks
Memory Error Analysis / Locate Memory Problems
Mew Analysis. ..

T FTTFTTF

Recent Projects:

» tasked_integral c
» tasked_integral
» demo_kurs

>

Recent Results:

WO WO

1004ti3 [heat_tunel]
1003ti3 [heat_tunel]
0023 [heat_tunel
100 1ti3 [heat_tunel]
1000tE [heat_tunel]
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Configure the project [T ==

J Target ] Suppressions ] Search Directories

Launch Application Launch Application

Specify and configure application you want to analyze. Press F1 for more details.

A Needed information:

A executable name
(must have been built with
OpenMP)

A executable path
User-defined environment variables: (aUtocom p I eted)

l ~= 1 A arguments if needed

. Store result in the project directory: | fhomefcluster/ pr28faia283 2 balintel/ins pxe/P rojectsirace_sections ]

[ | Store result in (and create link file fo) ancther directory by exeCUtable

fhomefcluster/pr28fa/a2832 balintel/inspre/P rojects/race_sections

S A Further advanced

fhomefcluster/pr2Bfala2832 balintel/inspxe/P rojects/race_sactions/r@ @ @{at}

- ® settings are possible
Child application: [:]

Application: l.fhome.fcIusher.fpr28fa.fa2832baﬂ(ursafcoursafopenmphhreading_m‘ w l | Browse... |

Application parameters: l ‘ w l [ Modify... ]

Working directory: l.fhome.fcIusher.fpr28fa.fa2832ba.fKursafcourgs.fopenmphhreading_n:-‘ w l o, ]

Inherit system environment variables

Suppression mode: [DE|E1E problems | w l

Exclude maodules:
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Run Analysis: New A Analysis Result

Eile  VWiew Help
THE s =

Welcome | 00t MNew Inspector Result %]

@ Configure Analysis Type Intel Inspector XE 2013

O Start

Al

) 5] 10:x-40x Detect Deadlocks
|:| 20:x-80x Detect Deadlocks and Data Races
A0:-180x% “| Locate Deadiocks and Data Races I“IIII

i Analysis Time Overhead Memaory Overhead
Threading Emrar Analysis

Locate Deadlocks and Data Races Copy

Widest scope threading ermor analysis type. Maximizes the load on the system and the time and resources required to perform analysis;
howewver, detects the widest set of errors and provides context and maximurn detail for those erors. Press F1 for more details.

D Terminate on deadlock

Stack frame depth: |‘IS W

Scope: |Norma| W

@ Remove duplicates

¥ Select analysis mode, then start

Run an analysis and report all detected problems. Use to view comectness issus
examine them.

® here: Threading Error Analysis A

Run an analysis underthe debugger and stop every time a problem is detectec

problem detected. Not recommended when running a threading analysis beca IOCate d ead I OC kS and d ata raCeS
| Select analysis start location with debugger

I;Run target application under the debugger with analysis disabled until you che . note pote ntla”y hlgh perform an Ce

the appli