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How to build faster computers ïa survey

1. Increase performance / throughput of CPU core

a) Reduce cycle time, i.e. increase clock speed (Moore)

b) Increase throughput, i.e. superscalar + SIMD

2. Improve data access time

a) Increase cache size

b) Improve main memory access (bandwidth & latency)

3. Use parallel computing (shared memory)

a) Requires shared-memory parallel programming

b) Shared/separate caches

c) Possible memory access bottlenecks

4. Use parallel computing (distributed memory)
ñClusterò of computers tightly connected

a) Almost unlimited scaling of memory and performance

b) Distributed-memory
parallel programming
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How to build faster computers (contód)

5. Use an accelerator with your compute node

a) Requires offload of program regions as well as data

(semantics may be limited)

b) Host and accelerator memory are connected, but separate 

(Improvements are under way)

c) Programming complexity is higher than for shared memory systems

(Ăheterogeneous parallel computingñ)
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It is not a faster CPU ïit is a parallel computer on a chip.

Put multiple processors (ñcoresò) on a chip which share resources 
(example shows a dual core that shares L2 cache and memory bandwidth)

Efficient use of all cores for a single application Ą programmer
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é the party is over!

Á Option 1 a) is not feasible any more, option 2 only in small increments
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Over-clocked
(+20%)

1.00x

1.73x

1.13x

Max Frequency

Power

Performance

Dual-core
(-20%)

1.02x

1.73x

Dual-Core

By courtesy of D. Vrsalovic, Intel



Paradigms supported by OpenMPï

three faces of parallelism

Node 
Architecture

Threaded
Parallelism

(multi-core, shared
memory)

Vectorized
execution

(SIMD)

Offloaded
execution

(accelerators)

© 2010-19 LRZ/RRZE Introduction to OpenMP 6

Focus of this course

Also discussedin 
this course

Not coveredin
this course



OpenMP and portability

ÁSyntactic portability

ÅDirectives / pragmas

ÅConditional compilation permits

to mask API calls

ÁSemantic portability

ÅStandardized across platforms

Ą safe-to-use interface

ÅUnsupported/unavailable

hardware featuresĄ irrelevant 

directives will be ignored
(you might need a special compiler

for your devices é)

ÁPerformance portability

ÅUnfortunately, performance is not 

necessarily portable

ÅHas traditionally been a problem
(partly due to differences in 

hardware/architectural properties)

ÅBecoming worse with recent

hardware generations
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Compatibility with Sequential Execution

Are semantics for sequential execution retained?

Do memory accesses occur in the same order?

Are the same numeric results obtained for parallel execution?

Åyes, due to directive concept

Åprogrammer may choose not to

Åno, due to relaxed memory

consistency (performance feature!)

Åno associativity for model number

operations

Åparallel execution might reorder

operations
(programmer may need to enforce ordering

for reproducibility and/or numeric stability)
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OpenMP Standard

ÁResponsible body: OpenMP Architecture Review Board

ÅPublished OpenMP 5.0 in November 2018

ÁBase languages

ÅFortran (up to 2008)

ÅC, C++
Å (Java is not a base language)

ÁResources:

Åhttp://www.openmp.org (including standard documents)

Åhttp://www.compunity.org

Á Note: 

ÅLRZ has become a member of the OpenMP ARB in March, 2019
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Fortran andC examples
will bedisplayed

History of OpenMP
startsin 1997

http://www.openmp.org/
http://www.compunity.org/


OpenMP history
(courtesy Intel ĂThe Parallel Universeñ, issue 18)
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Note the increasein 
the standard'ssize
(OpenMP5.0 has

666 pages)

Course Target:

Learnthe mostusefuland
thereforemostcommonly
usedfeaturesof OpenMP
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OpenMP Architecture

11Introduction to OpenMP

Application

Compiler
Directives

User

Environment
Variables

Runtime Library

Threads in OS 
CPUs in Hardware

Comment lines
in sourcecode

Somelibraryroutines
areexposed

to the programmer

Determineresource
allocationand
assignment, 

schedulingstrategies, 
etc.

YourǇǊƻƎǊŀƳ Χ

OS threadsare
executed

concurrentlyon 
HW cores



A simple application
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program

use m

implicit none

call f()

end program

module m

implicit none

contains

subroutine f()

print *, ' Hello '

end subroutine

end module

Fortran

#include <stdio.h >

int main () {

f() ;

return 0;

}

void f() {

printf (" Hello \ n");

}

C

Aimis to execute
multiple instancesof

f() concurrently



Parallel execution model

Á fork-join sequence

Åcan repeat, with differing thread counts
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fork

f() f() f() f() f()

join

Program start: only 
master thread runs 
(serial execution)

Parallel region entry: team of 
worker threads is generated 

worker threads
execute concurrently
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Parallel region exit: all threads 
of team synchronize

Serial region: 
only master thread executes

(workers usually persist, but are inactive)



Adding a parallel region
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program

use m

implicit none

!$ omp parallel

call f()

!$ omp end parallel

end program

Fortran

#include <stdio.h >

int main () {

#pragma omp parallel

{    

f() ;

}

return 0;

}

C

enclosed
lexicalblock 

Á General form of directives:

Åclauses, if present, modify a directiveóssemantics

Åmultiple clauses per directive are possible

Åcontinuation lines are supported for long directives:      &             \

!$ omp <directive > [< clause >] 

enclosed
lexicalblock 

#pragma omp <directive > [< clause >] 

sentinel sentinel

Fortran C



OpenMP structured block rules

Åstatements between a beginning

and ending directive pair

ÅGOTO into block is prohibited

ÅGOTO, RETURN, EXIT outside 

block are prohibited

ÅSTOP, ERROR STOP

Ådelineated by braces following a 

directive

Åsetjmp() into block is prohibited

Ålongjmp() and throw() outside 

block are prohibited

Åexit()
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Fortran C / C++

single point of entry

single point of exit

permitted: program termination



Using library calls
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subroutine f()

!$ use omp_lib

integer :: me

me = 0

!$ me = omp_get_thread_num () 

print *, ' Hello from thread ', me

end subroutine

F
o

rt
ra

n

#include <stdio.h >

#include <omp.h >

void f() {

int me = 0;

#ifdef _OPENMP

me = omp_get_thread_num ();

#endif

printf ("Hello from thread %i\ n", me);

}

C

!$ indicatesstatementshould
be compiledconditionally

OpenMPmodule:
explicit interfaces for API

returns an integer
(avoid implicit typing!)

OpenMPinclude file:
prototypes for API

OpenMP-specific macro for 
conditional compilation



Independent execution contexts

ÁAs many independent function calls as there are threads

ÁThread-individual memory management within function call

Ålocal variables (e.g., "me") are created in the

thread-specific stack

Åmalloc() or ALLOCATE create memory in

the heap separately for each thread

ÁPrivate variables

Åassociated with a particular thread are

inaccessible by any other thread

Åpro: safe to use

Åcon: communication is not possible

(it is needed by many parallel algorithms), 

unnecessary replication of objects may happen.

ÁThread-individual stack limit

Åcontrol via environment variable

(example: 100 MByte)
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private

T0

T2

T1

private

private

T3

private

export OMP_STACKSIZE=100M



OpenMP API

ÁClasses of routines:

ÅExecution environment (36), Locking (12), Timing (2), Device Memory (7)

Name Resulttype Purpose

omp_set_num_threads
( int num_threads )

none numberof threadsto becreatedfor
subsequent parallel region

omp_get_num_threads () int numberof threadsin currently executing
region

omp_get_max_threads () int maximumnumberof threadsthat canbe
createdfor a subsequent parallel region

omp_get_thread_num () int threadnumberof callingthread(zero
based) in currently executingregion

omp_get_num_procs () int numberof processorsavailable

omp_get_wtime () double return wall clocktime in secondssince
some(fixed) time in the past

omp_get_wtick () double resolutionof timer in seconds
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Compiling and Running

ÁCompilation:

ÁSwitch for OpenMP

Åspecific spelling is compiler-dependent

Åtoggles both directives and conditional compilation

Ågenerates threaded code and links against OpenMP run time

ÁExecution:

ÁOutput for example

program:
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export OMP_NUM_THREADS=4

./hello.exe

f90 ðfopenmp ðo hello.exe hello.f90Fortran

C cc ðfopenmp ðo hello.exe hello.c

by default, parallel regions 
generate a team with 4 threads

Hello from 1

Hello from 3

Hello from 0

Hello from 2

ordering will vary between runs
(asynchronous execution)

serial compilation may 
require stub library

Now: First exercisesession

generic instructions ...



Simple work sharing, 

Scoping of Data, 

and Synchronization



Questions that now arise ...

ÁWe know how to set up threading, but

Åhow can a large work item be divided up among threads?
(using the API for this works in principle, but is tedious)

Åwhat happens with objects that already exist before the parallel region

starts?

ÁExample: 

Åmatrix-vector multiplication r = M Ā x  i.e.
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M x r

ὶ ὓ ὼ

A bunchof scalar
products



Concept of work sharing

ÁThe idea is to split the work among threads

ÁNote that

Åall elements of x must be available to all threads

ÅMatrix-Vector is often deployed iterativelyĄ r becomes x in the next iteration

Ą copying of data must be possible

ÁConsequence:

Åneed for variables that are accessible to all threads

Ą "data sharing" is often a prerequisite for "work sharing"

Ą a natural concept for a shared memory programming model
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M x r

Thread 0

Thread 1

Thread 2

Thread 3



Sharing variables across threads

ÁThe Ăsharedñ clause

Å implies that scalar s and array a both are accessible to all threads

Á Rules for concurrent accesses to a single object

Å reads/writes or writes/writes by different threads are not permitted (Ădata racesñ)
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real :: s, a(200)

s = é

!$ omp parallel shared( s,a )

select case (me)  

case (0)

a( 1:100 ) = é * s

case (1)

a( 101:200 ) = é * (- s)

end select

!$ omp end parallel

s fork:  T0 T1

s

s

join

a

threadID

a

read

write

disjoint
partsof a
disjoint

partsof a

synchronization
guarantees

availabilityof a

Note: updates to arraya areOK becausedisjoint parts of objectareupdated

shared
variables

Fortran



Data dependencies that prevent parallelization

ÁFlow dependency ("read after write", RAW):

ÁAnti-dependency ("write after read", WAR):

ÁOutput dependency ("write after write", WAW):
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aҐ Χ
b = a
c = b

secondinstruction
cannotexecute

concurrentlywith first

b = a
aҐ Χ
Χ Ґ ŀ Ҍ Χ 

b = a
a2Ґ Χ
Χ Ґ ŀн Ҍ Χ 

resolvableat costof
introducinga newvariable 

("namedependency")

aҐ Χ
b = a 
aҐ Χ

aҐ Χ
b = a
a2Ґ  Χ 

after namedependency
resolution, statements1 

and3 canexecute
concurrently.

Flow dependencyremains.



Privatization
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a[k] = é;

#pragma omp parallel \

shared(a) 

{ int i ; float s ;

s = 0.0;

for (i=é;i<é;i++) {

s += a[ i ];

}

}

fork: 

T0 T1 T2 T3

s0 s1 s2 s3

s0 s1 s2 s3

join: i, s go out of scope

ÁBlock-local variables in C/C++

Á are automatically private

shared private

a

a

a

thread-localcopiesof
sareupdated

Note: Onecanexpectthe same behaviourfor the
Fortran 2008 BLOCK construct, but this iscurrently
not specifiedin the OpenMPstandard

examplecalculates
thread-individual sums

C 

useless, from a practicalpoint
of view. But bearwith me-

we'll fix this, eventually

split iteration space(?)



Privatization with masking

© 2010-19 LRZ/RRZE Introduction to OpenMP 26

e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

real :: s

real :: a(:)

integer :: i

s = é

!$ omp parallel private(s) & 

!$ omp shared(a)

s = 0.0

do i = é, é

s = s + a(i)

end do

!$ omp end parallel

é = é + s

s
fork: 

T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists

(inaccessible)

s join: si become undefined

shared private

ÁMasking occurs

Å for privatized variables 
declared outside the
parallel region

Á Loop variables

Åare always private

Fortran
a

a

a

wouldexpectvaluefrom before
parallel regionto persist, but side

effectsarepossible.
Forexample, modification
via a pointer (avoidthis!)

If swereshared, the program wouldhavea racecondition.



Code for work-shared Matrix-Vector multiplication:

The DO / FOR directive

ÁSerial

ÁOpenMP parallel
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DO k = 1, n

DO j = 1, n

r(j) = r(j) + a(j, k) * x(k)

END DO

END DO

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r[j] = r[j] + a[k*n+j] * x[k];

}

}

!$omp parallel

!$omp do

DO j = 1, n

DO k = 1, n

r(j) = r(j) + a(j, k) * x(k)

END DO

END DO

!$ omp end do

é = r(é)

!$ omp end parallel

Fortran

#pragma omp parallel

{

#pragma omp for

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r[j] = r[j] + a[k*n+j] * x[k];

}

}

é = r[é];

}

appliesto j-loop

all threadssynchronize

no racecondition
againstprevious

definitions

C 

implicit barrier

r, a, x are
sharedby default j, k areprivate



Further rules for work shared loops

ÁSlicing of iteration space

ÅĂloop schedulingñ

Ådefault behaviour is

implementation dependent

Åusually as equal as possible

chunks of largest possible size, 

one chunk per thread

Á In the example,

Åslicing is done as shown some

slides earlier

Åloop order was switched to avoid

having many synchronizations

ÁAdditional clauses

Åon OMP DO / omp for will be

discussed later

ÁRestrictions on loop structure 

ÅTrip count must be computable at 

entry to loop 

ÅDisallowed:

C style loops modifying the loop 

variable in the loop body, or using a 

non-evaluable exit condition, or

Fortran DO WHILE loop; 

Åloop body must be a well-formed 

structured block with single entry 

and single exit point  

ÁNote: 

Ådirective (by default) acts only on 

outermost enclosed loop 
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actually, we're caughtbetweena 
rock anda hardplacehere...



Avoiding race conditions (1):

mutual exclusion via the critical directive
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real :: s, stot

real :: a(:)

integer :: i

stot = 0.0

!$ omp parallel private(s) & 

!$ omp shared( a, stot )

s = 0.0

!$ omp do

do i = 1, size(a)

s = s + a(i)

end do

!$ omp end do

!$ omp critical

stot = stot + s

!$ omp end critical

!$ omp end parallel

fork: 

T0 T1 T2 T3

s0 s1 s2 s3

s0 s1 s2 s3

join

Á Only one thread at a time can execute a critical region

Á others must waitĄ code in region is effectively serialized

Fortran

stot

stot

synchronization
point

shared private

stot

stot

stot

stot

parallel arraysummation

updatesarenow
synchronized



Dealing with race conditions

through atomic updates

ÁProperties of atomic operations

Åthe atomic directive applies only for

a single update to a scalar shared

variable of intrinsic type

Åthis way of updating can be done

safely when executed concurrently
(exception to the rules on race conditions!)

Åotherwise, no synchronising effect

imposed by semantics

Åhardware atomic instructions

availableĄ likely more efficient than

critical region
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float stot ;

stot = 0.0;

#pragma omp parallel \

shared( a, stot )

{ int i; float s;

s = 0.0;

#pragma omp for

for ( i =0;i< N;i ++) {

s += a[ i ];

}

#pragma omp atomic update

stot += s;

}

C 

parallel arraysummation

legacynotation
omp atomic

isalso permitted

Á C can use #pragma omp critical

Á Fortran can use !$ omp atomic ...
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The two kinds of memory in OpenMP

ü Data accessed by can be 

shared or private

Áshared data ïone instance 

of an entity available to all 

threads (in principle)

Áprivate data ïeach per-

thread copy only available  

to thread that owns it

ü Data transfer transparent to 

programmer

ü Synchronization 

necessary for accessing sha-

red data from different 

threads to avoid race 

conditions

Áimplicit barrier

Áexplicit directive

private

Shared

T0

T2

T1

T3

private

private

private

31Introduction to OpenMP



The firstprivate clause

ÁExtension of private:

Åvalue of master copy is transferred to
private variables

Årestrictions: not a pointer, not assu-
med shape, not a subobject, master
copy not itself private etc.
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real :: s

s = é

!$ omp parallel &

!$ omp firstprivate (s)

é = é + s 

s = é

!$ omp end parallel

é = é + s

s
fork: 

T0       T1       T2       T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists

(inaccessible)

s join

shared private

usesvaluefrom
mastercopy

Fortran

now startingto wrapup ...



real :: s

s = é

!$ omp parallel 

!$ omp do lastprivate (s)

do i = 1, n

s = é

end do

!$ omp end do

é = é + s

!$ omp end parallel

The lastprivate clause

ÁExtension of private:

Åvalue from thread which executes last 

update in the serial code is transferred

back to master copy

Årestrictions similar to firstprivate
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s
fork: 

T0       T1       T2       T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists

(inaccessible)

s join

shared private

ÁWhen to use?

Åas little as possible

Ålegacy code

on work sharing

directive

shasvalueproducedby
i-loop iteration n

Fortran



Data scoping defaults

ÁScoping clauses can be

specified for

Åparallel regions

Åloop work sharing constructs

ÁDefaults 

Åapply if no clause is specified

Åmay vary by construct, but for

the above the following apply:

pre-existing objects are by

default shared, except for loop

variables, which are private.

objects declared inside the

lexical or dynamic scope of the

construct are private.

ÁRecommendation:

Åspecify a default(none) clause

on each directive that permits

scoping:

Åthis forces you to explicitly

consider and specify scoping for

all pre-existing objects

© 2010-19 LRZ/RRZE Introduction to OpenMP 34

Fortran

!$ omp parallel default ( none ) &

!$ omp shared(é) private(é) é

é

C 

#pragma omp parallel default ( none ) \

shared(é) private(é) é

é

other values
arepossible

this cannotbe changed, of course Now: Second exercisesession



Reductions



Concept of Reduction

ÁSeen in previous exercise:

Åneed for assembling partial 

results across threads

Åup to now: with critical region

ÁOpenMP reductions:

Å sometimes more efficient at scale

Å implementation tunings like

reduce complexity from

O(nthreads) to O(log2(nthreads)) 

Å always easier to understand and

maintain
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want ВίÈÅÒÅ
(not directly possible because s is private)

s0 s1 s2 s3 s4

si = si +Χ ƻƴ eachthread

newconceptisneeded...

for associativeand
commutativeoperations



ÁExample 1: Sum reduction in a parallel region

Åvalue of s after end of parallel region:  ίÉÎÃÏÍÉÎÇВί

ÁNote: multiple reductions are permitted

Reduction clause
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!$ omp parallel reduction( +: x,y,z )

Fortran float s;

s = 2.2;

#pragma omp parallel reduction(+:s)

{

é 

s += é;

}

é *= s;   

C 

s canbesafelyconsumeddue to
previousimplicit barrier

private copyof s
operationconsistent

real :: s

s = 2.2

!$ omp parallel reduction(+:s)

é

s = s + é

!$ omp end parallel

é = é * s  

operationconsistent

incomingvalue

!$ omp parallel reduction( +: x,y ) &

!$ omp reduction( *,z )  

private copyof s
(initial value0.0)

s canbesafelyconsumeddue to
previousimplicit barrier



ÁExample 2: Sum reduction in a work shared region

Åvalue of s after end of worksharing region:  ίÉÎÃÏÍÉÎÇВί

Reduction clause cont'd
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real :: s

s = 2.2

!$ omp parallel shared (s)

é 

!$ omp do reduction(+:s)

do i = 1, n

é

s = s + é

end do

!$ omp end do

é = é * s  

!$ omp end parallel

Fortran float s;

s = 2.2;

#pragma omp parallel shared (s)

{

é

#pragma omp for reduction(+:s)

for ( i =0, i <n, i ++) {

é 

s += é;

}

é *= s;  

}

C 

s canbesafelyconsumeddue to
previousimplicit barrier

s canbesafelyconsumeddue to
previousimplicit barrier

private copyof sprivate copyof s
(initial value0.0)

operationconsistentoperationconsistent

incomingvalue



Initial value of private reduction variables

Operation Initial value

+ 0

- 0

* 1

.and. .true.

.or. .false.

.eqv. .true.

.neqv. .false.

MAX -HUGE(X)

MIN HUGE(X)

IAND all bits set

IEOR all bits 0

IOR all bits 0
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ÁDepends on operation

ÁSupported intrinsic operations:

Operation Initial value

+ 0

- 0

* 1

& 0

| 0

^ 0

&& 1

|| 0

MAX smallest
representablevalue

MIN largest
representablevalue

Fortran C / C++ 



Array reductions

ÁExample

Åreduces complete array b and m 

elements of array a, elementwise

Åuses regular Fortran array

section notation

ÅC example does the same as the

Fortran example

ÅOpenMP-defined sectioning

syntax (differs from Fortran):
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now also supported
in C/C++ !

ÁGeneral rules:

Åarray section must be a contiguous object (Ą no strides permitted)

Ådynamic objects must be associated / allocated, and the status must not be

modified for the private copies

real :: a(*)

real :: b(n)

!$ omp parallel reduction(+:b) &

!$ omp reduction(*:a( 1:m))

é

Fortran float *a;

float b[N];

#pragma omp parallel \

reduction(+:b[:]) \

reduction(*:a[ 0:m ])

é

C/C++ 

[lower bound : length][lower bound : upper bound]

pointeecreated
e.g. via malloc()

no deallocate/ free within reductionregion

must specify
upperbound

(assumedsize)

same as
b[ 0:N ]



User-defined reductions

ÁUsing derived types

ÁAnd now we want to write

Åbut the compiler will refuse to build it (Ă+ñ not known to OpenMP) unless

further measures are taken ...
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typedef struct {

int numerator, denominator;

} Fraction;

Fortran
type :: fraction

integer :: numerator, denominator

end type

C 

addoverloadedoperators+, -, * etc.
or evenuser-definedoperators

type(fraction) :: af

af = é

!$ omp parallel reduction(+: af )

é

af = af + é

!$ omp end parallel

Fraction af ;

af = é;

#pragma omp parallel \

reduction(+: af )

{  

é

Fraction_sum ( af , é);

} 

providefunctionsto add, etc.



Declaring a user-defined reduction

ÁCombiner
Åconnects to operator implementation

Fortran: example defers to overloaded Ă+ñ, C: references ĂFraction_addñ

special OpenMP parameters omp_in, omp_out formally describe the two

operands for each operation needed

Á Initializer

Åimplements initial value setting for private copies

Fortran: uses (overloaded) structure constructor, C similar

special OpenMP parameter omp_priv formally describes private copy
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!$ omp declare reduction (+: fraction:omp_out =omp_out +omp_in ) &

!$ omp initializer ( omp_priv =fraction(0,1))

F
o

rtra
n

#pragma omp declare reduction (+:Fraction: \

Fraction_add ( omp_out,omp_in )) \

initializer ( omp_priv =Fraction{0,1})

C
 

declare reduction(<op>:<type>:<combiner>) 

initializer(omp_priv=...) or initializer(function(...))



More on Work Sharing

Loops and loop scheduling

Collapsing loop nests

Parallel sections



The schedule clause

ÁDefault scheduling:

Å implementation dependent

Å typical: largest possible chunks of as-

equal-as-possible size

(Ăstatic schedulingñ)

ÁUser-defined scheduling:

chunk : always a non-negative integer. 

If omitted, has a schedule dependent

default value

Á1. Static scheduling
Å schedule (static,10)

Åminimal overhead (precalculate work

assignment)

Å default chunk value: see left

Á2. Dynamic scheduling

Å after a thread has completed a 

chunk, it is assigned a new one, until

no chunks are left

Å synchronization overhead

Å default chunk value is 1
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static
!$ OMPdo schedule ( dynamic [ ,chunk ] )

guided                   

iteration space (threads color coded)

schedule ( dynamic , 10)

10 iterations

both threads take long to complete

their chunk (workload imbalance)

Fortran



3. Guided scheduling
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Á Size of chunks in dynamic schedule

Åtoo small Ą large overhead

Åtoo large Ą load imbalance

Á Guided scheduling: dynamically vary chunk size. 

ÅSize of each chunk is proportional to the number of unassigned iterations 

divided by the number of threads in the team, decreasing to chunk-size.

(default: Ą 1)

Á Chunk size:

Åmeans minimum chunk size (except perhaps final chunk)

Ådefault value is 1

Åboth dynamic and guided scheduling are useful for handling poorly balanced 

and unpredictable workloads.

iteration space

chunk == 7



OpenMP Scheduling of simple for loops
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OMP_SCHEDULE=static OMP_SCHEDULE=dynamic,10

OMP_SCHEDULE=static,10 OMP_SCHEDULE=guided,10



4. Deferred scheduling

ÁDecided at run time:

Áauto (automatic scheduling)

Åprogrammer gives

implementation the freedom to

use any possible mapping.

Á runtime

Åschedule is one of the above or

the previous two slides

Ådetermine by either setting

OMP_SCHEDULE, and/or calling

omp_set_schedule () 
(overrides env. setting)

Åfind which is active by calling

omp_get_schedule ()

ÁExamples:

Åenvironment setting:
export OMP_SCHEDULE= guided

export OMP_NUM_THREADS=4

./myprog.exe

Åcall to API routine:
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auto 
!$ OMPdo schedule ( runtime )

omp_set_schedule (
omp_sched_dynamic,4 );

#pragma omp parallel 
{
#pragma omp for schedule (runtime)
for (é) {
é 

}
}

C 

Fortran



Final remarks on scheduling

ÁPlease check your compiler documentation for implementation-

dependent aspects

ÁAn implementation may add its own scheduling algorithms

Åcode using specific scheduling may be at a disadvantage

Årecommendation: Allow changing of schedule during execution

Á If runtime scheduling is chosen and OMP_SCHEDULE is not set

Åexecution starts with implementation-defined setting
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Collapsing loop nests

ÁExample: Two nested loops

Åassume kmax is 2, and jmax is 3

Åthen the workshared loop will 
scale to at most 2 threads

ÁTherapy:

Åuse a collapse clause to improve
scaling

Åthis flattens two (or more) loop
nests into a single iteration space

Á Improved example:

Åslicing is performed on the virtual
index Icoll:

Á Restrictions:

Årectangular iteration space

ÅCYCLE/continue in innermost
loop only
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!$OMP do

do k=1, kmax

do j=1, jmax

:

end do

end do

!$OMP end do

!$OMP do collapse(2)

do k=1, kmax

do j=1, jmax

:

end do

end do

!$OMP end do

specifynestinglevel
to collapse

Icoll 0 1 2 3 4 5

J 1 2 3 1 2 3

K 1 1 1 2 2 2

sequencedby
serial

execution
order

Fortran



Collecting load imbalances

at synchronization points

ÁExample:

ÁAssumptions on code following the synchronization point:

Ådoes not involve tsum

Åhas a load imbalance that is inverse to that of preceding code block
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!$ omp parallel  

!$ omp do reduction(+: tsum ) 

do k=1, kmax

tsum = tsum + foo(a, b, c)

end do

!$ omp end do 

é

é = tsum é

!$ omp end parallel
ti

m
e

T0 T1 T2 T3

waitingin barrier

barrier
completedby

all threads

implicit
barrier

activelyexecuting

Fortran

T0 performance
slowsall others



nowait clause and explicit barrier directive

Á Reduce load imbalance

Å by removing the barrier via the

nowait clause

Á Assure code correctness

Åmay require explicit barrier directive

before tsum (or other modified

shared variable) is accessed
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!$ omp parallel  

!$ omp do reduction(+: tsum ) 

do k=1, kmax

tsum = tsum + foo(a, b, c)

end do

!$ omp end do nowait

é

!$ omp barrier

é = tsum é

!$ omp end parallel

ti
m

e

T0 T1 T2 T3

waitingin barrier

barrier
completedby

all threads

no barrier

activelyexecutingDO

activelyexecutingpost-DO code

codenot involvingtsum

Fortran

#pragma omp for reduction(+: tsum ) \

nowait

{ é } C 



Parallel sections

ÁNon-iterative work-sharing construct

Ådistribute a static set of structured blocks

Åeach block is executed exactly once by one of the threads in the team

Á Allowed clauses on sections:

Åprivate, first/lastprivate, reduction, nowait
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!$OMP sections

!$OMP section

:

:

:

!$OMP section

:

:

:

é

!$OMP end sections

code block 1 

by thread 0

code block 2 

by thread 1

synchronization

#pragma omp sections

#pragma omp section

{

:

}

#pragma omp section

{

:

}

é

// end sections

Fortran C 



Parallel sections cont'd

ÁRestrictions:

Åsection directive must be within lexical scope of sections directive, and

directly enclosed (no interleaved language construct is permitted)

Åsections directive binds to innermost enclosing parallel region

Ÿ only the threads executing the binding parallel region participate in the

execution of the section blocks and the implicit barrier (if not eliminated with

nowait)

ÁScheduling to threads

Åimplementation-dependent

Åif there are more threads than code blocks, excess threads wait at synchro-

nization point

Á In modern OpenMP,

Åtasking provides a much more flexible and scalable way to implement this

and much more general patternsĄ will be treated tomorrow
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single directive and copyprivate clause

ÁExecution:

Å only one thread of the team executes

the statements in the block

Å others go to the end of the block
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e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

fork: 

T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3

persists

(inaccessible)

s join

shared private

s2

optional clause:
copyprivate(s)
Ҧ .ǊƻŀŘŎŀǎǘ

parallel

ÁSynchronization

Åof all threads at end of single

block

end parallel

single

end single

threadT2

arrivesfirst



float s;

s = é;

#pragma omp parallel private(s) 

{

#pragma omp single \

copyprivate (s)

{

é;

s = é;

}  // end single

é = é + s;

} // end parallel

single directive syntax

ÁNote: 

Åupdate of shared variables inside a single block is safe against subsequent 

accesses, due to synchronization at the end of that block
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real :: s

s = é

!$ omp parallel private(s) 

!$ omp single 

é

s = é

!$ omp end single &

!$ omp copyprivate (s)

é = é + s

!$ omp end parallel

Fortran

C 

block executedby
onethreadonly



Work sharing with single:

the nowait clause

Á Implement a self-written work scheduler

Åone possible scheme (of many), sketched only:

Ånot the most efficient method
Ą preferably use tasking (covered tomorrow); the single construct will be

relevant in that context
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é

!$ omp parallel

do iw =1, nwork

!$ omp single

é

!$ omp end single nowait

é 

!$ omp barrier

end do ! iw

!$ omp end parallel

produce work for 
iteration 1

produce work for iteration 
iw+1 (using a non-trivial 
amount of time e.g. I/O)

other threads continue
and work on iteration iw

Fortran



Global variables

and threading



Global variables and their default scope

ÁExamples:

ÁSuch variables by default have shared scope

ÁThe same applies for variables with the SAVE (Fortran) or static (C) 

attribute

Á Implication:

Åcode using such memory is often not thread-safe, unless mutual 

exclusion mechanisms are used when accessing the objects
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module my_globals

implicit none

integer :: my_count

real, allocatable :: a(:)

é

end module

Fortran

REAL :: A(1000)

INTEGER :: MY_COUNT

COMMON/ MY_GLOBS / A, MY_COUNT 

FORTRAN 77

#define NMAX 1000

float a[NMAX];

void my_func () {

extern float a;

é

}

C 



Privatizing global objects

ÁWhen program semantics requires that each thread work on its

own copy, privatization is necessary

Ånot exactly the same as private variables Ą separate syntax needed

ÁC:

Å#pragma omp threadprivate (list)

Ålist is a comma-separated list of file-scope, namespace-scope, or 

static block-scope variables that do not have incomplete types

ÁFortran:

Å!$ omp threadprivate (list)

Ålist is a comma-separated list of named variables and named common 

blocks. Common block names must appear between slashes.

ÁObjects start out with master copy existing only 

Åthread-private copies (with undefined values) spring into existence 

when the first parallel region is started
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directiveplacedin declaring
programunit



Further properties of threadprivate storage

ÁCopyin clause

Åbroadcasts object values from

master copy to thread-

individual copies

Åworks analogous to the

firstprivate clause

ÁSubsequent parallel regions:

Åthread-individual copies retain

their values (by thread) if

1. second parallel region not 

nested inside first

2. same number of threads is

used

3. no dynamic threading is

used

Note: none of the potential viola-

tions of the above three rules

are dealt with in this course
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allocate( a( ndim ) )

a(:) = é

!$ omp parallel copyin (a)

é = a(i ) + é

a( i ) = é

!$ omp end parallel

Fortran

uses value set on 
master

Recommendations:
Å Avoid using global variables in the context of threading
Å Use object-based design instead



... useful varia
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The master construct

ÁOnly thread zero (from the current team) executes the enclosed

code block

Á there is no implied barrier either on entry to, or exit from, the master

construct. Other threads continue without synchronization

ÁNotes:

ÅNot all threads must reach the construct; if the master thread does not reach

it, it will not be executed at all

Åthis is not a work sharing construct, it only serves for execution control
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!$ omp master

block

!$ omp end master

#pragma omp master

{ block }

Fortran C 



Combined constructs

ÁCertain combinations of constructs can be fused

Åthe result is a single construct that behaves as if the two individual 

ones were tightly nested

Åmay be more efficient due to reduced synchronization needs

Åis often easier to read

ÁExample: joint "parallel do" (C has "parallel for" here ...)

Åboth variants have the same semantics
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!$ omp parallel

!$ omp do

do i =1, n  

é

end do 

!$ omp end do

!$ omp end parallel

!$ omp parallel do

do i =1, n  

é

end do 

!$ omp end parallel do

F
o

rt
ra

n



Conditional parallelism

ÁPut an "if" clause on a 

parallel region

Åspecify a scalar logical

argument

Åmay require manual tuning for

properly dealing with thread

count dependency etc.

ÁSpecific uses:

1. execute serially for small

problem sizes

(parallel overhead may reduce

performance)

2. suppress nested parallelism in 

a library routine:
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!$ omp parallel if (n > 8000)
é 

!$ omp end parallel

#pragma omp parallel if \
( ! omp_in_parallel () )

{
é 

}

process work 
item of size O(np)

Fortran

logical / int function 
from OpenMPrun time:
are we already parallel in 

executing scope?

Now: Third exercisesession



OpenMP 4.0

SIMD (vectorization) directives

Optimization of innermost

loop structures

Acknowledgmentisdue to M. Klemm (Intel)



SIMD - single instruction multiple data

ÁExample: 

ÅSandy Bridge vector unit

Å256 Bit SIMD 

Åaddition of 8 Byte words

Á Instruction capability

Å1 vector add and 1 vector mult

per cycleĄ theoretical Peak 8 

Flops/cycle (double precision)

ÁLD/ST issue capability for

Sandy Bridge

Å4 Words LD/cycle

Å4 Words ST/(2 cycles)

Åperformance boost depends on 

algorithm, including its temporal 

locality properties

ÁMore recent processors may

have more advanced units

Åmore SIMD lanes

Åadditional vector operations
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R0 R1 R2
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A      +       B       =        C
4 elements with 1 AVX instruction



Before OpenMP 4.0 é

Áé programmers had to rely on auto-vectorization,

Åor use non-portable extensions

ü programming models (e.g. Intel Cilk Plus)

ü intrinsics (e.g. _mm_add_pd() )

ü compiler pragmas

which may or may not get ignored by the compiler
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#pragma omp parallel for
#pragma vector always
#pragma ivdep
for ( int i=0; i<N; i++) {
a[i] = b[i] + é;

} 

C 



OpenMP SIMD loop construct

ÁVectorize a loop nest

Åcut into chunks that fit into a SIMD vector register

Åwithout parallelization of the loop body

ÁSyntax 
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#pragma omp simd [ clause [[,] clause ], é]

for loops

!$ omp simd [ clause [[,] clause ], é]

do loops

[!$ omp end simd ] Fortran

C 



Simple example

ÁScalar product

ÁConverts serial element-wise execution

to vectorized one:
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void sprod (float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp simd reduction(+: sum)

for ( int k=0; k<n; k++) {

sum += a[k] * b[k];

}

vectorization

architecture-specific
vectorlength

C 



Data Sharing Clauses

ÁExisting ones adapted to SIMD-style execution

Årequired for more complex loop bodies

Áprivate ( var - list )

create uninitialized vectors for variables in var-list

(loop iteration variables are private by default)

Á lastprivate ( var - list)

copy last iteration value to variable at the end of the construct

Á reduction ( op:var - list )
create private copies for variables in var-list and apply the reduction
operation op at the end of the construct
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42 ? ? ? ?

4212 5 8 17 +



Loop clauses (1)

Ásafelen ( length )

Åmaximum distance between

iterations that can run

concurrently without breaking

any dependencies

Á linear (list[:linear - step ])

Åproduce private copy of a variable that is in linear relationship with the

loop iteration variable: xi = xstart + (i ïistart) * linear-step
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#pragma omp simd safelen (5)
for ( int k=j; k<n; k++) {

b[k] = a[k] * b[k - j ];
}

Å programmer assures j > 5
Å compiler can use a vector 

length of at most 6



Loop clauses (2)

Áaligned (list[: alignment ])

Åspecifies that variables in the list are aligned, either by the specified

integer value of alignment in units of bytes, or in implementation-

specific manner

Ácollapse (n)

Åcollapse iteration space of a SIMD loop nest
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SIMD worksharing construct

ÁParallelize and vectorize a loop nest

Ådistribute iteration space of loops across threads

Åsubdivide loop chunks to be processed in SIMD registers

ÁSyntax 
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#pragma omp for simd [ clause [[,] clause ], é]
for loops

!$ omp do simd [ clause [[,] clause ], é]
do loops
[!$ omp end do simd ]

Fortran

C 



Scalar product again é 
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void sprod (float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp for simd reduction(+: sum)
for ( int k=0; k<n; k++) {

sum += a[k] * b[k];
}

vectorization

Thread 0 Thread 1 Thread 2
parallelization

assume invocation by 
all threads executing in a 

parallel region



Function vectorization

Á Function call inside SIMD region ÁTherapy: explicitly declare for 

use in vectorized loops

ÅC/C++ syntax

ÅFortran syntax

Åclauses are also supported

Åcauses generation of multi-

version code by the compiler
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float min(float a, float b) {
return a < b ? a : b;

}

float distsq (float x, float y) {
return (x ð y)*(x ð y);

}

void example () {
#pragma omp for simd

for (i=0; i<N; i++) {
d[i] = min(

distsq( a[i],b[i] ),c[i] );
}

}

may fail if functions 
outside file scope

#pragma omp declare simd
function def . or decl .

!$ omp declare simd &
!$ omp ( proc - name- list )



Code generation for SIMD functions

Á vectorized versions of generated functions are shown
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#pragma omp declare simd
float min(float a, float b) {

return a < b ? a : b;
}

#pragma omp declare simd
float distsq(float x, float y) {

return (x ð y)*(x ð y);
}

void example () {
#pragma omp for simd

for (i=0; i<N; i++) {
d[i] = min(

distsq( a[i],b[i] ),c[i] ) ;
}

}

vec8 min_v ( vec8 a, vec8 b) {
return a < b ? a : b;

}

vec8 distsq_v ( vec8 x, vec8 y) {
return (x ð y)*(x ð y);

}

vd = min_v( 
distsq_v ( va , vb ), vc );

no SIMD directivespermitted
insidevectorizedfunctions!



Clauses applicable for declare simd

Ásimdlen ( length )

generate function to support supplied vector length

Áuniform (argument - list)

argument has a constant value between iterations of invoking loop

Á inbranch vs.  notinbranch

function always / never called from inside an if statement

Á linear (list[:linear - step])

Áaligned (list[:alignment])

Á reduction ( op:var - list )
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as before



Final remarks on SIMD

ÁCase studies on vectorizable applications: 

Åshow performance improvements of factor 1.5 ï4.3 compared to

auto-vectorized code

Åyou may not be as successful, but a 20% performance improvement

for 45 min optimization work is also quite nice

ÁResolution of dependencies

Åmay sometimes involve code restructuring and splitting of loops

ÁFurther features available: combination of device control

directives with SIMD

Åplatform dependence

Ånot discussed in this talk
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Now: Fourthexercisesession



More on Synchronization

and Correctness

Memory model

Identifying correctness problems

Named critical regions

Atomic operations

Loop dependencies

Mutual exclusion with locks



Concurrent updates on shared variables

ÁScenario: 

Åthe above is non-conforming

Ådata race causes unpredictable results to be produced

ÁReason: 

Ådifferent threads can have different views on same variable: temporary view

(in-register value) vs. memory value

Åthese two views become inconsistent when a thread modifies the variable
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real :: a

a = 0

!$ omp parallel shared(a) num_threads (2)

a = a + 1

write(*,'(''a on thread ',i0,' is ',i0)') &

omp_get_thread_num (), a 

!$ omp end parallel

write(*,'(''a after construct is ',i0)') a 

Fortran

Thread0 Thread 1

1 1

2 1

1 2

possibleresults
in first write

possibleresultsin second
write : 1 or 2

fix numberof threads
for parallel execution



© 2010-19 LRZ/RRZE

Memory consistency rules

ÁFlush Operation

Åis performed on a set of (shared) 

variables or on the whole thread-

visible data state of a program 

Ådiscards temporary view:

Ą modified values are forced to 

cache/memory (requires exclu-

sive ownership)

Ą next read access must be 

from cache/memory

Åfurther memory operations only 

allowed after all involved threads 

complete flush:

Ą restrictions on memory in-

struction reordering (by compiler)

ÁEnsure consistent view of 

memory:

ÅAssumption: want to write a data 

item with one thread, read it with 

another one

ÅOrder of execution required:

1. thread 0 writes to shared variable

2. thread 0 flushes variable      

3. thread 1 flushes same variable 

4. thread 1 reads variable

81Introduction to OpenMP

Å The challengeis to assurestep3 
happensafter step2

Å OpenMPconstructsynchronization
semanticsassurethis aswell asthe
necessaryimplicit flushoperations(if
correctlyused)

!$ omp flush [list]
recommendto avoid
useof explicit flushes



But it is possible to make mistakes ...

ÁExample: update via critical region

Åmutual exclusion is only assured for the statements inside the block

i.e., subsequent threads executing the block are synchronized against each

other

Á If other statements access the shared variable,  you may be in 

trouble:
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!$ omp parallel shared(x) é
: 

!$ omp critical
x = x + y

!$ omp end critical
é
a = f( x, é)

!$ omp end parallel  

Race on read to x.

Most likely, a barrier is required before

this statement to assure that all threads

have executed their mutexed updates



ÁOpenMP correctness analysis:

Åno special compiler option needed (except perhaps ïg)

ÅGUI also for Linux-based system

Á Identify memory issues in addition to threading issues

Åleaks, dangling pointers etc.

ÁStart up GUI

Åprerequisites: set up environment and possibly stack limit

Åthen, invoke the GUI with

Åcommand line inspxe - cl is also available, but will not be discussed

in this talk
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Using Intel Inspector on x86-based systems

inspxe - gui &

Introduction to OpenMP 83
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Starting up the GUI Ą start a new project

enter project name
thenǇǊŜǎǎ αcreateprojectά
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ÁNeeded information:

Åexecutable name
(must have been built with

OpenMP)

Åexecutable path
(autocompleted)

Åarguments if needed

by executable

ÁFurther advanced

settings are possible
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Configure the project
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Run Analysis: New ĄAnalysis Result

Select analysis mode, then start

here: Threading Error Analysis Ą

locate deadlocks and data races

note potentially high performance

impact
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Error indication by severity

Note:
requires debug
option for
compiledcode

a racecondition
was identified
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